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Abstract

Physicochemical descriptors commonly used to define ‘drug-likeness’, and ligand efficiency 

measures, are assessed for their ability to differentiate marketed drugs from compounds reported 

to bind to their efficacious target or targets. Using ChEMBL version 26, a dataset of 643 drugs 

acting on 271 targets was assembled, comprising 1104 drug-target pairs having ≥ 100 published 

compounds per target. Taking into account changes in their physicochemical properties over time, 

drugs are analysed according to target class, therapy area and route of administration. Recent 

drugs, approved in 2010-2020, display no overall differences in molecular weight, lipophilicity, 

hydrogen bonding or polar surface area from their target comparator compounds. Drugs are 

differentiated from target comparators by higher potency, ligand efficiency (LE), lipophilic ligand 

efficiency (LLE), and lower carboaromaticity. Overall, 96% of drugs have LE or LLE values, or 

both, greater than the median values of their target comparator compounds.

Introduction

The physicochemical properties of small molecule drugs and discovery compounds, such as 

lipophilicity, size, hydrogen-bonding and ionisation state, broadly influence their absorption, 

distribution, metabolism, elimination and toxicity (ADMET) profiles, in particular their 

permeability, solubility, and metabolic clearance.1–5 ‘Drug-likeness’ is often said to be 

defined by the ranges of physicochemical properties possessed by marketed drugs. The rule 

of 5 (Ro5), introduced in 1997, is often cited as a ‘drug-like’ rule, though its intention was 

primarily to address poor solubility and permeability of oral drugs, by keeping the molecular 

weight (MW) <500, lipophilicity (cLogP) <5, the H-bond donor count (sum of OH+NH 

groups) <5 and the H-bond acceptor count (sum of O+N atoms) <10.6,7 The Ro5 stimulated 

numerous further investigations into physicochemical properties and compound quality 

guidance, including the use of aromaticity and shape descriptors,8,9 and ligand efficiency 
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measures.10,11 Most importantly, the Ro5 has elevated the awareness of the drug discovery 

community to the need for property-based design, leading to deeper understanding of the 

compromises encountered in balancing the key property-associated parameters of potency, 

permeability and metabolic clearance.

It has become clear that applying ‘drug-like’ properties in a generic manner can be 

questioned, for three main reasons. Firstly and most obviously, physicochemical descriptors 

themselves are surrogates for compound quality and are no substitute for robust 

experimental data.12,13 Secondly, the physical properties of drugs14 as well as discovery 

compounds15,16 vary according to their biological target (as well as target accessibility in 

vivo), observations that are important for the future as the number of new targets pursued in 

drug discovery efforts is significantly expanding.17,18 Thirdly, some of these 

physicochemical descriptors, notably MW, structural complexity and polar surface area 

(PSA), are increasing significantly over time in marketed drugs,19–22 and in discovery and 

patented compounds,23–26 going into chemical space beyond the boundaries of the Ro5 

(termed bRo5).27–30 Collectively these observations question the existence of a fixed ‘drug-

like’ physicochemical space.

In an earlier study using a limited set of 25 biological targets, most drugs acting at these 

targets possessed increased values of both ligand efficiency (LE = p(Activity) x 1.37/ heavy 

atom (HA) count) and lipophilic ligand efficiency (LLE = p(Activity) – LogP or D) versus 

other reported molecules acting at the same targets.11 In addition, successful lead 

optimisation campaigns across 15 targets often resulted in increased LE and LLE values.31 

The goal of this study is to exhaustively and critically expand on these observations. We 

assess a selection of commonly used physicochemical properties and ligand efficiency 

metrics, by comparing their values for marketed drugs with the cohort of published 

compounds acting at the target or targets linked to the drugs’ efficacy, taking into account 

the progression in drug properties over time.

Data assembly

Sources

An exhaustive analysis of the publicly available ChEMBL database32 (version 26), was 

conducted. Each small molecule marketed drug in ChEMBL, defined as reaching phase IV, 

is annotated to the specific biological molecular target(s) believed to be responsible for the 

drug’s therapeutic efficacy. In some cases the assigned molecular target is a protein family or 

complex. Source information for drug-target mapping includes journal articles and 

regulatory documents (cited in ChEMBL). A small number of drugs where a therapeutic 

target was not assigned in ChEMBL were manually curated. Biological drugs (proteins, 

antibodies, etc) are similarly annotated in ChEMBL but were excluded from this study. In 

all, there were 2028 small molecule drugs with calculated lipophilicity (ALogP values) and 

MW ≤1000, of which approximately 70% had a protein target. Following further curation 

(see below) a total of 686 drugs (MW range 94 – 994) were identified where there was a 

potency value, designated pChEMBL, in an assay at the drug’s therapeutic target(s) 

annotated by ChEMBL as a binding assay, together with at least one other comparator 

molecule acting at the same target(s). Biological assays annotated by ChEMBL as functional 
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or phenotypic were not used, and there was no differentiation made according to mode of 

action (agonists, antagonists or modulators).

For drugs and comparator compounds with more than one pChEMBL value at a specific 

target, median values were computed and used in the subsequent analyses. In curating these 

data, prodrugs, or drugs which are known to be transformed to pharmacologically active 

compounds, were removed and replaced by their active metabolites where pChEMBL data 

were available (a total of 38 drugs, see Supporting Spreadsheet S1). The route of 

administration of the parent drug was used for the active metabolites. A significant 

proportion of mutant protein activity data was found for kinase targets and additional filters 

were applied to extract potency data against the wild-type kinase enzymes and to exclude 

assays performed with a curated mutant. For other target classes data against the wild-type 

and any mutant proteins were combined. For three targets where the drugs are known to be 

optimised for a mutant protein (V600E B-raf kinase, R132H isocitrate dehydrogenase 1 and 

T790M EGRF kinase), the mutant target comparative compound data were used. Additional 

routes of administration (106 drugs) and year of first approval (76 drugs) were manually 

curated where this information was not present in ChEMBL (see Supporting Spreadsheet 

S1; approval dates are typically FDA approvals, with global first approvals for a handful of 

manually curated drugs). Therapeutic areas were assigned using the Anatomical Therapeutic 

Chemical (ATC) Classification and Medical Subject Headings (MeSH).33 The biological 

targets were assigned to broad target classes, with G-protein receptors being subdivided 

according to their ligands as aminergic, peptidergic and other. Any drugs acting on targets 

from more than one target class were assigned to the target class most commonly indicative 

of their therapeutic use. Oral drug maximum daily doses were annotated from literature 

sources with some additions from online labelling information as described earlier.34

Drug and target comparator compound dataset

We required the number of target comparator compounds for each drug to be ≥100 (range 

101-7582, 360,049 compounds in total), resulting in a drug and comparator compound 

dataset of 643 drugs acting on 271 targets. Of the 271 biological targets, 259 are human, 9 

are viral, 2 are bacterial and one is a parasite target. Of the 643 drugs, 426 had a single target 

and 217 had more than one target assigned, resulting in 1104 unique drug-target pairs (see 

Supporting Spreadsheet S1 for the full list of the biological targets and associated counts of 

drugs and comparator compounds). The set of comparator compounds reflects typical drug 

discovery and lead optimisation compounds as reported in the medicinal chemical literature 

and subsequently curated into ChEMBL.Primary drug-target pairs are classified by the 

annotated therapeutic target where the drug has the highest pChEMBL value. The remainder 

are classified as secondary drug-target pairs; 77 of the 271 targets were secondary targets 

only. To avoid duplication of drug properties, primary drug-target pairs (643 drugs and 194 

targets) are predominantly used here, except for target class analyses where all drug-target 

pairs (n=1104) are used. We analyse commonly employed properties and descriptors listed 

in Table 1. Simple physicochemical properties were calculated using RDKit35 and are 

available in the ChEMBL database. LogD7.4 was calculated using the Chemaxon software 

and other properties such as number of stereocenters and Fsp3 were calculated using 

algorithms available in the BIOVIA pipeline pilot chemistry collection.35 Calculations and 
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visualisation were done using DataWarrior36 and Microsoft Excel. The full dataset for the 

1104 drug-target pairs is provided in Supporting Spreadsheet S1.

The properties and descriptors in Table 1 are analysed in this paper in three groups as 

defined in Box 1.

Accounting for the influence of time on drug properties

The drugs had approval dates ranging from 1939 to 2020. Based on the progression over 

approval time of drug MW and lipophilicity (ALogP, Figure 1), the drug set was split into 

three broad time frames, 1939-1989, 1990-2009 and 2010-2020. For a few drugs, approval 

dates could not be found; based on their first publication dates in Scifinder®, these drugs 

were assigned to the 1939-1989 group. The observed time-related increases in MW and 

ALogP for this data set are consistent with previous reports on both drugs and literature 

compounds, showing MW is increasing at a greater rate than ALogP.19–21,23,30 There is 

however a notable increase in ALogP in 2010-2020 drugs (Figure 1), which is also observed 

for LogD7.4 (see Table 3).

The assigned time frame of drug-target pairs refers to the period in which the drug was 

approved. Comparator compounds from ChEMBL comprise those with reported binding 

affinities for the drug targets and for practical reasons they were not time-stamped. Because 

assays for cloned human targets did not begin to become available until the mid to late 

1980s, the pChEMBL values used here for drugs and targets in the earliest 1939-1989 

approval time frame post-date the discovery of these drugs, which would have occurred 

several years prior to the approval dates. Contemporaneous comparator compounds for the 

older drug set will almost certainly have lower values of MW and ALogP. Evidence for this 

comes from the increases over time in physical properties observed in published compounds 

from the Journal of Medicinal Chemistry, which mirror the changes seen in drugs, showing 

median MW increased by 94 Daltons from the 1960s to the 2000s.23 The drugs we use from 

these periods have similar median MWs to their contemporary published compounds from 

the Journal of Medicinal Chemistry (Table 2). As expected, the median MW for target 

comparator compounds from ChEMBL is also similar in both time frames, but is higher than 

for drugs in the 1960s (Table 2). For these reasons the older drugs might have been excluded 

from this study altogether, but we decided to retain them for completeness and for 

comparison with newer drugs.

Changes to the physicochemical profile of drugs and research compounds over the time 

frame of this study have been accompanied by major advances in drug discovery and 

development science, processes and standards. Many drugs in the early approval period were 

invented in the absence of specific knowledge of the molecular target, often by using 

primary functional assays in animal tissues, driven by endogenous agonists. Differential 

tissue activity between compounds37 was typically sought to define activity at hypothesised 

receptor subtypes, as exemplified by the classic examples of beta 2 receptor and histamine 

H2 antagonists,38 discoveries which illustrated fundamental concepts of receptor theory and 

drug action. In vivo efficacy screening was commonly applied, while ADME assays were 

rarely employed at the discovery stage. Drugs approved in 1990-2009 would have seen a 

transition of primary assays from predominantly animal-based to predominantly human, and 
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the introduction of ADME optimisation. Those approved in the 2010-2020 period would be 

impacted further by the widespread adoption from the late 1990s onwards of high 

throughput screens of human targets, structure-based drug design, predictive computational 

chemistry, and multiparameter optimisation. Target and pharmacology based discovery 

dominated FDA approvals in the period 1999-2013, with only 8 of 113 first in class drugs 

discovered using phenotypic assays.39

Caveats

Some limitations accompanying the dataset should be noted. Drugs are assigned to specific 

therapeutic targets on the basis of current knowledge, and these assignments could change in 

future as more mechanistic understanding is obtained. For example, some clinical anticancer 

drugs do not act via their intended mechanisms.40 As well as drugs with fewer than 100 

comparator compounds, those lacking annotated therapeutic targets or having published 

potencies not abstracted by ChEMBL version 26, are absent. pChEMBL binding values for 

an individual target include all different assay types (e.g. IC50, Kd, Ki and other values) and 

for practical reasons, no account is taken of differences in assay protocols. There is 

variability seen in reported pChEMBL values for a compound, with pIC50 differences 

between assays generally within one log unit.41 For practical reasons, only binding potencies 

are used, taking no account of mode of action.

The target comparator cohort of compounds depends entirely on authors’ decisions on what 

to publish. There is a likelihood of unintended bias, because compounds appearing in the 

literature would be selected by authors specifically to exemplify their observations and 

discoveries, and these selections may not always be fully representative of all the discovery 

activities undertaken. For example weakly active compounds, and those with poor ADME 

properties, may, unsurprisingly, have been omitted from some publications. However, it is 

reassuring that the trends seen in the results of this work show no significant dependency on 

the size of the target comparator cohort (101 - 7582 compounds).

Results and discussion

Impact of time on targets, target class, therapy areas and route of administration

The division of the full set of 1104 primary and secondary drug-target pairs by target class, 

drug approval time period and therapeutic use are shown in Figure 2a. As well as changes in 

MW and ALogP of the drugs (Figure 1), major shifts over time in the target classes pursued 

are evident, from predominantly aminergic G-protein coupled receptors in 1939-1989 to 

predominantly kinases in 2010-2020. This is linked to changes in therapy area focus, from 

largely cardiovascular and central nervous system (CNS) drugs in 1939-1989 to cancer drugs 

in 2010-2020. Moreover, the distribution of 1939-1989 drugs and, to a lesser extent the 

1990-2009 drugs, are skewed by heavily pursued historical targets, such as the dopamine D2 

receptor, adrenergic receptor subtypes, cyclooxygenases, the mu opioid receptor, the 

corticosteroid receptor and aminergic transporters, which are targets for a minority of 

2010-2020 drugs (Figure 2b). Overall there are fewer drug-target pairs per target in 

2010-2020 (1.9) than in 1990-2009 (2.5) and 1939-1989 (3.6).

Leeson et al. Page 5

J Med Chem. Author manuscript; available in PMC 2021 June 11.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



The drugs are given by oral, topical and parenteral routes of administration and in many 

cases by more than one route. Oral drugs dominate overall, but over time the proportion of 

drugs that can be used by topical and parenteral routes has decreased (Figure 3), from 58% 

in 1939-1989 drugs to 8% in 2010-2020. Increased targeting to the oral route over time may 

account in part for this observation. Additionally, older drugs have had more time in clinical 

use for exploration of various routes of administration. The increase in lipophilicity over 

time (Figure 1) is also likely to be a factor limiting the aqueous solubility required for 

preparation of solution formulations for parenteral administration.

Properties of drugs versus target comparator compounds

Tables 3–6 contain mean and median properties of drugs, their target median comparators 

and the [drug - target median] differences for the properties examined, split by the three 

designated time periods. To allow direct comparisons of the impact of all properties in 

differentiating drugs from their comparator target compounds, the counts of drugs with 

properties either higher, lower, or equal to the median value of the target compounds are 

included in Tables 3–6, together with the correlation coefficients (r values) between drug and 

target medians. Increasing values of the drug-like ratios in Tables 3–6 reflect increasing 

probability that drug properties are more ‘drug-like’ than their corresponding target median 

properties. For example, in comparison with target values, drugs with lower ALogP and 

MW, and higher pChEMBL or ligand efficiencies, are considered more ‘drug-like.’ For 

physical properties comprising only low integer counts, such as hydrogen bond donors and 

acceptors, aromatic ring count and stereocenter count, there are significant numbers of drugs 

where their properties are the same as the target median.

The progression over time of drug-like ratios and drug versus target r values for selected key 

properties are summarised in Figure 4. Figure 4 shows an important finding of this study, 

that overall [drug - target median compound] property differentiation is narrowing 

consistently and substantially over the time periods. Correspondingly, the correlations 

between drugs and target medians are increasing over time. In the 2010-2020 drugs, the drug 

versus target correlations are highest for the primary physicochemical properties, namely 

MW, ALogP and polar surface area (PSA) (Figure 4b). Of particular interest are those 

properties that significantly distinguish the most recent drugs (2010-2020) from their target 

comparators, and so are least resistant to diminishing over time. In order of their drug-like 

ratios (Figure 4a), these are pChEMBL and carboaromatic ring count;42 LE43 and LLE;44 

the number of stereocenters; and Fsp3 (the fraction of carbon atoms that are sp3 hybridised).
45,46 In each drug approval period, [drug - target median] property differences are largely 

independent of the corresponding target median values (see Supporting Figure S1 for MW 

and ALogP analyses).

A selection of property versus time boxplots for drugs, target comparators and [drug - target 

median] differences are illustrated in Figure 5 and Supporting Figure S2. In addition, 

analysis of each property was performed using plots of drug versus target medians for each 

time period, and the corresponding boxplots showing drug, target comparator and [drug - 

target median] difference by target class and therapeutic use. Representative examples are 

shown for ALogP (Figure 6), pChEMBL (Figure 7) and MW, QED (the quantitative estimate 
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of drug-likeness),47 LE and LLE (Supporting Figures S3–S6). For the physicochemical 

properties examined, a general observation, which follows from the drug versus target 

comparator correlations, is that drug and their target comparator properties tend to track each 

other, showing similar variation by target class and therapy area.

Size, lipophilicity and polarity

With both size (MW and HA count) and lipophilicity (ALogP and LogD7.4), [drug - target 

median] differences reduce over time and the 2010-2020 drugs have the same median values 

as their target comparators (Table 3, Figure 5a and 5b, Supporting Figure S2a and S2b). 

Drug - target median] differences are slightly lower in all time frames for LogD7.4 versus 

ALogP (Table 3). This is probably a result of some ionised drugs having lower LogD7.4 

values than neutral target comparator molecules, and for this reason the ALogP [drug - target 

median] values better reflect intrinsic differences in lipophilicity. With MW (and HA count 

with which is it strongly correlated - r=0.981 for the drugs), the increase over time for the 

drug sets dominate, but the corresponding target comparators also show a small but 

significant increase in 2010-2020 (median 439) versus 1990-2009 (median 399). With 

ALogP, target comparator median values are constant over time, with the increased 

lipophilicity of the 2010-2020 drugs being equal to their target compounds. For both ALogP 

(Figure 6) and MW (Supporting Figure S3), the increased correlation between drug and 

target comparators over time results in convergence of target class and therapeutic area 

differences in the 2010-2020 drugs. For example, drugs acting in the central nervous 

system48,49 have lower MW than anti-infective compounds,50,51 as expected, and their 

corresponding target comparators also show the same differences (Supporting Figure S3). 

Similarly, the difference in lipophilicity between kinase inhibitors and protease inhibitors in 

the 2010-2020 time frame is reflected by their corresponding targets (Figure 6).

Hydrogen bond donors (HBD) have higher values in drugs versus target medians for the 

1939-1989 and 1990-2009 drugs, but there is no difference between drug and target in 

2010-2020 drugs (Table 3, Supporting Figure S2d). Hydrogen bond acceptors (HBA) differ 

between drugs and target medians only in 1939-1989 drugs (Supporting Figure S2c). Polar 

surface area (PSA) is increasing equally over time in both drugs and their target comparators 

and this property does not significantly distinguish drugs from target compounds in any time 

period (Table 3 and Figure 5c). The flat PSA profile over time follows from the well-known 

fact that lipophilicity increases with size (MW) and decreases with polarity and hydrogen 

bonding (PSA).52 Hence PSA depends on [size (MW)] minus [lipophilicity (ALogP)]. 

Because MW and ALogP show very similar time profiles (Figures 5a and 5b), the difference 

between them (i.e. polarity) is small.

Aromatic and aliphatic properties

Carboaromatic compounds are reported to carry greater developability risks (based on 

solubility, protein binding, P450 inhibition and hERG binding) than heteroaromatic 

compounds, a likely consequence of higher lipophilicity.42 Over time, the proportions of 

both carboaromatic drugs (having zero aromatic heteroatoms) and aliphatic drugs in this 

study have decreased, while heteroaromatic drugs (having ≥ 1 aromatic heteroatom) have 

increased, the latter dominating (76%) the 2010-2020 drugs (Table 7). There are strikingly 
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fewer carboaromatic drugs with aromatic ring count ≥ 3 than heteroaromatic drugs, which is 

consistent with earlier studies.42 (Table 7 and Supporting Figure S7).

Drugs containing the steroid nucleus, acting at androgen, glucocorticoid or progesterone 

receptors, are historically significant and account for 22 of the 43 aliphatic drugs in the 

1939-1989 approval set. In the 2010-2020 drugs, 55% have ≥ 3 aromatic rings, accounting 

for much of the overall increase in drug aromatic ring count over time (Table 4). In the 

carboaromatic drugs, target comparators have higher aromatic ring count than drugs, 

independently of time (Figure 5d), with very few drugs having aromatic ring count higher 

than the target median (Table 4). In contrast, both drug and target compound aromatic ring 

counts are increasing in heteroaromatics, with the [drug - target median] difference 

remaining negligible over time (Figure 5e). Higher aromatic ring count is seen in both drugs 

and target comparators with heteroaromatics versus carboaromatics in the 2010-2020 time 

frame. Increasing aromatic ring count is associated with increased lipophilicity,9 and indeed 

the ALogP trends follow the aromatic ring count observations for the carboaromatic and 

heteroaromatic drugs, with the carboaromatics notably showing a flat ALogP profile over 

time (see Supporting Figure S8).

The parameter Fsp3, the fraction of carbon atoms in a molecule that are sp3 hybridised, is 

widely used as an approximate estimate of 3-dimensionality, and has been linked to aqueous 

solubility.45,46 It should be noted that Fsp3 is correlated negatively with nAr,9,21 and high 

nAr is also linked to low solubility.8 Over time, Fsp3 in drugs is falling (median values 0.43 

in 1939-1989, 0.35 in 2010-2020, Table 3). The overall [drug - target median] Fsp3 values 

are positive in each time frame, though reducing over time. However, this trend is caused by 

the carboaromatic and aliphatic drugs; heterocyclic drugs, as seen with their ALogP and 

aromatic ring counts, are not distinguished by Fsp3 from their target comparators 

(Supporting Figure S9). Thus it appears that the requisite solubility in drugs is more often 

achieved by reducing lipophilicity through introducing aromatic heteroatoms, than by 

increasing Fsp3.

Drug stereocenter count is consistently higher than for their corresponding target 

compounds, independently of time (Table 4). However it should be noted that in in each time 

period, the majority of drugs have the same stereocenter count as their median target 

compounds (326 of the total of 643 primary drug-target pairs). Rotatable bond count shows 

the same trends over time as other bulk properties, with no differentiation seen between 

drugs and target compounds in the 2010-2020 drugs (Table 4).

Composite descriptors

The QED parameter for drug-likeness combines eight property values generated from 

desirability scores47 (see Tables 1 and 5) and shows a reduction in each successive time 

period for both drugs and target compounds (Figure 5f). Although, in common with most of 

its component properties, QED shows little or no overall discrimination between drugs and 

their target compounds, the variation in QED values by target class and therapy area is 

prominent in the 1900-2009 and 2010-2020 drugs (Supporting Figure S4). In common with 

MW and ALogP, QED values by target class and therapy area are similar for both drugs and 

target comparators in both time periods.
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LogD7.4 + nAr (Table 5) provides little improvement over LogD7.4 alone (Table 3) in 

differentiating drugs from target compounds. It should be noted that LogD7.4 + nAr uses 

calculated LogD7.4 instead of an experimentally determined, and differently scaled, 

chromatographic LogD7.4, as recommended in the derivation of this metric, known as the 

Property Forecast Index (PFI).8 The parameter AB-MPS, designed to rationalise 

bioavailability trends in bRo5 chemical space,53 has also been linked to passive permeability 

within the Ro5.13 However, AB-MPS, which is correlated with rotatable bonds in the drug 

set (r=0.894, n=643), only differentiates the 1939-1989 drugs from their target comparators 

(Table 5). Overall, the multiparameter metrics QED, LogD7.4 + nAr and AB-MPS are no 

more effective than individual physicochemical properties in distinguishing drugs from their 

target compounds.

Potency (pChEMBL)

Over all three time periods, drugs have consistently higher pChEMBL values than their 

target compounds (Table 6 and Figure 5g). pChEMBL shows greater drug versus target 

compound differentiation than any of the physicochemical properties in Tables 3–5, with the 

exception of aromatic ring counts in carboaromatic drugs. For the 643 drugs acting at their 

primary targets, 536 (83%) have higher pChEMBL values than their target medians. Since 

seeking high potency is a central focus of optimisation in drug discovery, perhaps even an 

obsession,54 it is notable that as many as 107 of the 643 drugs (17%) have pChEMBL values 

less than or equal to their target medians. However, drug pChEMBL is increasing, and 

increasingly differentiating drugs from targets over time (see drug-like ratio, Table 6). 

Potency alone is the most important drug versus target differentiator for the 2010-2020 

drugs, where only 9 of the 141 drugs have potency less than or equal to than their target 

medians (Table 6). The widespread application of structure-based drug design, for example 

in the discovery of kinase inhibitors,60 is likely to have had a significant impact on the 

optimisation of potency in 2010-2020 drugs.

Figure 7a illustrates the poor correlations between drug and target comparator pChEMBL 

over all time periods noted above (Figure 4b). The target class breakdown (Figure 7b) shows 

a more consistently positive separation between drug and target comparator in the 

1990-2009 and 2010-2020 periods versus the 1939-1989 drugs. The overall pChEMBL 

trends by time (Figure 5g) are similar because the aminergic GPCRs and nuclear hormone 

target classes, where drug pChEMBL is greater than their target medians (Figure 7b), are 

numerically dominant in the 1939-1989 set (Figure 2a). Median potencies of ion channel 

drugs are lower than most other target classes in all time frames (Figure 7b). By therapeutic 

use however, the pChEMBL [drug - target median] differences are consistent and nearly all 

positive over all time frames (Figure 7c).

Ligand efficiency metrics

A key question with the various ligand efficiency metrics is do they improve on pChEMBL 

alone in differentiating drugs from their target compounds? Using the drug counts in Table 

6, odds ratio calculations (applying significance level p <0.05) support the following 

conclusions regarding differentiation of drugs from their target compounds: a) SEI10 is a 

poorer differentiator than pChEMBL in all time periods; b) all efficiency metrics other than 
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SEI improve on pChEMBL in the 1939-1989 period; c) pChEMBL and all efficiency 

metrics other than SEI perform similarly in the 1990-2009 period; and d) pChEMBL is a 

superior differentiator to all efficiency metrics in the 2010-2020 period, except for SILE55 

and FQ56 with which it is similar.

It is important to note that there is considerable redundancy between the various ligand 

efficiency metrics and their constituent parameters (pChEMBL, MW, HA count and 

ALogP), as shown by the cross-correlation matrix for the 643 drugs in this study, shown in 

full in Supporting Figure S10a. As expected BEI and LE are strongly correlated (r = 0.975), 

but so too are SILE and FQ (r = 0.987, Supporting Figure S10b). SILE and FQ were 

designed55,56 to overcome the negative correlation with HA count seen for LE (r = -0.221 

and -0.098 for SILE and FQ respectively; r for LE versus HA count = -0.793) and as 

expected, show no time dependent changes in either drugs or targets in comparison with LE 

(Table 6). However, SILE and FQ are correlated with pChEMBL (r = 0.819 and 0.882 for 

SILE and FQ respectively; Supporting Figure 10b) while LE is not (r = 0.101). This co-

correlation explains the similar drug versus target comparator performance of pChEMBL, 

SILE and FQ (Table 6). AEI57 has better performance than SEI in discriminating drugs from 

target comparators (Table 6) although these parameters are also correlated (r = 0.939). 

LLEAT58 and LELP,59 which combine pChEMBL, ALogP and HA count, are correlated 

respectively with LE (r = 0.819) and ALogP (0.881, Supporting figure S10b), while LE and 

LLE however are not strongly correlated (r = 0.376, Supporting Figure S10b). We conclude 

that LE (Figure 5h) and LLE (Figure 5i) are sufficient to capture the variance in size and 

lipophilicity efficiencies. LE and LLE, along with pChEMBL and carboaromatic count, 

show drug versus target comparator discrimination in all time periods (Figure 4).

The [drug - target median] difference in LE is reducing over time because drug size is 

increasing, yet remains positive in the 2010-2020 drugs for all target classes except ion 

channels and nuclear hormone receptors (Supporting Figure S5). However, the numerically 

dominant kinase inhibitors60 (Figure 2a) have a lower [drug - target median] LE difference 

than the remaining target classes and therefore strongly influence the 2010-2020 overall LE 

trend (Figure 5h, Supporting Figure S5). The median LLE value of all drugs is 4.8 and is not 

changing over time (Figure 5i), supporting the importance of this metric in lead 

optimisation. The median [drug - target median] LLE difference is reducing over time, from 

2.0 in 1939-1989, to 1.8 in 1990-2010 and 1.4 in 2010-2020. This is a consequence of the 

corresponding target comparator compounds showing an increase in LLE (Table 6, Figure 

5i). As with LE, ion channels and nuclear hormone receptors display the lowest [drug - 

target median] differences in LLE in 2010-2020 drugs (Supporting Figure S6). Anticancer 

drugs in 2010-2020 comprise the largest therapy area and are predominantly kinase 

inhibitors (Figure 2a), showing below average LE and LLE [drug - target median] 

differences relative to other therapy areas (Supporting Figures S5 and S6).

Combinations of size, lipophilicity and potency

Of the 107 drugs where the drug pChEMBL is lower than or equal to their target median, 

only 9 have one or both of MW and ALogP greater than or equal their target medians 

(Figure 8a). In other words, 98.6% (634/643) of drugs have one or more of higher 
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pChEMBL, lower MW or lower ALogP relative to their target median values. Similarly, 27 

of the 643 drugs (4.2%) have both LE and LLE values lower than their target medians, and 

516 (80%) have both LE and LLE greater than their target medians (Figure 8b). In all time 

frames there are more drugs with both LE and LLE values higher than the target 90 

percentiles than there are below the target medians, but with differences between these 

groups reducing over time (Table 8).

These results are similar to earlier findings with much smaller datasets,11,31 and confirm that 

higher LE and LLE are both equally important in differentiating drugs from their median 

target compounds. Because drug and target median lipophilicity and size are not different 

overall in the 2010-2020 drugs (Table 3, Figure 5a,b), using the combination of LE and LLE 

in this set distinguishes target compounds and drugs to the same extent as potency alone.

Beyond rule of five (bRo5) drugs

A total of 29 drugs in this study have both MW >500 and ALogP >5.0, of which 27 were 

approved post-1990. For these drugs, potencies at their primary targets are increased versus 

target medians to the same extent as the full set. Unsurprisingly, MW and ALogP are also 

increased, resulting in low [drug - target median] differences for both LE and LLE. The 

median [drug - target median] differences for the 29 drugs are: pChEMBL, +1.2; MW, +83; 

ALogP, +1.5; LE, 0.0; LLE -0.3. The median pChEMBL value of these drugs is 8.8, higher 

than for the full drug set (8.1).

Oral dose

Oral dose has been linked to the AEI (ADME efficiency index, Table 1),57 and we therefore 

evaluated correlations between dose (oral drug maximum daily dose, -p[Dose] = log10 (dose 

in mg/MW/1000), and potency or ligand efficiencies (including [drug - target median] 

values) for all 562 drugs in this study where a maximum oral daily dose was available.34 In 

brief, all correlations were found to be weak, with none of the efficiency metrics, including 

AEI, significantly improving on pChEMBL alone.

The -p[Dose] versus pChEMBL correlation coefficient for all 562 drugs is r = -0.39, lower 

than that in an earlier study using fewer drugs (n=261, r = -0.51).5 However, over time, this 

correlation is weakening (Figure 9). The trend is exemplified by the upper quartile dose 

group (-p[Dose] > -3.0 (equivalent to a dose of >~400 mg for a drug with MW = 400), 

where median potency increases by ~50 fold between the 1939-1989 and 2010-2020 drugs, 

and is accompanied by increases in MW and ALogP (Figure 9). Increases in 

physicochemical properties over time may therefore be exerting an increasingly negative 

impact on ADME properties, for which higher potency does not compensate. Other factors 

influencing the dose-potency relationship are differing degrees of target occupancy being 

required for therapeutic efficacy, and lengthy clinical experience with older drugs, which 

may have led to acceptable dose escalation. The reducing percentages of drugs in upper 

quartile dose range over time (Figure 9) is consistent with increased MW and ALogP, as 

observed in studies of the oral doses of a larger set of drugs.34
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Perspective

In this study we have assessed ‘drug-like’ parameters in common usage by comparing the 

properties of small molecule drugs with comparator compounds from the medicinal 

chemistry literature that act at their annotated therapeutic targets, using binding affinities 

obtained from ChEMBL version 26. To take into account the variability seen in median 

physicochemical properties across compounds acting at different biological drug targets, we 

used the quantitative differences between drugs and their target median properties. The drug 

approval time period is a key element of this work because drugs are increasing significantly 

in size and lipophilicity over time, and accordingly they were grouped into three sets for 

analysis, namely approvals in 1939-1989, 1990-2009, and 2010-2020.

It is the findings from the later time periods, 1990-2009 and especially 2010-2020, that are 

the most relevant, where the coalescence of many drug and target median properties over 

time is a striking observation. As discussed earlier, the selection of the target comparators is 

critical. The earlier 1939-1989 drugs would, with high probability, be better matched to the 

their contemporaneous discovery molecules than those that necessarily had to be used for 

this study. In any event it is evident that recent drugs are significantly differentiated from 

target compounds by a rather short list of parameters: high potency (expressed here as 

pChEMBL), ligand efficiencies (LE and LLE), and low carboaromaticity. Potency is the 

most important differentiator of all the measures investigated. The median drug pChEMBL 

at primary targets (n=643) is 8.1, compared with 7.7 (n=261) in an earlier study.5 The 

corresponding target comparator compounds set a relatively high bar with a median 

pChEMBL of 6.8, perhaps because of a tendency to focus on more potent compounds in 

publications. It is highly likely that the true [drug - target median] potency difference would 

be even greater if all the compounds studied in drug discovery projects were included.

The ‘classical drug-like’ parameters such as MW, lipophilicity, PSA and hydrogen bonding, 

as well as heteroaromatic ring count and the multiproperty metric QED, show declining 

differentiation between drugs and target compounds over time. This culminates in no 

differences being observed in these properties between 2010-2020 drugs and their targets. 

However, the weakening of the potency versus dose correlations for oral drugs over time 

(Figure 9) tracks with increasing bulk physicochemical properties, suggesting this creates 

additional ADME optimisation issues. These issues have obviously been overcome in the 

discovery of marketed drugs.

While potency is the major drug versus target compound differentiator for 2010-2020 drugs, 

increased potency does not, on average, come at the expense of increased size or 

lipophilicity. Combinations of MW, ALogP and pChEMBL, and LE plus LLE, discriminate 

between drugs and target compounds in all time periods. Thus, 98.6% of all drugs have one 

or more of higher pChEMBL, lower MW and lower ALogP versus their target medians, and 

95.8% have one or both of LE and LLE greater than their target medians. LE and LLE both 

have similar impact, supporting previous results using smaller sets of targets, and trends seen 

in optimisation. The LLE results are generally consistent with this parameter frequently 

increasing in lead optimisation.11,24,31 Amongst kinase inhibitors, which dominate the 

2010-2020 drugs, the median LLE [drug - target median] difference is smaller (0.6) than all 
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other target classes except for ion channels (0.2) (Supporting Figure S6). We suggest that 

most drugs have improved LE and LLE values versus their target medians as a result of 

optimisation leading to specificity for binding to those targets.

The results suggest there is strong case for optimising LE, so that in drug candidates it is 

above the median for the drug’s known target compounds. The absolute LE value of a drug 

candidate is less important. LE is widely applied, especially in fragment-based drug 

discovery,61 although its scientific basis and application have provoked a literature debate.
62–64 There is a high probability that molecular size increases in the optimisation process, 

which then reduces the maximum LE obtainable.11,55,56 In compilations of start-to-finish 

optimisations of drugs65 and literature compounds,24 mean MW and potency increase, and 

LE does not -in other words, LE increases or decreases about equally, in contrast to LLE, 

which mostly increases. The MW increases during successful optimisation can be 

substantial: for 60 hit-to-drug65 and 66 recent hit-to-candidate pairs66 the median change 

was +93 and +85 Daltons respectively (median lipophilicity did not change significantly in 

either study). Of the 60 hit-to-drug pairs, 51 drugs are included in this study and despite 

average LE not changing in their optimisation, their [drug – target] LE and LLE differences 

mirror the full set of targets shown in Figure 8b. A hit or lead with high LE and low MW can 

be optimised, ultimately keeping above the target LE median, by increasing MW while 

keeping LE constant, or even allowing LE to decrease. On the other hand, a hit with low LE 

below the target median, resulting from high MW and modest potency, will require LE to 

increase in optimisation.

The results imply that the increases seen over time in drug properties are to a significant 

extent a consequence of the requirements of the targets selected. An example of a recent 

target requiring high MW, illustrating the associated discovery challenges, is the calcitonin 

gene-related peptide receptor (CGRP or CLR1/RAMP1),67,68 where the compounds from 

the literature used in this study have a median MW of 555 and a median ALogP of 4.2 

(n=585). The drug binding site is formed by a protein-protein interaction between the 

calcitonin-like receptor (CLR1), a 7-transmembrane protein, and the receptor activity 

modifying protein 1 (RAMP1), a single transmembrane protein. A high throughput screen 

run at Merck provided hit compound 1, which despite a modest pKi of 5.4 and high MW of 

522 (LE = 0.19) was considered of interest because it is composed of two ‘privileged’ 

fragments - structures which commonly appear in biologically active molecules - namely a 

benzodiazepine and a spirohydantoin (Figure 10a). The journey from 1 to the marketed drug 

4 increased potency dramatically, by 100,000-fold, yet physical properties were barely 

changed, with only one heavy atom added and a modest increase in ALogP of 0.8, thereby 

realising substantial increases in both LE and LLE in 4 versus 1 (Figure 10b). Achieving 

suitable pharmacokinetic properties was a major challenge, yet notably, most of privileged 

structure pharmacophoric elements in 1 were ultimately retained (Figure 10a), with the 

exception of the benzo fusion. In general, retention of pharmacophoric features in hit 

optimisation is often seen.31,66 Extracting higher potency without little change to MW, 

resulting in increased LE, was also consistently seen in a set of 15 hit-to-lead optimisations 

derived from DNA-encoded libraries, where the average hit MW was 533.69
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The first two CGRP antagonist clinical candidates, 2 and 3, had to be abandoned because of 

hepatotoxicity in the clinic, and based on the published patents, it took 8 years to move from 

the first candidate 2 to the successful drug 4. The time frame reflects the challenge of 

multiparameter ADMET optimisation for this difficult target, the wealth of options for 

modification that are presented by the hit structure 1, and not least, the considerable 

commitment needed from the project team. All the clinical candidates, including the second 

marketed drug 5,70 are amongst a handful of the most highly ligand efficient compounds 

reported at the CGRP receptor (Figure 10c). The determination of ligand-bound CGRP 

receptor structures has subsequently helped rationalise structure-activity relationships, yet 

reducing MW and substantially changing the pharmacophore remain challenging.71

Approved drug MW and lipophilicity have been increasing over time and it appears likely 

that the cohort of drugs breaking the Ro5 will continue to grow.28,72 In this study, bRo5 

drugs having MW >500 and ALogP >5 (29 drugs), in comparison with their corresponding 

target median compounds, unsurprisingly had higher lipophilicity, size and potency, 

resulting in [drug - target median] LE and LLE values lower than for other drugs. The nature 

of the drug binding sites for some targets may necessitate physicochemical properties in 

bRo5 space.28,72 The findings of this paper are consistent with this, in that the nature of the 

drug’s target has a major impact in influencing the physicochemical properties of drugs and 

discovery compounds.

It is becoming evident that in vitro ADME assays, such as permeability and plasma protein 

binding, can be unreliable for highly lipophilic bRo5 compounds because of poor solubility 

and high levels of non-specific binding to laboratory vessels.73 However, it has been 

observed that such compounds are often bioavailable, which may have been missed in the 

past because compounds not meeting in vitro criteria would not have progressed to in vivo 

studies. For example, amongst proteolysis-targeting chimeras (Protacs), bifunctional protein 

degraders with MW usually >700, pharmacokinetic studies in mice73 showed that >30% 

bioavailability appeared regularly in compounds with the fewest HBA/HBD counts and 

chromatographic LogD7.4 = 5-7 (beyond the reliable range of shake-flask methods). A 

caveat to this study is the lack of structural variability in the E3 ligase binding moiety of the 

Protacs reported.73 However, in a large diverse set of bRo5 compounds,53 25% of those 

tested had bioavailability in rats of >27%, leading to the development of the AB-MPS metric 

discussed above (Table 4), which requires an optimal LogD7.4 of 3. The apparent difference 

in LogD7.4 requirements in these two studies is interesting. As in traditional ‘drug-like’ 

space, small molecular changes in bRo5 compounds, for example aromatic fluorination,74 

can have a significant impact on potency and oral exposure.

The simple physicochemical properties discussed here are common currency amongst 

medicinal chemists. They have served the community well, and will likely be useful for 

some time yet. For example, values of PSA <75 Å2 in combination with LogP >3 have been 

shown in several studies from large pharmaceutical companies to increase the risk of in vivo 

toxicity.75–77 Drug candidates that fail due to clinical toxicity are more lipophilic on average 

than those that do not.78 Lipophilicity13, 44, 79–81 will remain a key driver of ADMET 

properties and strategies to assess82 and control83,84 it are growing. Measurement of 

LogD7.4 and LogP is essential,13 and chromatographic methods85 have greater measurement 
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bandwidth than the traditional shake flask method.8,86 Lipophilicity associated with high 

aromatic ring count has been highlighted as significant developability risk,8,9 with 

carboaromatic compounds carrying greater risks than heteroaromatics.42 The results in this 

study are consistent with these observations, showing that in comparison with their target 

compounds, carboaromatic drugs, but not heteroaromatic drugs, have lower aromatic ring 

count and lIpophilicity values versus their target medians, independently of the drug 

approval period. Optimising LLE44 is a practical means of keeping lipophilicity under 

control, and the application of LLE is gaining broad acceptance.11,31, 87–90

Taking account of conformational flexibility and intramolecular interactions, by using 3-

dimensional shape and polarity descriptors, is providing insights into bRo5 compound 

properties,29, 91 and this approach will also be useful within traditional ‘drug-like’ space. 

Experimentally estimated exposed polar surface area should supercede 2-D PSA 

calculations, and can be achieved using supercritical fluid chromatography.92 Emphasising 

predicted solubility and permeability instead of lead-like physical properties is an interesting 

development in the construction of compound screening collections.93 Similarly, keeping 

measured solubility and lipophilicity under control, together with aiming for a low predicted 

human dose, are key elements in helping to reduce compound-related attrition in 

development.12

While target compounds and 2010-2020 drugs have similar median physicochemical 

properties, there is obviously variability as shown by the box plots in Figures 5–7 and 

Supporting Figures S2-S6, S8 and S9. One source of variability comes from different 

institutional approaches to drug discovery.7,16,44 For example, for targets they had in 

common, Pfizer’s patented compounds in the period 2000-2010 were consistently smaller 

and less lipophilic than Merck’s.16 It is interesting to note that differences in corporate 

philosophies reflected by these data continue to be evident in recent publications. Pfizer has 

emphasised the application of LLE (or LipE) in projects,90 while Merck, although 

acknowledging the importance of balancing lipophilicity, believes that using this property in 

design limits options excessively.94 Nevertheless, the convergence of drug and target 

compound properties seen in 2010-2020 suggest that overall, the community has responded 

positively to the call, initiated by the Ro56 and reinforced by subsequent studies,
1–5,8,16,24,44,79,97 to improve property-based design. While drugs are increasing in size and 

lipophilicity, low MW drugs can still be found.95 Choosing lead-like chemical starting 

points96 that allow compound design within the historical MW/lipophilicity ‘sweet spot,’97 

will remain a valid strategy for many targets.

A significant problem in the application of physicochemical properties in drug design is the 

cross-correlation and potential redundancy between many of them, as well as amongst 

ligand efficiency metrics and potency, as observed in this study. It is well established that 

lipophilicity is a composite property determined by molecular size, polarity, ionisation state 

and hydrogen bonding.52 Even more fundamentally, many experimental properties of 

organic compounds can be largely predicted by just two principal components, termed ‘bulk’ 

and ‘cohesiveness’ by Cramer.98 Medicinal chemists rarely make use of principal 

components, probably because, despite Cramer’s helpful terminology, their physical 

meaning is considered elusive in comparison to LogP, HBA, MW, etc. Medicinal chemists 
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need to become more computationally aware, because predictive computational chemistry 

methodology is rapidly advancing, with molecule generation using artificial intelligence and 

machine learning promising to streamline decision-making and shorten discovery timelines.
99 Overcoming any hurdles preventing close collaboration with computational chemists will 

be essential for success in these areas.100,101 An example, said to be the first report of using 

a deep learning generative model in multiparameter lead optimisation, is the discovery of 7 
from the previous best compound 6 (Figure 11).102 Compound 7 was one of only 11 

compounds synthesised from a total of 150 predicted to have better overall properties than 6. 

The triazine moiety in 7 had been tried earlier and it performed poorly, until the pyridyl 

amide modification was suggested by the generative tool. This modification had not been 

considered previously by the chemists. In compound 7, several changes have been made to 

the structure of 6 while physiochemical properties are significantly improved (Figure 11). 

Another team of chemists, employing property-based design instead of generative models, 

might conceivably have found a similar solution, but perhaps would have needed to 

synthesise more compounds? Of equal importance to computational chemistry is the 

application of existing and new synthetic chemistry methodologies, which can open fresh 

avenues of exploration.103 Challenging synthetic chemistry will be needed to realise the 

opportunities presented by unexplored natural product scaffolds104 and expanding 3-

dimensional pharmacophore space, which, overall, appears to be relatively unexplored in 

drugs and research compounds.105

Conclusion

Over time, commonly used physicochemical properties, including MW, lipophilicity (LogP 

and LogD7.4), PSA, hydrogen bond donors and acceptors, heteroaromatic ring count and 

QED, show declining differentiation between drug values and the median values for 

published compounds acting at the drug’s biological targets. Drugs approved in 2010-2020 

and their corresponding target compound median values show no differences in these 

properties. This means that the Ro5,6 which has become a seemingly indelible reference 

point in drug discovery,13,30,106,107 does not, on average, differentiate recently approved 

drugs from published discovery compounds. Instead, the physicochemical property space of 

recent drugs predominantly reflects the constraints imposed by their biological targets.

This study, like all those looking at marketed drug properties, is necessarily retrospective. 

Nevertheless, those small molecule drug properties that show consistent differentiation from 

their target compounds over time - namely potency, ligand efficiencies (LE and LLE) and 

the aromatic ring count and lipophilicity of carboaromatic drugs - are those that are most 

likely to remain future-proof. Candidate drugs emerging from target-based discovery 

programs should ideally have one, or preferably both, of their LE and LLE values greater 

than the median value for all other compounds known to be acting at the target.
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Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

AB-MPS AbbVie multiparameter score

ADMET absorption, distribution, metabolism, excretion and toxicity

AEI ADME efficiency index

ALogP calculated LogP by atomic contribution

BEI binding efficiency index;bRo5, beyond rule of 5

CGRP calcitonin gene receptor protein

EGFR epidermal growth factor receptor

FQ fit quality

Fsp3 fraction of carbon atoms that are sp3 hybridised

HA heavy atom

HBA hydrogen bond acceptor

HBD hydrogen bond donor

hERG human ether-à-go-go-related gene

LE ligand efficiency

LELP LE adjusted for lipophilicity

LLE (or LipE) lipophilic ligand efficiency

LLEAT LLE adjusted for heavy atom count
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LogD7.4 calculated log of the distribution coefficient at pH7.4

nAr number of aromatic rings

pChEMBL target binding potency from the ChEMBL database

PSA polar surface area

QED quantitative estimate of druglikeness

Ro5 rule of 5

SEI surface efficiency index

SILE size-independent ligand efficiency
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Box 1

The three categories of drug and target properties and descriptors 
examined in this paper. The term [drug - target median] difference, used 

throughout, accounts for the variability between targets and target classes.

1) Drug properties.

2) Target median properties. Median property values for all compounds, 

including drugs, which act at each drug target.

3) [Drug - target median] property differences. The quantitative differences 

between the values of properties for each drug and the corresponding target 
median, i.e., 1) minus 2).
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Figure 1. 
Three drug approval time periods used in this paper were selected on basis of the increases 

in molecular weight and lipophilicity (ALogP) seen in the 643 drugs with ≥ 100 comparator 

compounds acting at their target(s). The differences in molecular weight and ALogP 

between the three approval periods are statistically significant (t-test p <0.05). Mean and 

median values for the three time periods are given in Table 3.
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Figure 2. Distribution of drug-target pairs from CHEMBL with ≥ 100 comparator compounds 
(n=1104) acting at the target(s) linked to the drug’s therapeutic action, in the three selected drug 
approval time periods.
a) Target class and therapeutic use. b) Number of drugs per target in each time frame, for all 

targets with a total of ≥ 5 drugs. In all there are 643 drugs acting at 271 targets, of which 426 

have a single defined target; 117 have 2 targets; 47 have 3 targets; 29 have 4 targets; and 24 

have 5 or more targets. All targets and associated data used for this study are provided in the 

Supporting Spreadsheet S1.
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Figure 3. 
Routes of administration of drugs with ≥ 100 comparator compounds acting at their 

target(s). The numbers of drugs that can be given non-orally in the three time periods is 150 

(58%) in 1939-1989, 73 (30%) in 1990-2009 and 11 (8%) in 2010-2020.
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Figure 4. 
a) The drug-like ratio, the ratio of numbers of drugs with ‘more drug-like’ (better) to ‘less 

drug-like’ (worse) properties over the three time periods for selected key parameters. b) 

Drug versus target median correlation coefficients (r values) for the same data. All values of 

the datapoints in a) and b) are from Tables 3–6.
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Figure 5. 
Box plots showing selected drug, target median and [drug - target median] properties in the 

three time periods for drug primary targets. The time periods are connected by median 

values, except for aromatic ring counts, where means are used. Mean and median values for 

all properties are in Tables 3–6, statistical values are in Supporting Spreadsheet 2.
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Figure 6. Drug and target comparator ALogP values by drug approval time period.
a) Drug versus corresponding target medians. b) The data in a) split by target class. c) 

Therapeutic use. Statistical values for boxplots b) and c) are in the Supporting Spreadsheet 

S2.
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Figure 7. Drug and target comparator pCHEMBL values by drug approval time period.
a) Drug versus corresponding target medians. b) The data in a) split by target class. c) 

Therapeutic use. Statistical values for boxplots b) and c) are in the Supporting Spreadsheet 

S2.
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Figure 8. Differentiation of drugs from their primary target compounds using combinations of 
potency, size and lipophilicity.
a) Percentages of drugs with molecular weight and ALogP greater or lower than their 

primary target’s median values, split by their potencies (pCHEMBL) being greater or lower 

than their primary target median values. b) Plot of LE versus LLE [drug - target median] 

differences. The population of drugs in each quadrant is shown.
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Figure 9. 
Maximum daily oral dose (-p[Dose]) versus pCHEMBL for 562 oral drugs identified in this 

study (including those with <100 comparator compounds at their targets of action) by time 

period of drug approval. –p[Dose] = -3.0 is the upper quartile oral dose value for all 562 

drugs. Data used are Supplementary Spreadsheet 2.
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Figure 10. Evolution of oral CGRP antagonists from a high molecular weight HTS hit.67,68 

a) Initial Merck HTS hit 1, failed clinical candidates 2 and 3, and marketed drugs 4 and 5. 

Three pharmacophoric elements highlighted are present in hit 1 and retained in the Merck 

program, shown by the arrows, leading to the marketed drug 4. In 5,70 discovered by BMS, 

the azepine ring substituents of 2 are modified. b) Molecular properties and year of 1st 

patent. c) LE vs LLE plot with CHEMBL comparators showing hit-to-drug trajectory 

(n=585 Ki values).
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Figure 11. Multiparameter lead optimisation using generative predictive tools.
Compounds 6 and 7 act as activators of an undisclosed phenotypic target.102 Compound 6 
was the best of 881 compounds across 6 off-target and 4 ADME assays. The generative 

model predicted 150 compounds would improve on 6 of which 11 were made, including 7, 

which met all 10 assay objectives. cLogP values from CHEMDRAW (https://

www.perkinelmer.com/category/chemdraw).
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Table 1

Drug and target compound properties and descriptors examined. a ALogP is from an 

atom-based calculation and LogD7.4 is from ChemAxon.35 b QED = summed, weighted 

desirability scores using [MW + ALogP + HBD + HBA + PSA + nRotB + nAr + number of 

alerts].47 c AB-MPS = | LogD7.4 – 3| + nAr + nRotB.53 d Experimental LogD7.4 determined 

by chromatography + nAr is known as the Property Forecast Index (PFI).8 e LE = Ligand 

efficiency = [pChEMBL x 1.37] ÷ HA (units are kcal/mol/HA).43 f BEI = Binding 

efficiency index = [pChEMBL x 1000] ÷ Mol Wt.10 g SILE = Size-independent LE = 

pChEMBL ÷ HA0.3.55 h FQ = Fit quality = [pChEMBL ÷ HA] ÷ [0.0715 + (7.5328 ÷ HA) + 

(25.7079 ÷ HA2) – (361.4722 ÷ HA3)].56 i LLE (or LiPE) = Lipophilic ligand efficiency = 

pChEMBL – ALogP.44 j LLEAT = LLE adjusted for HA count = 0.111 + [(1.37 x LLE) ÷ 

HA] (LLE based on ALogP).58 k LELP = LE price paid in lipophilicity = ALogP ÷ LE.59 l 

SEI = Surface efficiency index = [pChEMBL x 100] ÷ PSA.10 m AEI = ADME efficiency 

index = [pChEMBL - |ALogP |] x 100 ÷ PSA.57

Category Properties and descriptors

Size Molecular weight (MW), HA count (HA)

Lipophilicity Calculated octanol-water partition coefficients ALogP and LogD7.4 a

Polarity Polar surface area (PSA), hydrogen bond donors (HBD) and acceptors (HBA)

Aromatic and aliphatic 
descriptors

Aromatic ring count (nAr) of heteroaromatic and carboaromatic drugs, fraction of carbon atoms that are sp3 
hybridised (Fsp3) and number of stereocenters (nStereo)

Flexibility Rotatable bond count (nRotB)

Composite physicochemical 
descriptors

Quantitative estimate of drug-likeness (QED),b AbbVie multiparameter score (AB-MPS)c and LogD7.4 + 
nArd

Potency pChEMBL = -log1o (molar concentration IC50, Ki, etc) in binding assays

Ligand efficiency metrics LE,e BE I,f SILE,g FQ,h LLE,i LLEAT,j LELP,k SEI,l and AEIm
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Table 2
Median molecular weights of contemporary published compounds from the Journal of 

Medicinal Chemistry 23 in comparison with drugs and target medians from this study.

Period Median Molecular Weight

Compounds published in Journal of Medicinal Chemistry
This study

Drugs approved Corresponding target medians

1959-69 290 300 (n=43) 386

2000-09 384 389 (n=107) 419

J Med Chem. Author manuscript; available in PMC 2021 June 11.
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Table 7
Percentage (numbers) of drugs in each time frame (n = 643 with ≥ 100 target comparator 
compounds) that are aliphatic, carboaromatic (aromatic heteroatoms = 0) and 
heteroaromatic (aromatic heteroatoms ≥ 1), and percentages of drugs with nAr ≥ 3.

Approval period Aliphatic Carboaromatic Heteroaromatic

1939-1989 17% (43) 58% (151) 25% (65)

1990-2009 12% (29) 40% (98) 48% (116)

2010-2020 4% (5) 21% (29) 76% (107)

All drugs, % nAr ≥ 3 6% (17) 60% (171)
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Table 8
Percentage of drugs having LE or LLE values < target median, between the target median 
and 90 percentile and > target 90 percentile, in each time frame.

Drug LE or 
LLE versus 

Target 
percentile

LLE < Median LLE = Median - 90% LLE > 90%

1939-1989 1990-2009 2010-2020 1939-1989 1990-2009 2010-2020 1939-1989 1990-2009 2010-2020

LE > 90% 3.9% 1.6% 0% 22% 13% 11% 32% 21% 14%

LE = 
Median - 

90%
4.2% 3.7% 9.9% 18% 31% 34% 10% 16% 17%

LE < 
Median 1.9% 5.8% 5.7% 3.5% 6.2% 7.1% 3.5% 2.9% 1.4%
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