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Abstract

Computational biomechanics plays an important role in biomedical engineering: using modeling 

to understand pathophysiology, treatment and device design. While experimental evidence 

indicates that the mechanical response of most tissues is viscoelastic, current biomechanical 

models in the computational community often assume hyperelastic material models. Fractional 

viscoelastic constitutive models have been successfully used in literature to capture viscoelastic 

material response; however, the translation of these models into computational platforms remains 

limited. Many experimentally derived viscoelastic constitutive models are not suitable for three-

dimensional simulations. Furthermore, the use of fractional derivatives can be computationally 

prohibitive, with a number of current numerical approximations having a computational cost that 

is O(NT
2 ) and a storage cost that is (NT) (NT denotes the number of time steps). In this paper, we 

present a novel numerical approximation to the Caputo derivative which exploits a recurrence 

relation similar to those used to discretize classic temporal derivatives, giving a computational cost 

that is (NT) and a storage cost that is fixed over time. The approximation is optimized for 

numerical applications, and an error estimate is presented to demonstrate the efficacy of the 

method. The method, integrated into a finite element solid mechanics framework, is shown to be 

unconditionally stable in the linear viscoelastic case. It was then integrated into a computational 

biomechanical framework, with several numerical examples verifying the accuracy and 

computational efficiency of the method, including in an analytic test, in an analytic fractional 

differential equation, as well as in a computational biomechanical model problem.
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1 Introduction

Biomechanical analysis has become an area of increasing emphasis in biomedical 

engineering applications. It has been used for understanding a diverse range of complex 

problems, such as the surgical intervention strategies for arterial bifurcation [1], the impact 

of left ventricular assist devices [2,3], the risk of aortic aneurysm rupture [4,5], the repair of 

the mitral valve in the heart [6,7], as well as the surgical aids for brain surgery [8]. Through 

biomechanics simulation, devices and procedures can be optimized and personalized to 

improve design, therapy and patient outcomes [9]. A key component to these types of 

biomechanical assessments is identifying the appropriate constitutive equations that define 

the material response. While hyperelastic material models have been developed to describe a 

range of tissues [10,11], viscoelasticity has been acknowledged as an important component 

of mechanical response in brain matter [12–14], connective tissues [15,16], fracturing of 

bone tissues [17], as well as many cardiovascular soft tissues [18], including arterial tissues 

[19] and myocardium [20,21]. Despite viscoelasticity in soft tissues being widely studied 

experimentally, its use in computational biomechanics simulations remains relatively 

uncommon due, in part, to computational challenges.

Viscoelasticity and viscoelastic theory have been topics of interest since the 19th century 

[22,23]. Early forms of viscoelastic constitutive models used spring and dashpot [24] 

constructs, e.g., the Maxwell [25] and the Kelvin- Voigt models [26]. To better explain 

experimental observations, authors began to combine these simple units in series and/or 

parallel to form more complex systems, such as the generalized Maxwell [23] or generalized 

Kelvin-Voigt models [27]. These early theoretical works were successfully used to explain 

the linear viscoelastic behavior in a number of materials, including muscle tissues [28]. A 

more generalized one dimensional theory was proposed by Green and Tobolsky [29] to 

explain relaxing media. Extension of these early concepts of viscoelasticity to nonlinear 

continuum mechanics was addressed by a number of analytic mechanicians, including 

Truesdell [30], Green and Rivlin [31,32] and Bernstein, Kearsley, and Zapas [33] (see [34] 

for a review on early works investigating viscoelasticity). Nonlinear viscoelastic theory has 

been applied to modeling of elastomers [25], rubber materials [35], fiber reinforced 

materials [36], myocardium [37] as well as brain tissue [38,39]. Extension of these 

approaches to computational mechanics has been in the works of Simo [40], Le Tallec [41], 

Holzapfel [19,36,37,42], and De Buhan and Frey [43], amongst others.

While much of the early developments in viscoelasticity (and its numerical application) 

focused on analogues to spring-dashpot systems, fractional viscoelastic behavior can be seen 

increasingly in modeling tissue properties [44–46]. Use of these models has been recently 

presented in lung tissue [47]. The advantage of fractional viscoelasticity is that the method 

provides a spectrum of relaxation times parameterized through the chosen fractional 
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derivative order, denoted here by α. A simplification of the generalized Maxwell approach 

with infinite Maxwell elements, the fractional approach has the advantage of being compact, 

requiring few parameters and being effective at characterizing hierarchical viscoelastic 

materials exhibiting power-law behavior [48–51]. These benefits are challenged by the need 

to numerically approximate the fractional derivative, which is often done using cumulative 

integral approximations that require the storage of all past values of stress with increasingly 

costly computations in time. Development of efficient approaches to approximate fractional 

derivatives by Yuan and Agrawal [52], Diethelm [53] and Birk and Song [54] has enabled 

the efficient extension of fractional models to solid mechanics [55]. However, how these 

approximations perform in a computational biomechanics context using finite elements 

presents additional challenges and questions.

In this work, we present a numerical formulation for the constitutive modeling of 

viscoelastic materials based on a novel and efficient recursive approximation to evaluate 

fractional viscoelasticity. The proposed approach, utilizes a Prony series (or generalized 

Maxwell model) as in [54–56] with an additional dashpot element and optimization process 

to make the computational and storage costs consistent with standard transient methods. An 

error estimate is derived for the class of Prony approximations, detailing the improved 

computational accuracy of the proposed method (as well as those previously proposed). The 

numerical method is then integrated into our finite element framework [57] and shown to be 

unconditionally stable in the linear viscoelastic setting. Results from this analysis are 

presented through a series of numerical examples, demonstrating appropriateness of the 

developed bounds, accuracy and numerical efficiency. While demonstrated in a specific 

biomechanics setting, this generalized approach lends itself to a wide variety of modeling 

problems in soft tissues as well as other fractional-time derivative problems.

The paper reviews current techniques for approximating the Caputo derivative, introduces 

our approximation as well as its error estimates (Section 2). In Section 3, the paper reviews 

mechanical formulations for viscoelasticity, including fractional approaches, for nonlinear 

mechanics. The introduced models and approximations are then integrated into a nonlinear 

mechanics finite element framework (Section 4) which is shown to be unconditionally stable 

in the linear viscoelastic case (see Appendix A). Convergence, accuracy and computational 

costs are then evaluated in an analytic example (Section 5), a simplified fractional diffusion 

system (Section 6) as well as in a biomechanical example of liver tissue (Section 7). The 

paper finishes with a discussion of the key results and conclusions.

2 Fractional derivatives and their approximations

2.1 Caputo fractional derivative

The concept of fractional calculus started with questions about the generalization of integral 

and differential operators by L’Hospital and Leibniz [58] from the set of integers to the set 

of real numbers. Subsequently, many prominent mathematicians focused on fractional 

calculus (for reviews, see Ross [58] and Machado [59]). Within the field, many different 

definitions for fractional differential and integral operators of arbitrary order have been 

Zhang et al. Page 3

Comput Methods Appl Mech Eng. Author manuscript; available in PMC 2021 June 15.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



introduced [60]. In this work, we focus on the Caputo definition, where the fractional 

derivative, Dt
α (with α ∈ [0, 1]), of a function f can be written as,

Dt
αf = 1

Γ(1 − α)∫0
t f′(s)

(t − s)α
ds . (1)

The fractional derivative (for α ∉ ℕ), unlike integer derivatives, is a convolution of the past 

behavior of the function, making it particularly useful for constitutive modeling of 

viscoelastic materials. The Caputo form (which can be related to other formulations, e.g. 

Riemann-Liouville) has the advantage that

Dt
αc = 0, for any constantc ∈ ℝ . (2)

For later analysis, we will assume that the functions f are continuous and two (or more) 

times differentiable [61], which allows the use of integration by parts to rewrite the Caputo 

derivative as

Dt
αf = 1

Γ(2 − α) t1 − αf′(0) + ∫0
t(t − s)1 − αf″(s)ds . (3)

This form eliminates the weak singularity in the integrand of Eq. (1). For most methods of 

approximating the fractional derivative, the focus is on the range of α ∈ [0, 1]. However, the 

Caputo fractional derivative satisfies the semigroup property that is Dt
αDt

βf = Dt
α + βf. As a 

result, Eqs. (1) and (3) can be extended to a broader range of fractional derivatives by 

choosing β ∈ ℕ.

2.2 Current methods for numerical approximation of the Caputo derivative

Fractional derivative operators and methods for approximating their effects are well studied 

in literature. For some recent review of this subject, readers may consider the works of Zeid 

[62], Guo [63], Weilbeer [64] and Podlubny [60]. Approaches in the literature can be 

categorized by their method of integration, either cumulative or recursive. Cumulative 

approaches approximate the Caputo derivative by the direct numerical approximation of the 

integrals in Eqs. (1) or (3) using some form of a weighted sum over a set of discrete time 

points. In contrast, recursive approaches first approximate the Caputo derivative by 

transforming it into a series of ordinary differential equations that have standard 

discretizations.

Suppose we seek to approximate the αth-order fractional derivative, Dt
αf(0 < α < 1), of a 

function f : [0, T] ⟶ ℝ at a series of NT time points

0 = t0 < t1 < ⋯ < tNT = T

where tn = nΔt, Δt denotes the time step size, and that f (tn) is easily computed given some 

prior information from previous time points, a straightforward cumulative method to 
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computing the Caputo derivative is through a Riemann sum evaluated using the midpoint 

point (MP) rule, i.e. the discrete operator, Dn
α, is

Dn, MP
α f = 1

Γ (1 − α) ∑
m = 1

n f tm − f tm − 1

t − m − 1
2 Δt

α . (4)

Here the integral in Eq. (1) is approximated at the midpoint of each time interval [tm−1, tm] 

with the derivative computed by central differences. This approach appears effective for α < 

0.5, but sees deteriorated convergence for larger fractional orders. Another common method 

for constructing the fractional order derivative is using the Griinwal–Letnikov (GL) 

derivative [65]. Using the definition from Scherer et al. [65], the GL derivative with 

corrections to match the Caputo derivative is

Dn, GL
α f = 1

Δtα
f tn − ∑

m = 1

n
Cm

αf tn − m − tn−αf t0
Γ (1 − α) , (5)

where Cm
α = Cm − 1

α (1 − [α + 1]/m), C1
α = α, is the recursive definition of the real numbered 

binomial coefficient in the finite difference formula. Another example is given by Diethelm 

et al. [61,66] where the trapezoidal rule was employed, i.e.

Dn, D
α f = Δt−α

Γ (2 − α) ∑
m = 0

n
am, n f tn − m − f t0 ,

am, n =
1, if m = 0,
(m + 1)1 − α − 2m1 − α + (m − 1)1 − α, if 0 < m < n,
(1 − α)n−α − n1 − α + (n − 1)1 − α, if m = n,

(6)

where am,n are the weights for the past values of f (tn). Gao et al. [67] developed a similar 

method for solving fractional diffusion equations, i.e.

Dn, Gao
α f = Δt−α

Γ (2 − α) a0
αf tn − ∑

m = 1

n − 1
an − m − 1

α − an − mα f tm − an − 1
α f t0 ,

amα = (m + 1)1 − α − m1 − α, m ≥ 0 .
(7)

Other cumulative methods have been presented by Murio et al. [68], Yang et al. [69] as well 

as Liu et al. [70], though many more have been published in the literature.

All the cumulative methods presented here require significant storage costs and have 

significant computational costs, especially for complex three-dimensional tissue simulations. 

Storage/memory costs are typically O(NT) and the computational complexity is often O NT
2 , 

or by best reports (NT log(NT)), due to the need to sum over the entire time domain. In 

contrast, the computational cost of transient linear elasticity or hyperelasticity problems is 

(NT).
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One strategy to cope with this limitation is to exploit the fact that the integration weights for 

numerical approximation of fractional derivatives exhibit a ‘fading memory’, where the 

weights tend to decay with the number of time steps (or length of time). Hence, some have 

proposed truncating the approximation, including only the last few weights. However, the 

accuracy of this approach is fundamentally dependent on the behavior of f and the fractional 

derivative order α. For example, the weights decay at slower rates for lower α values, 

requiring more and more terms to avoid inaccuracies due to truncation. More difficult is the 

dependence on the function f, which is not known a priori in computational simulations. A 

classic example is to consider a stress relaxation experiment, where an acute action 

occurring at the beginning of the experiment dictates the response over the entire time 

course. In this instance, truncation of the series will eventually lead the stress to be zeroed.

Another strategy to reduce computational costs is by use of recursive methods. Such 

methods mostly follow a similar approach [55]. Namely, the Caputo derivative is 

approximated using decaying exponentials (or, equivalently, a Prony-series). This 

approximation step is posited differently depending on the authors. However, a natural 

rationale for this approximation stems from the relationship between the relaxation spectrum 

of the Caputo derivative and decaying exponentials via the Laplace transform, i.e.

(t − s)−α
Γ (1 − α) = ∫

0

∞ sin(πα)zα − 1

π exp[(s − t)z]dz . (8)

Here the integral above can be approximated using some form of numerical quadrature, 

leading to evaluation of the integrand at specific z values that are scaled by associated 

quadrature weights. Inserting into Eq. (1), we arrive at an equivalent form for a Prony-series 

comprised of decaying exponentials that can be recast as a series of ordinary differential 

equations (shown in the following section). One of the earlier works presenting a recursive 

method for approximating the Caputo derivative was by Yuan-Agarwal [52]. In this case, 

authors recast the integral based on the above and used Gauss-Laguerre quadrature for 

integration. Though they presented the idea in the context of a specific fractional differential 

equation, the idea was clearly generalizable.

The Yuan-Agrawal method has been criticized for slow convergence for certain values of α. 

Investigation by Diethelm [53] found this to stem from the non-smooth integrand which 

deteriorated the accuracy of the Gauss-Laguerre quadrature. Instead, Diethelm suggested is 

his method [56] that Gauss-Laguerre be replaced by Gauss-Jacobi integration by mapping 

the range of integration from [0, ∞) to [−1, 1] through a change of variables. Aiming for 

further improvements in the accuracy of these methods, Birk and Song [54] further extended 

theDiethelm method [56] by altering the mapping onto the [−1, 1] interval and considering 

the Fourier transform of the fractional operator, showing generally comparable or superior 

results.

Although the quadrature scheme of these approaches aims to approximate the integral over 

the entire integration interval, this is not necessarily an advantage. The range of relevant 

frequencies can be limited based on the corresponding problem and by the size of Δt used 
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for simulation. Moreover, as α → 1, the approximation must tend to approach the first order 

derivative, which becomes increasingly challenging to approximate. In the following 

sections, we expand on this Prony-based approach by formulating the error estimates, 

generalizing its form and proposing a new approach for optimizing parameters of the 

weights and time constants of the associated Prony series.

2.3 Prony approximation of the Caputo derivative

The Prony series approach has been used a number of times in literature [52–54,56,71,72]. 

Suppose that the fractional derivative can be approximated using N Maxwell elements in 

parallel, each with their own weight βk and time constant τk (k = 1 … N). Then a Prony-

based approximation Dt
αf to Dt

αf can be written as,

Dt
αf : = β0f′(t) + ∑

k = 1

N ∫
0

t
βkexp s − t

τk
f′(s)ds, (9)

or equivalently, noting that Eq. (9) can be considered the result of the integration factors, we 

see

Dt
αf : = β0f′(t) + ∑

k = 1

N
qk(t), qk′ (t) + 1

τk
qk(t) = βkf′(t), (10)

where we introduce N intermediate variables qk. While Eq. (9) requires approximation of the 

integral over the entire time domain, Eq. (10) enables discretization of the intermediate 

variables qk by standard techniques. Eq. (10) requires 2N + 1 parameters, θa = {τ1, …, τN, α 
0, α 1, …,β n}. The approximation error of Eqs. (9) and (10) is shown in Lemma 1:

Let f : [0, T] ℝ be a real function on the domain [0, T]. If f’ (0) < and f” ∈ L 1(0, T), then

Dtαf − Dt
αf = ε(t)f′(0) + ∫0

t
ε(z)f″(t − z)dz,

and for any t ∈ [0, T]

Dtαf − Dt
αf ≤ ε 0, ∞ f′(0) + f″ 0, 1 ,

where the truncation error e is defined as

ε(z): = z1 − α
Γ (2 − α) − β0 + ∑

k = 1

N
βkτk exp −z/τk − 1 . (11)

Proof of Lemma 1—Applying integration by parts to Eq. (9), and the fundamental 

theorem of calculus to the leading first order derivative term, the Prony approximation to the 

fractional derivative can be re-written as,
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Dt
αf = κ(0, t)f′(0) + ∫0

t
κ(s, t)f″(s)ds,

where κ(s, t) = β0 − ∑
k = 1

N
βkτk exp [s − t]/τk − 1 . Subtracting this from Eq. (3) leads to

Dtαf − Dt
αf = 1

Γ (2 − α) t1 − αf′(0) + ∫0
t
(t − s)1 − αf″(s)ds − κ(0, t)f′(0) − ∫0

t
κ(s, t)f″(s)ds

= t1 − α
Γ (2 − α) − κ(0, t) f′(0) + ∫0

t (t − s)1 − α
Γ (2 − α) − κ(s, t) f″(s)ds

= t1 − α
Γ (2 − α) − κ(0, t) f′(0) + ∫0

t z1 − α
Γ (2 − α) − κ(0, z) f″(t − z)dz .

We deduce that the error in the approximation can be written in terms of ε(t) = t 1α/Γ(2 - α) 

— k(0, t). Hence,

Dtαf − Dt
αf = ε(t)f′(0) + ∫0

t
ε(z)f″(t − z)dz

≤ ε(t)f′(0) + ε 0, ∞∫0
t

f″(t − z) dz

≤ ε 0, ∞ f′(0) + f″ 0, 1 ,

where ‖ · ‖0,∞ and ‖ · ‖o,1 denote the L ∞(0, T) and L 1(0, T) norms, respectively.

Remark 1—Assuming f’(0) = 0 and f” ∈ L 2(0, T), then

Dtαf − Dt
αf ≤ ε 0 f″ 0,

where ‖ · ‖0 is the L 2(0, T) norm.

From Lemma 1, we observe that the error incurred from re-writing the fractional derivative 

in terms of a finite series of Maxwell elements is governed by ε as well as the behavior of 

the differentiated function f”. While the behavior of f is unknown in the time domain for 

forward simulations, we can evaluate its impact on the Prony approximation by directly 

evaluating ε over the time domain (0, T).

2.4 Discrete prony approximation of the Caputo derivative

The approximation shown in Eq. (10) lends itself to a straightforward discretized form by 

applying numerical updates to the intermediate variables qk. We now approximate the first 

derivative using backward Euler and the integral term using a midpoint approximation, i.e.

Dn
αf : = β0

Δt
fn − fn − 1 + ∑

k = 1

N
qk

n, qk
n = ek

2qk
n − 1 + ekβk fn − fn − 1 , (12)
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where ek = exp[—Δt /(2τk)] and fn = f(tn). To simplify the notation from here on, 

superscripts of the letter n and of expressions of n will be used to denote the n th time step of 

a discretized function. With this definition, we can examine the discretization error between 

the discrete operator Dn
α and its continuous counterpart Dt

α, as shown in Lemma 2.

Let f : [0, T] → ℝ be a real function in the time domain [0, T] and let f ∈ W3,∞ (0, T). 

Assume the time interval [0, T] is divided into equal divisions Δt, giving discrete time steps 

{t0, …, tNT} with tk = kΔt and T = NtΔt. The value fn = f(tn) and the value qk
n is our 

approximation to qk(tn) based on Eq. (12). Here we assume qk
0 = qk(0) for all k = 1, …, N, 

and that βk, τk ∈ ℝ+ . Then for any tn ∈ {t1, …, tN}

Dtn
α f − Dn

αf ≤ Δt β0/2 + C θα Δt f W 3, ∞(0, T ),

where C(θ α) > 0 is a constant depending on the chosen βk, τk for all k = 1….,N

Proof of Lemma 2—We start by manipulating the ordinary differential equation for qk in 

Eq. (10). Applying an integration factor and integrating over a discrete time interval [tn-1, tn], 

we can see that

qk tn = exp −
Δt
τk

qk tn − 1 + ∫tn − 1

tn
βkexp

s − tn
τk

f′(s)ds .

Subtracting the discrete approximation shown in Eq. (12), we observe that

qk tn − qk
n = exp − Δt

τk
qk tn − 1 − qk

n − 1 + ∫tn − 1

tn
βkexp s − tn

τk
f′(s)ds

− ekβk fn − fn − 1 .
(13)

We recall the result that for g ∈ W2,∞ (0, T), one may derive the midpoint relation

∫tn − 1

tn
g(s) − g tn − 1

2
ds = ∫tn − 1

tn ∫tn − 1
2

s
(s − z)g″(z)dzds, (14)

as well as derive an inequality for the truncation error

∫tn − 1

tn
g(s) − g tn − 1

2
ds = ∫tn − 1

2

tn ∫tn − 1
2

s
(s − z)g″(z)dzds + ∫tn − 1

tn − 1
2∫s

tn − 1
2

(z − s)g″(z)dzds

≤ g″ L∞ tn − 1, tn ∫tn − 1
2

tn ∫tn − 1
2

s
|s − z | dzds + ∫tn − 1

tn − 1
2∫s

tn − 1
2

|z − s | dzds

≤
Δt3
24 g″ L∞ tn − 1, tn .
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Utilizing the midpoint relation, the second half of Eq. (13) can be written as

∫tn − 1

tn
βkexp s − tn

τk
f′(s)ds − ekβk fn − fn − 1

= ∫tn − 1

tn
βkexp s − tn

τk
f′(s) − βkekf′ tn − 1

2
ds − ekβk fn − fn − 1 − Δtf′ tn − 1

2

= ∫tn − 1

tn
βkexp s − tn

τk
f′(s) − βkekf′ tn − 1

2
ds − ekβk∫tn − 1

tn
f′(s) − f′ tn − 1

2
ds .

(15)

Note that each integral represents the truncation error of a midpoint approximation, hence

∫tn − 1

tn
βkexp

s − tn
τk

f′(s)ds − ekβk fn − fn − 1

≤
βkΔt3

24 exp
s − tn

τk
f′(s)

″
L∞ tn − 1, tn

+
ekβkΔt3

24 f‴ L∞ tn − 1, tn

≤
βkΔt3

24
1
τk
2 f′ L∞ tn − 1, tn + 2

τk
f″ L∞ tn − 1, tn + 1 + ek f‴ L∞ tn − 1, tn

≤ Δt3C0 βk, τk f W 3, ∞ tn − 1, tn ,

where C0 βk, τk = βk/24 max τk
−2, τk

−1, 1 + ek . Inserting the truncation error into Eq. (13), 

we can see that

qk tn − qk
n ≤ ek

2 qk tn − 1 − qk
n − 1 + ∫tn − 1

tn
βkexp

s − tn
τk

f′(s)ds − ekβk fn − fn − 1

≤ ek
2 qk tn − 1 − qk

n − 1 + Δt3C0 βk, τk f W 3, ∞ tn − 1, tn

≤ ek
2 qk(0) − qk

0 + C0 βk, τk Δt3 ∑
m = 1

n
f W 3, ∞ tm − 1, tm

≤ C0 βk, τk tnΔt2 f W 3, ∞(0, T )

making the update formula for qkO Δt
2 . Subtracting the definition of Dtn

α  from Dn
α, we can 

see that

Dtn
α f − Dn

αf = β0 f′ tn − Δt
−1 fn − fn − 1 + ∑

k = 1

N
qk tn − qk

n

≤ β0 f′ tn − Δt
−1 fn − fn − 1 + ∑

k = 1

N
qk tn − qk

n

≤ β0
1
Δt∫tn − 1

tn
s − tn − 1 f″(s)ds + C θα Δt

2 f
W 3, ∞(0, T )

≤ β0Δt
2 f″ L∞ tn − 1, tn + C θα Δt

2 f W 3, ∞(0, T ),

(16)
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where C θα = ∑
k = 1

N
C0 βk, τk tn. Generalizing for any time point completes the proof.

From Lemma 2 we observe the typical discretization errors expected for backward Euler and 

midpoint based error estimates. The result shows that the discrete approximation converges 

to the approximate Prony series approximation with (Δt). Using backward Euler for the 

first-order derivative term is not necessary, and higher- order approximations could easily be 

used in Eq. (12). Here we select this form for ease and, in the context of biomechanics 

simulations, for stability considerations. Combining Lemmas 1 and 2, we can derive an error 

estimate for this Prony series-based approximation in Theorem 3.

Theorem 3— Given the assumptions of Lemma 2, the error between Dn
αf and Dtn

α f for any 

tn ℝ {t1, …, tNT} is given by

Dn
αf − Dtn

α f ≤ ε 0, ∞ f′(0) + f″ 0, 1 + Δt β0/2 + C(β, τ)Δt f W 3, ∞(0, T ) .

Proof of Theorem 3—This is a straightforward result of the triangle inequality, Lemmas 1 

and 2.

Based on this error estimate, we can see that a refinement with Δt eliminates the portion of 

error responsible for discretization, while the appropriate selection of the positive constants 

used in Eq. (12) can reduce the Prony approximation error given by the truncation ε (as we 

will later show). We note that decreasing Δt will eventually lead to a plateau in the error 

convergence based on how well the Prony series approximates the true fractional derivative. 

However, increasing the number of Prony terms N elicits a more complex response. For 

large Δt, the error can become dependent on the second term in Theorem 3 and thus, the 

constant C(θ α). This constant, in general, grows with more Prony terms and can have 

truncation scale factors that grow larger with larger N. However, for sufficiently fine Δt, 

increasing the number of terms shifts the error onto e and thus improves like the truncation 

error.

2.5 Optimizing the numerical approximation Dt
α

The approximation introduced in Eq. (9) relies on the effective identification of the 

parameters θ α that should be chosen to ensure optimal accuracy. Ideally, θ a would be 

selected so as to minimize the error between the true Caputo derivative and the 

approximation in some suitable norm. For example, if we consider the L 2(0, T) norm, then 

we would seek to minimize the squared error

F f, θα, α = 1
2∫0

T
Dt

αf − Dt
αf

2
dt, (17)

where F(f, θ α, α) gives the squared L 2-norm error between the approximate and the true 

Caputo derivatives for the given function f and set of parameters θ α. While the parameters θ 

α could be chosen to minimize F(f, θ α, α), this approach presents challenges as we often do 
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not know f prior to simulation. Hence, instead, we must select our approximation to be 

suitably valid for all f, i.e. we find θ α such that (for 0 < α < 1),

F f, θα, α : = minF (f, φ, α), φ ∈ ℝ2N + 1 , for any f ∈ W 2, ∞(0, T ) . (18)

The problem posed in Eq. (18) is generally challenging to solve due to the flexibility in the 

behavior of f. In order to approximately minimize F, suppose we instead consider only those 

functions f ∈ F(M) where

ℱ(M) = f ∈ L2(0, T ) ∣ f(t) = Re ∑
k = 1

M
Ckexp iωkt , for some C0, …, CM

∈ ℂ
(19)

represents the set of functions that can be written using a Fourier basis [73]. Here we note 

that ωk = kω*, where ω* = 2π/T is the base frequency of f on the time interval [0, T]. In this 

context, our function f and its fractional derivative (for t » 0) can be written as

f(t) = Re ∑
k = 1

M
Ckexp iωkt , Dt

αf(t) ≈ Re ∑
k = 1

M
Ck iωk

αexp iωkt . (20)

In contrast, the approximate fractional derivative Dt
α based on Eq. (9) can be written as,

Dt
αf(t) = Re ∑

k = 1

M
Ck β0iωk + ∑

m = 1

N
βm τmωk

τmωk + i

τmωk
2 + 1

exp iωkt . (21)

The difference between the true and approximate operators is then simply,

Dt
αf(t) − Dt

αf(t) ≈ Re ∑
k = 1

M
Ckexp iωkt β0iωk + ∑

m = 1

N
βm τmωk

τmωk + i

τmωk
2 + 1

− iωk
α ,

(22)

leaving the operator error dependent on the size of the complex number given in the square 

brackets. This means that for us to obtain a good approximation for any f ∈ F(M), we must 

choose θ α such that we minimize the bracketed term. Hence, we may reduce the 

minimization problem in Eq. (18) to an analogous normalized system where

1
kα ∑

m = 1

N
βm

kτm 2

kτm 2 + 1
= cos πα

2 , β0k1 − α − 1
kα ∑

m = 1

N
βm

kτm
kτm 2 + 1

= sin πα
2 , (23)

for k = 1, …, M. Here, we note that parameters were normalized (with hats) to enable 

independence from the base frequency, ω* with β0 = β0 ω⋆ α − 1, βm = βm ω⋆ α and 
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τm = τm/ω⋆(m = 1, …, N). This leads to 2M constraint equations that, if hold, imply 

equivalence of the true and approximate Caputo derivative. Assuming that our function is 

composed of many more Fourier terms than the number of Prony terms (i.e. M » N), Eq. 

(23) leads to a nonlinear over-constrained system that can be solved by optimization.

2.6 Numerical implementation

Resulting parameters for approximating different fractional derivatives can be found in the 

MATLAB [74] codes provided as supplementary material. Here optimized parameters can 

be returned for values of N ∈ [3,15] and α ∈ [0, 1] for a specified base frequency ω*. Codes 

and examples are also provided showing how the approximation can be utilized for 

approximating the Caputo derivative. Other methods, such as the midpoint (MP) or 

Grünwald–Letnikov (GL) approximations, are also provided.

3 Large deformation viscoelastic solid mechanics

3.1 Review of kinematics and kinetics

In this section, we briefly review the kinematics and kinetics for hyperelastic materials. Let 

Ω 0 ⊂ ℝ3 denote the reference configuration of a three-dimensional solid (coordinates X) 

and Γ0 denote its boundary. The boundary is split into groups Γ0 = Γ0
N ∪ Γ0

D based on either 

loading (subscript N) or displacement boundary conditions (subscript D). Over a time 

interval t ∈ [0, T], the configuration of the body becomes Ω(t) ⊂ ℝ3, with physical 

coordinates x. The coordinates are related by

x(t) = u(t) + X, xi(t) = ui(t) + Xi . (24)

The mapping in Eq. (24) is assumed to be bijective with u : Ω 0 x [0, T] → ℝ3 denoting the 

material displacements. Note that X and x are the vector positions, with components Xi and 

Xi. The deformation gradient F defines the local mapping of infinitesimal vectors, which is 

given by

F = ∂x
∂X = ∂u

∂X + I, Fij =
∂ui
∂Xj

+ δij,

where I is the identity tensor. The determinant J = det F defines the relative change in 

volumes, providing key information about material growth/decay. The right and left Cauchy-

Green tensors [75], defining the material stretch, are

C = FTF , B = FFT .

The deformation gradient and the left and right Cauchy-Green tensors comprise a common 

set of measures used to characterize the constitutive behavior of a material. For a 

hyperelastic material, the strain-energy density function is given by Ψ = Ψ(C), which 

defines the stored energy resulting from material deformations. From the second law of 
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thermodynamics, the strain-energy function can be related to the second Piola-Kirchhoff 

stress tensor (PK2) as

S = 2∂Ψ(C)
∂C , Sij = 2∂Ψ Cij

∂Cij
, (25)

which, in turn, is related to the first Piola-Kirchhoff and Cauchy stress tensors (P and σ, 

respectively) by push forward operations on PK2. In this case,

σ = 1
J FSF T = 1

JPF T . (26)

For isotropic biomechanical materials, the strain-energy function is often defined using 

invariants of C [76],

I = C :I, II = C :C, III = detC (27)

with Ψ = Ψ(I, II, III). For incompressible materials, the third invariant III is constrained to 1 

by splitting the strain-energy function into a deviatoric (Ψd) and a volumetric components 

with Ψ = Ψd + p(III 1/2 − 1), where p : Ω × [0, T] → ℝ denotes the hydrostatic pressure. 

Often the strain-energy function takes exponential forms, as seen in the Fung model [10]. 

However, with many tissues exhibiting anisotropic material response [77], additional 

invariants have been introduced to denote stretch with respect to specific microstructural 

directions. These laws can be naturally extended, but for the purposes of this work, we will 

focus on more simple isotropic forms.

3.2 Extension of hyperelastic to viscoelastic models

For constitutive modeling of viscoelastic behavior, a number of model approaches have been 

presented in the literature. Fig. 1 illustrates some of the common models introduced, 

particularly for linear viscoelastic materials, using spring, dashpot or spring-pot elements. 

Extension of these forms toward nonlinear material models has become more common, with 

models following the analogy presented in Fig. 1. For example, following the template of the 

linear models, a nonlinear viscoelastic Maxwell model (Fig. 1A) could be written as

S + η1
E1

S′ = η1Sv′ (28)

and the nonlinear viscoelastic Kelvin-Voigt model (Fig. 1B) as,

S = E0Se + η1Sv′ . (29)

Here S e denotes a symmetric tensor denoting the hyperelastic response of the material, 

while S v denotes the symmetric tensor encoding the viscoelastic response. Note that these 

stresses denote the non-hydrostatic components, which can be included based on the 

application. Commonly, both take a similar form to hyperelastic materials commonly 

encountered in the literature. These models provide an exponential decay in the viscoelastic 

phenomena, which can yield viscoelastic response times that are incompatible with 
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experimental data. Other formulations, such as introduced by Schapery et al. [78], provide a 

more generalized view for characterizing material response. Another example is the model 

developed by Freed and Diethelm [46], i.e.

S(t) = μ∞ + μ0 − μ∞ G(t)∂Ψ(E)
∂E + μ0 − μ∞ ∫

0

t
M(t − s)∂Ψ(E)

∂E ds, (30)

where G(t) is a relaxation function and M(t) is a memory function for the history 

dependency.

An alternative approach, that has been successful in the experimental literature, is use of 

fractional elements [44,45]. This is due to the progressive memory exhibited by these 

models following a power spectrum commonly observed in biological tissues for moderate 

frequencies. In this case, we can envision development of nonlinear fractional viscoelastic 

models, such as the fractional Kelvin-Voigt model (Fig. 1E), e.g.

S = E0Se + η1Dt
αSv . (31)

Here α = 0 reduces to a pure elastic response and α = 1 converts the equation into the 

nonlinear viscoelastic Kelvin-Voigt model shown above. The advantage of this approach is 

the generality of its application and ability to capture the dynamic viscoelastic behavior of 

tissues with the addition of the fractional differential operator.

3.3 Conservation of mass and momentum

With an appropriately defined constitutive model, the conservation of mass and momentum 

for an incompressible solid material is given by [77],

∂t(ϱJv) − ∇X ⋅ (FS) = Jb, in Ω0 × [0, T ], (32)

J − 1 = 0, in Ω0 × [0, T ] (33)

where ∂t is the Lagrangian derivative (taken with respect to fixed coordinates X), ϱ is the 

material density, v = ∂t u is the material velocity, and [0, T] is the time interval of interest. 

The mechanical system is then subject to an initial condition and boundary conditions, e.g.

u( ⋅ , 0) = u0, v( ⋅ , 0) = v0 in Ω0, (34)

v( ⋅ , t) = vD, on Γ0
D × [0, T ], (FS) ⋅ N = tN on Γ0

N × [0, T ] (35)

where u0, v0 : Ω 0 → ℝ3 are given initial conditions, vD:Γ0
D ℝ3 given information about 

the rate of deformation on the boundary Γ0
D, and tN :Γ0

N ℝ3 is given information about the 

applied traction on boundary Γ0
N. All examples considered herein assume that no history of 
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deformation is present in the material for t < 0 (e.g., the fractional derivative is defined w.r.t. 

t = 0).

4 Finite element approximation for viscoelastic solid models

This section reviews the integration of the nonlinear fractional viscoelastic model into a 

finite element solid mechanics framework. For development and discretization of the 

weakform system, we follow the typical mixed finite element u – p formulation [79,80] 

(Section 4.1) and extend it to account for the discrete fractional order model (Section 4.2). A 

summary of the implementation steps is provided in Section 4.3. The linearized system is 

introduced in Section 4.4, and stability estimates are proven for the discrete problem.

4.1 Continuous and discrete weakform system

The weak formulation for the mechanical system follows the typical procedure. Multiplying 

Eqs. (32)–(33) by test functions w and q, respectively, integrating and applying integration 

by parts, the weak problem can be written as: find (u(t), v(t), p(t)) ∈  ×  D ×  such that,

∂t(ϱvJ), y + FS, ∇Xy − tN, y − (Jb, y) + (q, J − 1) + v − ∂tu,w = 0, (36)

for all (w, y, q) ∈  ×  0 ×  and all times t ∈ [0, T]. Here, ,  and  denote appropriate 

spaces [81], their subscripts D and 0 denote spaces equipped with appropriate Dirichlet or 

zero Dirichlet conditions on Γ0
D, and the operators (·, ·) and 〈·,·〉 denote the inner products on 

Ω 0 and Γ0
N, respectively.

A discrete-in-time discretization of Eq. (36) can be considered using Backward Euler for 

temporal derivative approximations. Here we define a series of time steps tn n = 0
NT  (as seen 

in Section 2.2), where the superscript n denote a variable quantity at time tn, and the 

Backward temporal operator, δtfn = (fn — Δn-1)/At. Defining appropriate inf-sup compatible 

discrete spaces, denoted with the subscript h (in later results, we use ℚ2 - ℚ2 - ℚ1 Taylor-

Hood elements [82]), the discrete weak form of Eq. (36) can be written as: find 

uℎ
n, vℎ

n, pℎ
n ∈ Uℎ × VD

ℎ × Pℎ such that,

δt ϱvℎ
nJn , yℎ + FnSn, ∇Xyℎ − tN, yℎ + qℎ, Jn − 1 − Jnbn, yℎ

+ vℎ
n − δtuℎ

n,wℎ = 0,
(37)

for all (wh, y h, qh) ∈ Uℎ × V0
ℎ × Pℎ and n = 1, …, NT. We note that, under the scheme 

presented, the solution for uℎ
n can be implicitly defined based on vℎ

n as

vℎ
n = δtuℎ

n

at node points.
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4.2 Stress discretization and integration with the Prony approximation

Evaluation of the discrete finite element equation in Eq. (37) follows the typical procedure 

applied in finite element mechanics. Namely, the weighted residual equations are evaluated 

using an appropriate form of quadrature based on the element type and computational 

complexity of the integrand. In the context of fractional viscoelastic models, as introduced in 

Section 3.2, the only additional challenge is determining a scheme for handling the 

viscoelastic stress tensor. Using the Prony approximation introduced in Eq. (12), the 

fractional Kelvin-Voigt model can be written as,

Sn = Se
n + β0δtSv

n + ∑
k = 1

N
Qk

n + pℎ
nSp

n, (38)

where Se
n = Se Cn , Sv

n = Sv Cn , Sv
n = Sv Cn , Sp

n = Jn Cn −1
 and Qk

n is defined by the update 

formula,

Qk
n = ek

2Qk
n − 1 + βkekΔtδtSvn .

The approximation for the current value of the second Piola-Kirchhoff stress given in Eq. 

(38) introduces the intermediate variables, Q k, representing the evolution of the material 

history due to different Prony terms. Within a finite element discretization, Eq. (38) could be 

realized weakly, interpolating Q k using basis functions. However, this form does not ensure 

equivalence to the original form observed in Eq. (37). Instead, the values of Q k are 

discretized at quadrature points where the residual equation (and, consequently, the stress) 

must be evaluated. Fig. 2 illustrates this strategy for the Taylor–Hood ℙ2 – ℙ1 mixed-

problem on triangles using an appropriate quadrature rule [83]. We note that this illustration, 

though for triangles, similarly applies to other Taylor-Hood approximation spaces on 

different element types (e.g. quadrilateral, tetrahedra, hexahedra) with the corresponding 

appropriate quadrature rules. In Fig. 2 we see the mixed element showing node points for 

displacement, velocity and pressure as well as the quadrature points at which values of Q k 

are stored.

For practical implementation purposes, it is convenient to re-arrange Eq. (38) to consolidate 

terms based on their dependence on the current time step and past time step, e.g.

Sn = Se
n + γSv

n + pℎ
nSp

n − γSv
n − 1 + ∑

k = 1

N
ek

2Qk
n − 1, (39)

where γ = β0/Δt + ∑
k = 1

N
βkek From Eq. (39), the first three terms depend on n while the latter 

two terms depend on variables at n - 1. As a result, to iteratively solve Eq. (37), one needs to 

evaluate the last two terms once per time step. While the first three terms vary at each 

iteration, the complexity of computing these terms over a standard hyperelastic formulation 

is the addition of γSv
n.

Zhang et al. Page 17

Comput Methods Appl Mech Eng. Author manuscript; available in PMC 2021 June 15.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



4.3 Solution procedure

The computational model framework presented was implemented into C heart [57], a 

custom multiphysics finite element solver used in a range of biomechanics applications 

[81,84–87]. The solution procedure follows the Shamanskii-Newton-Raphson (SNR) 

method [88] shown in Algorithm 1. Due to the formulation devised in Section 4.1, the final 

linearized system is written for variables vℎ
n and pℎ

n with the current displacement calculated 

as discussed previously. In this case, our residual functional can be written as,

R vℎ
n, pℎ

n;wℎ, qℎ : = ϱδt vℎ
nJn ,wℎ + F nSn, ∇Xwℎ − tN,wℎ + qℎ, Jn − 1

− Jnbn,wℎ .
(40)

Owing to the fact that vℎ
n can be expressed as the weighted sum of vector basis functions 

(and similar for pℎ
n, but using scalar basis functions), Eq. (40) can be written as

R Xn; Y = R ΦvV n,ΦpPn;ΦvW ,ΦpQ

where Xn = (Vn, Pn) denotes the coefficients of our solution and Y = (W, Q) the weights of 

our test functions. Finally, the vector residual function can be expressed as the gradient with 

respect to Y, e.g.

R Xn = ∇YR Xn, Y = 0 . (41)

4.4 Stability of the discrete weak form system

In this section, stability is analyzed for linear incompressible fractional viscoelastic 

materials shown in Eqs. (42) and (43). The problem depends on the parameters ϱ, E, Ƞ ∈ ℝ+ 

which, for ease, we take as positive spatiotemporal constants denoting the material density, 

elastic stiffness and fractional viscoelastic stiffness, respectively.

ϱ∂t(v) − ∇X ⋅ Σ = b, in Ω0 (42)

∇X ⋅ v = 0, in Ω0 (43)

u( ⋅ , 0) = u0, v( ⋅ , 0) = v0, in Ω0 (44)

v = 0 on Γ0
D, Σ ⋅ N = 0, on Γ0

N (45)

Here b denotes body forces and u 0 and v 0 are given initial conditions. All examples 

considered herein assume that no history of deformation (e.g. the fractional derivative is 

defined w.r.t. t = 0). The constitutive model for the linear elastic material is given by
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Σ = EDu + ηDt
α(Du) + pI . (46)

with D( ⋅ ) = 1
2 ∇X( ⋅ ) + ∇X( ⋅ )T . Mirroring the discretization strategy of Section 4, we can 

derive the discrete weakform equation for the problem in Eqs. (42)–(45) as: For every n = 1, 

…, NT, find uℎ
n, vℎ

n, pℎ
n ∈ Uℎ × V0

ℎ × ℎ such that,

ϱδtvℎ
n, yℎ + Σn, ∇Xyℎ − bn, yℎ + qℎ, ∇X ⋅ vℎ

n + vℎ
n − δtuℎ

n,wℎ = 0 (47)

Algorithm 1 Viscoelastic Mechanics Algorithm.

1: Given initial condition X 0 (and Q 0 at all quadrature points).

2: Compute J β = Δx R(X 0), [Jβ]-1.

3:

4: for (n = 1 : N) do

5: 

6:      Set Xn ,0 = Xn -1.

7:      Compute R(Xn’0).

8:      Compute r = ‖ R(Xn’°)‖.

9:      Set k = 0.

10:

11:      while (r > T OL) do

12:

13:          Compute δX = -[Jβ]−1 R (Xn,k).

14:          Find min α∈[0,1]‖R(Xn,k + α δX)‖.

15:          Set X n,k+1 = X n,k + α δX.

16:          if (‖R(X n,k+1)‖ > γ r or k > ITER) then

17:              Compute Jβ = Δx R (X n,k+1), [Jβ]−1.

18:          Compute r = ‖R (X n,k+1)‖.

19:          Set k = k + 1.

20:      Update Qn = ek
2Qk

n − 1 + βkekΔtδtSv
n at quadrature points.
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for all (wh, y h, qh) ∈ Uℎ × V0
ℎ × Pℎ. Here we assume uℎ

0 = u0, vℎ
0 = v0, and Qk

0 = 0 for each k 

= 1, …, N (e.g. no history of deformation is assumed). Σn is given by Eq. (48), which utilizes 

the approximate fractional derivative denoted by Dn
α.

Σn = EDuℎ
n + ηDn

α Duℎ + pℎ
nI (48)

Examining the stability of Eq. (47), it can be shown that the state variables satisfy the 

stability estimates given in Lemmas 4 and 5 in Appendix A.

5 Analytical evaluation of the Prony-based method

5.1 Comparison of truncation error of fractional differentiation approaches

The truncation error gives a more broad view of the errors and convergence the methods 

without a given function or differential equation. For the Prony-based method, this is given 

in Eq. (11). As can be seen in Lemma 1 and Theorem 3, the truncation error, when scaled by 

the derivative of a given function, serves as a lower-bound for the approximation error of the 

method. As such, we directly compared the truncation errors of the Prony-based method 

against that of the integral approach in Birk and Song [54] (Fig. 3), for different time 

intervals and number of Prony terms, N ∈ {3, 5, 6, 9, 12}.

The most immediate observation is that, the Prony-based method outperforms the method of 

Birk and Song in all cases when N ≥ 6. When N = 3, both methods perform similarly. Both 

methods also show that the overall truncation error increases with the duration of the time 

interval as expected when interpolating a larger range. Also of interest is that the trend for 

increasing alpha changes with time interval. As shown in Fig. 3, for smaller time intervals 

the error increases with increasing alpha, while at longer time intervals the error decreases 

with increasing alpha. Approximation errors increasing with α is a familiar issue to most 

methods for approximating the fractional derivative and the latter case is likely related to the 

effect of α increasing the rate of relaxation, causing the values of the fractional derivative to 

decay over larger time intervals.

5.2 Evaluation of approximation errors using polynomial function

In this section, we aim to examine the accuracy and convergence of the Prony-based method 

(Eq. (12)) in comparison to a few other methods in the literature. For this purpose, we here 

consider a basic example of approximating the fractional derivative of a polynomial series, 

i.e.

p(t) = ∑
k = 1

bktk − 1, Dt
αp(t) = ∑

k
bkΓ (1 − k) k − 1

k − α tk − 1 − α, (49)

where bk are the given parameters (given under Fig. 4). Different methods are used to 

approximate the fractional derivative of p, where the L 2-norm of the error with the analytic 

solution is then computed. All methods considered in this section were implemented in 

MATLAB [74].
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Table 1 compares the computation time of the Prony-based method in Eq. (12) with a 

representative cumulative approach, in this case, the midpoint (MP) rule (Eq. (4)). From this, 

we observe that the computation time for the midpoint rule grows as O NT
2 , with NT 

denoting the number of time steps. As a consequence, the midpoint rule Eq. (4) takes ≈ 13 

min to complete the problem with Δt =1e-5 in comparison to about 3 s for the Prony-based 

method. This disparity stems from the use recursive updates of intermediate variables, qk, in 

the Prony-based method resulting in a temporal scaling of O(NT). Minimal increase in 

compute time is observed with increasing Prony terms despite the N -dependent workload 

required for the computation of the fractional derivative operation (computation time grows 

15% from N = 3 to N = 12). This likely stems from the efficiency of vectorized operations in 

MATLAB.

For the Prony series parameters, we selected the optimized values from Section 2.5 on a time 

interval of 9 s, 10 times the time domain. This can significantly improve the error estimates 

in Theorem 3 by reducing ε(z) and C(β, τ), and being more inclusive of the frequencies of 

the Prony series that are larger than the time domain but still relevant to the problem (see 

Appendix B for more details).

Fig. 5 illustrates the accuracy of the proposed, midpoint and Griinwald–Letnikov methods. 

Here the accuracy of the Prony approximation is examined for different α, N and Δt (Δt 

=1e-4 case shown in Fig. 4). Visibly, six or more Prony terms appear to perform well for the 

polynomial function, but three Prony terms generally yield noticeable errors. As predicted 

by the truncation error in Fig. 3, the accuracy of the Prony approximation deteriorates with 

increasing α, especially for α > 0.5, limiting the Δt convergence as shown in Theorem 3. 

However, this deterioration is also observed in the midpoint method, where limited 

convergence with Δt is observed at α = 0.8. The Gninwald-Letnikov method is significantly 

better in this regard, where convergence of the Griinwald–Letnikov method is on par or 

better than the Prony-based methods for N = 12 for sufficiently large NT. However, as 

observed in Fig. 5, the Grunwald-Letnikov method seems to diverge as Δt approach 0. This 

is due to a singular behavior in the Griinwald–Letnikov method (Eq. (5)) when the number 

of time points NT is small. Precisely, when Nt = 0, i.e. when taking the fractional derivative 

at time zero, the resulting value behaves as f(0)/Δt
α (Fig. 4). This singularity is always 

present and decreases quickly with increasing NT, and indicates the reliance of this method 

on knowing the value of the function being differentiated, making it unsuitable for solving 

differential equations without further corrections. The Prony-based method for N > 3 

generally shows convergence for all α values, with errors plateauing based on the truncation 

error derived in Lemma 1 (see Table 2). This is most visibly obvious for α = 0.1 (Fig. 5A). 

For the N = 3 case, truncation errors vastly exceed time discretization errors, resulting in no 

appreciable convergence with time step refinement. It is noticeable that the Prony-based 

method performs better than the midpoint rule before reaching the truncation error in all 

cases tested. Larger number of Prony terms can significantly reduce this truncation error, 

illustrating the importance of choosing a sufficient number of terms for the problem 

depending on the required degree of accuracy.
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In addition to the midpoint rule, we also examined the method of Birk and Song [54], which 

also uses a Prony series approximation. The method presented in this work performs 

similarly or better for all α and N (see Table 2). This is consistent with our theoretical 

analysis in Fig. 3, which shows that the method presented here has better performance with 

N > 3 in nearly all scenarios. This improved performance stems from the increased error in 

the Prony approximation, causing errors to plateau with time step refinement earlier as 

predicted in Lemma 1 (see Table 2). The performance gain is more significant for larger α 
and larger N as predicted. In the Prony-based method presented in this work, the integral is 

done with Prony terms with frequencies that are comparable with the domain of the 

simulation, whereas in the method of Birk and Song approximates the complete range of 

frequencies by Gauss-Jacobi weights (which need not be optimal). As a result, the method of 

Birk and Song does not see as much improvement in accuracy with an increase in N.

6 FE approximation of fractional differential equations

While Section 5 demonstrates the efficacy of the Prony approximation for given known 

differentiable functions, it does not give an indication of how well the method performs for 

solving a fractional differential equation. To examine this, we replicated Example 1 of Gao 

et al. [67], i.e.

Dt
αu − ∂2u

∂x2 = f(x, t), for x ∈ [0, 1], t ∈ [0, 1],

f(x, t) = (x − 1)2e−xt3 Γ (4 + α) (x − 1)2
6 − 21 − 10x + x2 tα − 4x2(x − 1)2 14x2 − 14x + 3 ,

u(x, 0) = x4(x − 1)4,
u(0, t) = t3 + α, u(1, t) = 0

(50)

The problem above has the unique analytic solution given in Eq. (51) and shown in Fig. 6. 

The major feature is a cubically growing source term at x = 0, which decays to 0 at x = 1 

with a smaller concave quartic polynomial spanning x ∈ [0, 1].

u x, t = x − z 4 e−xt3 + α + x4 (51)

Following Gao et al. [67], Eq. (50) is solved using linear finite elements in space. Further, to 

make results comparable, we use the same error norm, i.e.

E ℎ, Δt = max
x ∈ [0, 1]t ∈ [0, 1]

max
analytic

(x, t) ∣ (52)

and replicate the results from Table 1 (temporal refinement) and Table 2 (spatial refinement) 

of Gao et al. [67] (see Tables 3 and 4, respectively). We also obtained Prony series 

parameters for the time interval of t ∈ [0, 100], by a factor of 100 times the time domain of 

the FE problem, to improve the error estimates (see Appendix B). Spatiotemporal errors are 

also shown in Fig. 7 for Δt = 1/2500, h = 1/2500 and a varying number of Prony terms. As 

expected, the error improves with an increasing number of Prony terms.
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Examining temporal refinement (with h = 5e-5), the Prony-based method presented here has 

better convergence at smaller Δt; however, the results from Gao et al. show smaller initial 

errors (see Table 3). This improved error for larger Δt comes with additional computational 

expense requiring storage of the solution for all time points. Additionally, we observe that 

the truncation error due to the Prony approximation results in small errors, meaning that 

temporal convergence is observed even for N = 3 up to Δt > 1/160. Further, at coarse time 

discretizations, the Prony-based method shows increasing errors for increasing N. While 

counter-intuitive, this is explained by Theorem 3. With increasing N, the discretization error 

is scaled by C(β, τ) which generally grows with N. This results in slow convergence until 

the approximation errors asymptotically converges to the error bounds. However, optimal 

convergence is still achieved with Δt refinement.

In the case with refinement in space (with Δt = 5e-5), both methods have similar 

convergence rates but the Prony-based approach has smaller initial errors due to better 

convergence with Δt (Table 4). Interestingly, but not unexpectedly, the number of Prony 

terms does not affect the convergence rate with refinement in space due to the fractional 

derivative being taken with respect to time only. However, additional Prony terms are still 

important, as an insufficient number of terms limits the lower bound of the errors, as seen 

for N = 3.

Fig. 8A, B and C shows spatiotemporal convergence for a range of time and discretizations. 

For fine spatial grids, we observe that errors approach the limit predicted by Lemma 2 and 

adhere to the results of Theorem 3. Coarsening spatial refinement, we can observe spatial 

errors shift the lower bound for higher values of N. Fig. 8D, E, and F presents a similar 

analysis utilizing the weights from Birk and Song [54]. Once again, the Prony-based method 

presented in this work performs better, where the convergence rates are improved and lower 

bounds for the Prony-based approximation are one (N = 9) to two (N = 3) orders of 

magnitude lower.

7 Fractional approximation applied to biomechanics in the liver

7.1 Finite element model for the mechanical testing of livers

In order to investigate the efficacy of the proposed method for simulating fractional 

viscoelasticity in soft tissues, here we model an experiment executed by Tan et al. [89] on ex 
vivo bovine liver tissue. Briefly, cylindrical liver samples of height H = 2.7 mm and radius R 
= 10 mm were tested in a rheometer at a range of compressions, shear strains and 

frequencies. The behavior of the ex vivo liver sample can be effectively modeled using a 

viscoelastic exponential model [90] of the form

S = δDev Dt
αSv + pJC−1, Sv = exp[b(II − 3)]C . (53)

The first term denotes the deviatoric component of the stress depending on the fractional 

derivative of S v which follows a similar form to a typical hyperelastic material model of the 

right Cauchy-Green strain (see Section 3.1). The second component denotes the hydrostatic 

stress, depending on the pressure variable, p. Here Dev[A] = A − (A : C/3)C −1 denotes the 
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deviatoric operator. The model can be fit to match the behavior of the ex vivo liver from [89] 

by three parameters: the linear scaling parameter 3, the nonlinear response parameter b, and 

the fractional derivative a. Following the parameterization process in [90], parameters α = 

0.2, b = 1.5 and δ = 126.4Pa were observed to provide the best fit to the data (see Fig. 9).

Here we focus on a single test case, where a sample was compressed by 10% and 

subsequently sheared at a frequency of 1 Hz around its axis with a shear strain amplitude of 

25%. In this case, the reference domain is the cylindrical region 

Ω0 = x ∈ ℝ3 ∣ x1
2 + x2

2 ≤ R, 0 ≤ x3 ≤ H . The boundary Γ0 is split into a bottom surface, top 

surface, and side surface Γ0 = Γ0
b ∪ Γ0

t ∪ Γ0
w, respectively. Assuming pure compression and 

shear, the deformation

u(t) =

X1
λ(t)cos ψ(t)X3 − X2

λ(t)sin ψ(t)X3 − X1

X1
λ(t)sin ψ(t)X3 + X2

λ(t)cos ψ(t)X3 − X2

X3(λ(t) − 1)

, ψ(t) = γλ3/2(t)sin(2πft )
X1

2 + X2
2 , (54)

where the compression, λ, and the shear angle, ψ X 3, were chosen to mimic the 

experimental conditions. Here compression took place over the first 1s, e.g. λ(t) = 1 - 

0.1min(t, 1). Additionally, the angular displacement was applied after compression, t = 

max(0, t - 1), with an oscillatory frequency f = 1 Hz and a maximal shear strain of Xy. 

Torque readings were acquired during the shearing process.

This problem provides the ability to verify the finite element implementation outlined in 

Section 4. The analytical stresses could be computed using Eqs. (54) and (53). Applying Eq. 

(26), the predicted torque, τ, and normal traction, tN, can be calculated by

τ(t) = ∫
Γte3 ⋅ [x × (σ ⋅ n)]dΓ , tN(t) = ∫

Γte3 ⋅ [σ ⋅ n]dΓ , (55)

where Γt is upper boundary of the physical domain Ω, n = e 3 the outward normal, and e k is 

the kth-base vector for rectangular-Cartesian coordinates. These quantities were computed in 

MATLAB R2018b and in-house software Cheart. In MATLAB, a reference solution for the 

torque and normal traction were computed using the Grimwald- Letnikov method [65] (Eq. 

(5)) with a small time-step Δt =1e-5. A sweep over time-step size and the number of Prony 

terms was also applied to examine computing times and computational accuracy.

For the finite element implementation in Cheart, a curvilinear hexahedral mesh (with 9072 

elements) was used to approximate τ 0. The inf-sup stable ℚ2 ℒ ℚ2 ℒ ℚ1 scheme was used 

to solve for u, v and p (with 77,425 quadratic nodes and 10,309 linear nodes). Eq. (54) was 

applied as boundaries conditions on Γ0
b and Γ0

t  with no boundary conditions applied on Γ0
w. 

Model torque and normal traction were exported along with the solution.
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7.2 Accuracy and convergence

The accuracy and convergence of the Grimwald-Letnikov and Prony approximations are 

shown in Table 6, with the latter examined for N ∈ {3, 6, 9, 12}. When the number of Prony 

terms is N = 3, there is little improvement in the stress accuracy with temporal refinement 

reflecting inherent limitations in the approximation quality with so few terms. However, 

increasing to N = 6, we see the stagnation in convergence shift to Δt =1e-3. Further increases 

to N = 9 and N = 12 exhibit continued convergence even for the finest time step size, as 

predicted from Theorem 3

The deformation and pressure from the FEM simulation can be observed in Fig. 10 (with N 
= 9 and Δt =1e-3). The simulated displacements were within 1e-6 of their analytic 

counterparts. The FEM simulation was further verified against the Grimwald-Letnikov 

implementation in MATLAB. The torque and normal force from both implementations are 

shown in Fig. 10, showing both forward model and the analytically computed behavior are 

consistent. Here, an error of 1e-3 was observed for the torque and 2e-4 was observed in the 

normal traction force.

7.3 Computational cost

Table 5 presents the cost performance of the Prony approximation (Eq. (12)) compared to 

the Grimwald-Letnikov method (Eq. (5)) over the time domain t e [0, 2]. Time step Δt was 

chosen to vary between 1e-2 and 5e-5. For time steps larger than 1e-4, the Grimwald-

Letnikov and Prony approach (for n = 3, 6, 9, 12 terms) is comparably fast. However, as Δt 

shrinks further, the Grimwald-Letnikov approach becomes increasingly expensive to 

compute O NT
2  versus O(NT)), with storage costs of O(NT) vs O(N) (N is the number of 

Prony terms).

Finally, we sought to examine the added computational cost of simulating the viscoelastic 

model compared to a classical hyperelastic model (see Table 7). Here the compute time of 

the viscoelastic model in Eq. (53) was compared with the hyperelastic model resulting if α = 

0 in Eq. (53). It is notable that the computational time for both hyperelastic and viscoelastic 

material models does not increase proportionally with the number of time steps, likely due to 

a reduction in the required number of Newton-Raphson iterations per time step. Further, 

while the computational cost of the viscoelastic model is larger, this does not lead to a 

significant increase in computational time, with the differences observed being within 

≈16%. Additionally, varying the number of Prony terms does not significantly impact the 

computational time, as seen in Table 7. While increasing N increases the computational 

work, the added cost for residual and matrix calculations is minor relative to the basic 

computational expense for simulating large deformation mechanical systems.

8 Discussion

8.1 Computational cost

The biggest advantage of this Prony based method for approximating Caputo fractional 

derivatives Eq. (12) is computational efficiency. The historical integral required typically 

leads to an accumulating computational cost and demands smaller time steps by introducing 
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nonlinearity into the system in the form of the strain history, thus becoming a heavy burden 

in viscoelastic simulations. The method developed herein allows a bounded storage cost for 

the strain history by an approximation using Prony series. The parameters can be 

precomputed from the a values and are independent of the strain history itself, which only 

leaves the cost of summing over the Prony series at each time step, which is small. The 

number of Prony terms necessary is dependent on the required accuracy of the 

approximation. However, for the example we have tested, six or fewer terms are sufficient 

for a wide range of cases. We find this cost to be only a fraction of the cost of the overall 

simulation, but can reduce the cost of simulating later time steps by several magnitudes. A 

well-bounded cost for the historical integral also removes a limitation on the full duration of 

the simulation, making it applicable to a wider range of applications.

8.2 Accuracy and convergence

The number of terms to use in the Prony-based method (Eq. (12)) is the decision between 

the truncation error, lower-bound for the approximation, and the loss in accuracy at larger Δt 

due to the C(β, τ) term. Increasing the number of Prony terms will lower the resulting 

truncation error at the cost of larger error terms. The Prony-based method has superior 

computational costs and better convergence rates when above the truncation error (Lemma 

1) in comparison to classical non-recursive methods (Fig. 5). It is noted that in some cases, 

the discretization error introduced by the coefficient C(β, τ) (Lemma 2) can cause the 

solution to be initially less accurate at large Δt (Tables 3 and 4). However, this factor remains 

to be small and the savings in the computational cost are much more significant factor. 

Against competing methods such as the Birk and Song method [54], the Prony-based 

method has better convergence for six or more Prony terms or quadrature points and at 

higher α, and is competitive otherwise (Fig. 3) in examples tested.

8.3 Other methods

One common approach to improve the computational efficiency of traditional methods is by 

truncating the historical data. As noted by Diethelm et al. [61], it is typical that the weights 

in fractional derivative approximations exhibit some form of fading memory. For this reason, 

terms in the history are neglected to reduce computational costs. While it is true that terms 

that are further in the past will decay more, and in a way becomes small enough to be 

negligible, the length of the history also will increase. As such, truncation cannot be done 

negligently. For example, for α = 0.3 and if the method presented by Diethelm et al. [61] in 

Eq. (6) is truncated to 12 terms, the sum of the absolute value of the first 12 weights on the 

domain t ∈ [0, 1] is always 1.66353, independent of Δt (assuming Δt < 1/11). In comparison, 

the sum of the remaining weights are 0.16037, 0.248329, 0.292299, and 0.314331 for Δt = 

1e-2, 1e-3, 1e-4 and 1e-5 respectively. The weight of the truncated history actually increases 

faster than the rate of decay due to fading memories. This effect is more significant for lower 

values of α, and thus care must be taken for how the truncation is done. The number of 

terms to keep needs to increase over time, depending on the problem.

Another similar method has been presented by Jiang et al. [91]. The major differences 

between the two methods are: (i) the approximation of the integral in the discretized case 

and (ii) the method of computing the parameters of the Prony series. For the approximation 

Zhang et al. Page 26

Comput Methods Appl Mech Eng. Author manuscript; available in PMC 2021 June 15.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



of the integral, this is largely a choice. However, we do note that in the method of Jiang et al. 

[91], holding the input function constant will still lead to a small but non-zero increase in the 

history terms when the solution should be zero on a stationary pure viscoelastic body. Jiang 

et al.’s method of computing the Prony series parameters [91] is designed with the goal of 

targeting a desired error of the approximation. However, the bounds on the number of terms 

are typically in the hundred for even modest desired error (e.g., 1e-4). The algorithm 

provided by Jiang et al. [92] can reduce this number, but it is still larger than the Prony-

based method. In addition, the algorithm presented select from a list of frequencies based on 

Eigenvalues of the least squares system, which do not necessarily include the optimal 

frequencies. The method presented in this work (Eq. (12)) outputs a desired number of 

Prony terms, which is more desirable for ease of implementation and application.

8.4 Other applications

Although this method is described for the constitutive modeling of viscoelastic materials, 

fractional derivatives have a wide range of other applications. The most common application 

of fractional calculus in the literature is in regard to viscous fluid flows. The parallels to 

viscoelasticity are obvious and its use along with viscoelasticity to solve complex 

biomechanical systems is also very common. Also common is the application of acoustic 

waves traveling through viscous media. Another interesting and useful application is in edge 

detection in image analysis. The use of fractional derivatives can improve thin edge 

detection and tolerance to noises [93]. One other important application is in PID controllers, 

where the feedback loops are on fractional order. An interesting example of this is in path 

tracking of self driving vehicles [94]. Some other common and interesting applications are 

summarized by Dalir and Bashour [95].

8.5 Practical guidance

The cost of computing the parameters of the Prony series can be expensive and are best 

precomputed then imported at the time of use. However, since each of the parameters as a 

function of α is smooth, one method is to generate a set of Prony series parameters for well-

spaced values of α, which can then be interpolated for more specific values of α. Indeed, we 

used this method for the MATLAB and C heart [57] implementations. The number of Prony 

terms to use is quite flexible. N < 4 is not recommended, but six is typically sufficient for 

most problems. Increasing N further will also not significantly negatively impact the 

solution and the computational cost of the problem. It should be noted that due to the 

necessity of approximating the derivative of the function to be uniform for each time 

interval, smaller time steps are necessary for the convergence of the solution in finite 

element simulations. One should choose step sizes such that the derivative is expected to be 

constant. Also, we have found that the velocity is unstable under second-order schemes in 

transient viscoelasticity simulations, but is stable under first-order schemes, as shown in 

Appendix A.

9 Conclusion

In this work we present a novel method for the finite element approximation of fractional 

nonlinear viscoelastic materials. Application of fractional viscoelastic models can present 
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computational challenges, with many methods requiring prohibitive storage and 

computational expense. To overcome these issues, a new approximation to the Caputo 

fractional derivative is introduced, resulting in a fixed storage cost and making the 

computational time scale linearly with the number of time steps. Error estimates are derived 

for this approximation, demonstrating the efficacy of the approximation. Estimates are 

demonstrated to be accurate through numerical examples, where comparable or better 

convergence behaviors with refinement in time are observed compared to current state-of-

the-art methods. The fractional approximation was then introduced into a nonlinear transient 

finite element mechanics implementation. The numerical problem was shown to be 

unconditionally stable for simple linear fractional viscoelasticity, and observed stable for 

nonlinear viscoleasticity through verified numerical examples. The computational cost of 

this fractional derivative implementation is comparable to the standard hyperelastic model, 

despite the historical integral (~16% more), and it was able to accurately approximate the 

solution in all examples considered. This method can significantly simplify the 

implementation of fractional viscoelastic models in general, and provides a pathway for 

applications of viscoelastic soft tissue models for the efficient simulation of complex 

biomechanical systems. While developed in the context of viscoelastic modeling, the Caputo 

approximation introduced has potential applications in solving the many other problems 

involving fractional derivatives.
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Fig. 1. Illustration of spring, dashpot and spring-pot elements used to compose viscoelastic 
models.
Examples include the (A) Maxwell, (B) Kelvin-Voigt, (C) Standard Linear, (D) Generalized 

Maxwell and (E) Fractional Kelvin-Voigt models.
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Fig. 2. 
Illustration of element level discretization for fractional viscoelasticity for Taylor-Hood 

triangular elements. (Left) View of standard mixed ℙ2 – ℙ1 Taylor-Hood triangular finite 

element scheme and corresponding linear (pressure) and quadratic (displacement, velocity) 

nodal Lagrange basis functions. Selection of quadrature used to approximate the viscoelastic 

intermediate variables, Q.
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Fig. 3. 
Examination of the L 2(I) norm error of the truncation error ε for different time intervals, I = 

[0, T]. Each plot shows parameters selected by the optimization approach here and the 

integral approach in Birk and Song [54], for N ∈ {3, 5, 6, 9, 12}.
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Fig. 4. 
Examples of approximating the fractional derivative of a polynomial (with {b 1 … b 8} = 

{2.17, 101.54, -977.47, 3368.61, -5636.44, 4937.49, -2191.59, 398.40}) using the midpoint 

rule versus the Prony-based method with N ∈ {3, 6, 9, 12} terms for (A) α = 0.1, (B) α = 

0.4 and (C) α = 0.8.
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Fig. 5. The convergence of the approximation of the fractional derivative of polynomials when 
using the midpoint rule versus the Prony series for (A) α = 0.1, (B) α = 0.4 and (C) α = 0.8.
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Fig. 6. The solution of the Prony series approximation of the fractional differential equation 
example Eq. (50) with three Prony terms, α = 1/2, Δ x = 1/2500 and Δt = 1/2500.
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Fig. 7. 
The absolute value of the residuals from the Prony series approximation of the fractional 

differential equation example Eq. (50) shown in color with α = 0.5, Δ t = 1/2500, Δ x = 

1/2500, and (A) 3, (B) 6, (C) 9, or (D) 12 Prony terms in the approximation. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article.)
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Fig. 8. 
Convergence of the solution of the fractional diffusion equation with α = 0.3 using the 

Prony-based method Eq. (12) with refinement in time and (A) Δ x = 1/2500, (B) 1/1250 and 

(C) 1/625 versus using the method of Birk and Song [54] with refinement in time and (D)Δx, 

= 1/2500, (E) 1/1250 and (F) 1/625.
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Fig. 9. Comparison of the model and experimental data from Tan et al. [89] at 10% compression 
and 25% shear strain, showing efficacy of the fractional viscoelastic model.
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Fig. 10. Illustration of the FEM solution of the liver model under deformation and shear.
(A) Sample mesh; u2-component of the deformation at (B) compressed state (t = 1s) (C) 

compressed and sheared state (counter-clockwise, t = 1.25 s) (D) compressed and sheared 

state (clockwise, t = 1.75 s); Hydrostatic pressure at (E) compressed state (t = 1s) (F) 

compressed and sheared state (counter-clockwise, t = 1.25 s) (G) compressed and sheared 

state (clockwise, t = 1.75 s); The bottom panels show the force (H) and torque response (I) 

of a sample under compression and shear.
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Table 1

Computational cost of approximating the fractional derivative of the polynomial in Eq. (49) with the midpoint 

rule versus the Prony-based method with N ∈ {3, 6, 9, 12}. Here the time interval for the calculation is [0, 0.9] 

and α = 0.4.

Δt (s) Midpoint (s) Prony (s)

N = 3 N = 6 N = 9 N = 12

1e–4 8.16  0.28 0.27 0.30 0.33

5e–5 29.25  0.53 0.58 0.60 0.61

1e–5 785.14  2.58 2.64 2.87 3.01
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Table 2

Comparing the approximation error for the fractional derivative of polynomials when using the midpoint (MP) 

rule versus the Prony series. Here Δt = 0 denotes the norm, ∥ε∥0, of the truncation error predicted in Lemma 1.

Δt MP GL Prony Birk and Song

N = 3 N = 6 N = 9 N = 12 N = 3 N = 6 N = 9 N = 12

α = 0.1

1e–1 1.84e0 5.24e–1 5.07e–1 5.14e–1 5.14e–1 5.14e–1 4.73e–1 4.95e–1 5.12e–1 5.14e–1

1e–2 2.64e–1 2.86e–2 4.96e–2 1.37e–2 1.49e–2 1.56e–2 2.99e–1 6.78e–2 2.77e–2 1.84e–2

1e–3 2.76e–2 6.64e–3 5.04e–2 2.76e–3 4.45e–4 3.81e–4 3.01e–1 7.42e–2 2.23e–2 7.31e–3

1e–4 2.81e–3 2.35e–3 5.04e–2 2.74e–3 3.03e–4 4.47e–5 3.01e–1 7.46e–2 2.24e–2 6.81e–3

1e–5 2.86e–4 9.19e–4 5.04e–2 2.75e–3 3.13e–4 6.39e–5 3.01e–1 7.46e–2 2.24e–2 6.78e–3

1e–6 2.93e–5 3.92e–4 5.04e–2 2.75e–3 3.14e–4 6.69e–5 3.01e–1 7.46e–2 2.24e–2 6.77e–3

0 – – 5.04e–2 2.75e–3 3.14e–4 6.71e–5 3.01e–1 7.46e–2 2.24e–2 6.77e–3

α = 0.4

1e–1 4.12e0 1.80e0 1.95e0 1.91e0 1.91e0 1.92e0 2.73e0 2.22e0 1.99e0 1.94e0

1e–2 9.12e–1 2.36e–1 2.88e–1 2.25e–1 2.48e–1 2.58e–1 1.23e0 5.25e–1 3.34e–1 3.22e–1

1e–3 1.43e–1 9.34e–2 2.21e–1 1.38e–2 1.08e–2 1.35e–2 1.21e0 4.74e–1 1.63e–1 7.59e–2

1e–4 2.53e–2 6.46e–2 2.21e–1 1.14e–2 2.04e–3 9.88e–4 1.21e0 4.17e–1 1.43e–1 4.39e–2

1e–5 5.27e–3 5.05e–2 2.21e–1 1.17e–2 2.76e–3 1.53e–3 1.21e0 4.12e–1 1.38e–1 4.31e–2

1e–6 1.22e–3 4.42e–2 2.21e–1 1.18e–2 2.90e–3 1.68e–3 1.21e0 4.12e–1 1.37e–1 4.34e–2

0 – – 2.21e–1 1.18e–2 2.92e–3 1.69e–3 1.21e0 4.12e–1 1.37e–1 4.35e–2

α = 0.8

1e–1 1.13e1 8.46e0 8.14e0 8.37e0 8.42e0 8.47e0 8.22e0 9.10e0 9.38e0 9.36e0

1e–2 6.42e0 1.84e0 2.27e0 2.79e0 2.92e0 3.06e0 4.54e0 5.35e0 5.90e0 5.53e0

1e–3 3.54e0 5.66e–1 7.41e–1 3.52e–1 3.86e–1 4.71e–1 4.48e0 2.80e0 3.19e0 3.70e0

1e–4 2.16e0 6.11e–1 6.75e–1 6.67e–2 6.50e–2 6.62e–2 3.98e0 1.71e0 2.41e0 2.07e0

1e–5 1.36e0 1.14e0 6.75e–1 4.34e–2 2.98e–2 2.29e–2 2.85e0 1.70e0 1.13e0 1.42e0

1e–6 8.56e–1 2.58e0 6.75e–1 4.90e–2 3.54e–2 2.76e–2 2.89e0 1.25e0 1.10e0 7.39e–1

0 – – 6.75e–1 4.98e–2 3.64e–2 2.87e–2 2.89e0 8.03e–1 2.63e–1 8.89e–2

Comput Methods Appl Mech Eng. Author manuscript; available in PMC 2021 June 15.



 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Zhang et al. Page 45

Table 3
Reproducing Table 1 from Gao et al. [67] using the Prony-based method Eq. (12) for 
refinement in time with a constant h = 5e–5.

Gao et al. [67] Prony approximation

N = 3 N = 6 N = 9 N = 12

α h Δt E(h, Δt) log2 E(h, Δt) log2 E(h, Δt) log2 E(h, Δt) log2 E(h, Δt) log2

1/2 1/20 000

1/10 8.48e–4 1.41 2.13e–3 1.62 3.33e–3 1.26 3.73e–3 0.96 3.96e–3 0.74

1/20 3.19e–4 1.44 6.94e–4 1.54 1.39e–3 1.73 1.91e–3 1.53 2.36e–3 1.25

1/40 1.17e–4 1.46 2.39e–4 1.03 4.17e–4 1.94 6.64e–4 1.86 9.94e–4 1.73

1/80 4.26e–5 1.47 1.17e–4 0.44 1.09e–4 2.03 1.83e–4 1.98 3.00e–4 1.92

1/160 1.53e–5 1.48 8.60e–5 0.14 2.67e–5 2.21 4.64e–5 2.08 7.92e–5 1.99

1/320 5.49e–6 * 7.82e–5 * 5.79e–6 * 1.10e–5 * 2.00e–5 *

2/3 1/20 000

1/10 1.91e–3 1.26 4.52e–3 1.52 6.78e–3 0.99 7.40e–3 0.72 7.88e–3 0.56

1/20 7.96e–4 1.29 1.58e–3 1.65 3.42e–3 1.58 4.51e–3 1.31 5.33e–3 1.00

1/40 3.25e–4 1.31 5.04e–4 1.31 1.14e–3 1.90 1.82e–3 1.78 2.67e–3 1.59

1/80 1.31e–4 1.32 2.04e–4 0.69 3.07e–4 2.07 5.28e–4 2.01 8.85e–4 1.91

1/160 5.26e–5 1.32 1.26e–4 0.24 7.28e–5 2.53 1.31e–4 2.32 2.35e–4 2.13

1/320 2.10e–5 * 1.07e–4 * 1.26e–5 * 2.64e–5 * 5.36e–5 *
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Table 4
Reproducing Table 2 from Gao et al. [67] using the Prony-based method Eq. (12) for 
refinement in space with a constant Δt = 5e–5.

Gao et al. [67] Prony approximation

N = 3 N = 6 N = 9 N = 12

α h Δt E(h, Δt) log2 E(h, Δt) log2 E(h, Δt) log2 E(h, Δt) log2 E(h, Δt) log2

1/2

1/10

1 /20 000

1.50e–2 2.00 5.95e–3 2.06 6.02e–3 2.01 6.02e–3 2.01 6.01e–3 2.01

1/20 3.75e–3 2.00 1.43e–3 2.22 1.50e–3 2.00 1.50e–3 2.00 1.50e–3 2.00

1/40 9.38e–4 2.00 3.07e–4 3.24 3.75e–4 1.99 3.75e–4 1.99 3.74e–4 2.00

1/80 2.35e–4 2.00 3.25e–5 -0.75 9.47e–5 1.95 9.44e–5 1.96 9.37e–5 2.00

1/160 5.86e–5 * 5.47e–5 * 2.45e–5 * 2.43e–5 * 2.35e–5 *

2/3

1/10

1 /20 000

1.37e–2 1.99 5.67e–3 2.08 5.77e–3 2.00 5.77e–3 2.00 5.77e–3 2.00

1/20 3.44e–3 2.00 1.35e–3 2.31 1.44e–3 1.98 1.44e–3 1.97 1.44e–3 1.98

1/40 8.61e–4 2.00 2.71e–4 3.33 3.66e–4 1.92 3.67e–4 1.90 3.67e–4 1.91

1/80 2.15e–4 2.00 2.68e–5 –1.58 9.67e–5 1.71 9.81e–5 1.66 9.75e–5 1.68

1/160 5.37e–5 * 8.01e–5 * 2.96e–5 * 3.11e–5 * 3.05e–5 *
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Table 5

Comparison of solving speed for the Grunwald-Letnikov (GL) and Prony approximation methods (MATLAB 

implementation). The time results reported correspond to calculations for a single point on the outer edge of 

the cylinder. All methods were run in serial on a DELL PRECISION M4800 quad-core Intel(R) Core(TM) 

i7-4810MQ CPU @ 2.80 GHz.

Δt (s) GL (s) Prony (s)

N = 3 N = 6 N = 9 N = 12

α = 0.2

1e–2 0.029 0.054 0.044 0.051 0.047

5e–3 0.052 0.086 0.093 0.097 0.094

1e–3 0.202 0.406 0.429 0.442 0.561

5e–4 0.492 0.818 0.871 0.890 0.933

1e–4 5.728 4.676 4.169 4.348 4.530

5e–5 17.706 8.392 8.369 8.859 9.088

1e–5 770.569 38.051 37.888 39.370 41.773
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Table 6

Accuracy and convergence of the Prony approximation with Δt and N applied to the ideal analytic solution. 

Percentage errors were measured relative to the GL with a refined time-step size of Δt = 1e-5. The percentage 

errors reported in the table correspond to the L 2(0, T) norm difference in (1,3)-Cauchy stress component 

normalized by the L 2(0, T) norm of the (1,3)-Cauchy stress component predicted by the reference solution.

Δt (s) Prony error (%)

N = 3 N = 6 N = 9 N = 12

1e–2 2.26e0 5.05e–1 6.51e–1 7.01e–1

5e–3 2.06e0 1.52e–1 2.50e–1 3.27e–1

1e–3 2.00e0 1.01e–1 1.30e–2 1.97e–2

5e–4 1.99e0 1.04e–1 8.79e–3 4.86e–3
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Table 7

Comparison of compute times for a hyperelastic and fractional viscoelastic solutions in heart with (left) 

changes in Δt (N = 9) and (right) changes in N (Δt = 1e-3). All times are reported in seconds and based on 

simulations run using 16 cores on a 3.8 GHz Titan A399 AMD RYZEN Threadripper 32 core system.

Model Δt

1e–2 1e–3 1e–4

Hyperelastic 170.43s 672.71s 2899.40s

Viscoelastic 190.24s 669.65s 3365.30s

Viscoelastic

N = 3 N = 6 N = 9 N = 12

655.69s 684.74s 669.65s 677.85s
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