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Abstract

Counting is a fundamental task in biomedical imaging and count is an important biomarker in a 

number of conditions. Estimating the uncertainty in the measurement is thus vital to making 

definite, informed conclusions. In this paper, we first compare a range of existing methods to 

perform counting in medical imaging and suggest ways of deriving predictive intervals from these. 

We then propose and test a method for calculating intervals as an output of a multi-task network. 

These predictive intervals are optimised to be as narrow as possible, while also enclosing a desired 

percentage of the data. We demonstrate the effectiveness of this technique on histopathological 

cell counting and white matter hyperintensity counting. Finally, we offer insight into other areas 

where this technique may apply.

1 Introduction

Counting is a common analysis task required in a wide range of medical imaging 

applications from histology (cell counting) to neuroradiology (lesion counting). For any of 

these clinical biomarkers, accurate quantification of the degree of uncertainty over the 

measurements is of high importance in deciding an appropriate course of action. In this 

paper, we demonstrate an improved method for quantifying the uncertainty for counting 

tasks.

Uncertainty can be broadly broken down into two constituent parts: model and data 

uncertainty. In the context of CNNs, ‘model’ or ‘epistemic’ uncertainty represents the 

uncertainty over the network (weights, hyperparameters, architecture) while ‘data’ or 

‘aleatoric’ uncertainty represents the noise inherently associated with the data (noisy labels, 

measurement noise). Furthermore, out-of-distribution examples are likely to adversely affect 

the performance of machine-learning tools.

Epistemic uncertainty can be assessed through the comparison of several samples obtained 

from stochastic neural networks. If the stochasticity is induced by dropout, the sampling 
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approximates full Bayesian inference [1], which has been employed in image segmentation 

applications [2]. When training deep learning models, the stochasticity inherent in 

minibatching makes it possible to compare different models trained on the same training 

dataset: differing predictions of these models can be attributed to model uncertainty. A 

network can be trained to output diverse predictions from m ‘heads’ [3] coming from a 

common network trunk: the m heads’ differences are, again, due to model uncertainty.

Heteroscedastic models of the noise uncertainty have been used in image super-resolution 

[4] and also exploited for spatially adaptive task loss weighting in multi-task learning [5]. 

However, these parametric methods are restricted to unimodal, symmetric distributions, 

which are not necessarily realistic. Testtime augmentation has been used to perturb the data 

and thus infer the uncertainty from the differences in predictions [6,7]. In these approaches, 

the estimated uncertainty will depend wholly on the model’s lack of invariance to the chosen 

augmentations: this may suggest that the models are undertrained or lacking capacity.

While decomposing errors may be useful, other solutions exist. Predictive Intervals (PIs) 

estimate a lower and upper bound for an observation, such that the observation falls inside 

these bounds some chosen (high) percentage of the time: for a 95% PI, we would expect 95 

of 100 observations to lie within the interval. Pls should satisfy the following properties: (a) 

to be as small as possible, while (b) still enclosing the appropriate fraction of results. This 

can be enforced through the loss function [8]. In this work, we propose an extension of this 

method for application to counting tasks. We first describe different methods to perform 

counting tasks and assess uncertainty over measurements before presenting the loss function. 

We then describe the proposed amendment which is more flexible and stabler to train.

2 Methods

2.1 Uncertainty in Counting

The overall aim of this work is to compute a predictive interval that (a) minimises the 

interval width, whilst (b) ensuring that the interval contains the appropriate percentage of 

results. Here we introduce several techniques to count cells and associated methods to 

calculate predictive intervals. While they present a novel contribution in their own right, 

these methods of counting are introduced here as a baseline against the method proposed in 

Sect. 2.3. These baseline methods do not explicitly regress a predictive interval. Instead, we 

use the multiple outputs from the models (e.g. MC samples or M-heads) to sample 

predictions of count. Although we could simply use percentiles of these results to calculate 

intervals, these perform badly (the true count is often not within the obtained bounds). In 

order to mitigate this issue and introduce a fair comparison, the predictive intervals for each 

method below are calibrated post hoc following [9]: we transform the bounds affinely until 

they encompass a fraction f > 1 – α on the validation data. This transformation is then 

applied to the test-set estimates.

Segmentation-Based—One counting method is to learn a segmentation of the input 

image and use connected-components analysis to determine the number of individual 

objects. To calculate uncertainty, we use three different approaches. We use Monte-Carlo 

samples of a network trained with dropout to produce N segmentation maps, counting the 
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objects for each of the N. Secondly, we measure the number of objects at different 

thresholds of the output confidence map of the network. As the confidence threshold 

increases, fewer pixels will remain in the ‘foreground’ class. Finally, we also use M-heads 

[3], which produces M estimates of the segmentation with one forward pass of the network. 

This method produces a diverse mode-seeking ensemble, so higher variability in the heads 

may indicate that the model is more uncertain of the segmentation. For these methods, our 

target is the segmentation from Fig. 1.

Regressing the Euclidean Distance Transform—Naylor et al. [10] introduced a 

regression-based method for cell counting. Given an input image, the network learns to 

approximate the Euclidean Distance Transform of the cell segmentation maps (see Fig. 1). A 

non-maximum suppression is then used to count the cells. In order to calculate the 

uncertainty of the cell count, we use the MC-sampling paradigm described above, with a 

network with dropout trained.

Regressing the Pixel-Wise Cell Density—One popular technique for counting in 

computer-vision applications is to use a regression formulation to estimate a density-map 

from the raw image: summing over all pixels returns the count [11,12]. The density 

estimation function we use is a convolutional neural network. For these experiments, the 

ground truth density map has value 0 for background, and 1
ni

 otherwise, where ni is the 

number of pixels in the ith object. The network we use to estimate the density is a multi-task 

network with a shared backbone and two ‘heads’. One head learns the segmentation while 

the other learns the density map. For uncertainty estimation, we use the M-heads paradigm 

to introduce variance in the output.

2.2 Distribution-Free Uncertainty Estimation

The previous examples all rely on sampling, followed by post-training calibration step which 

maps the sample uncertainty to the target predictive bounds. Conversely, the authors in [8] 

proposed to regress the predictive intervals directly from the data. They aim to estimate 

lower and upper confidence bounds for a desired quantity y, where bl and bu are the lower 

and upper bounds respectively. The hyper-parameter α determines the desired width of the 

interval: it is defined such that:

(i) p(y ∈ [bl, bu]) = 1 – α, and

(ii) p(y ∈ ⋃{(bu, ∞], [–∞, bl)}) = α.

Common choices for α include 0.10, 0.05 and 0.01, representing 90%, 95% and 99% 

confidence intervals respectively. In the original work, the authors propose a loss function 

LQD to estimate ‘Quality-Driven’, distribution-free predictive intervals. For any given 

datapoint, xi, the model returns bli and bui. For each input Xi we assess whether the observed 

corresponding datapoint yi is in or out of the prediction bounds [bli, bui]. In order to provide 

useful information on the behaviour of the predictive interval estimates over multiple 

examples, the loss function is allowed to reason over an entire minibatch of size n. In this 

setup, an indicator variable is used to express if yi within the predictive interval or not. The 

number of times yi falls within the predictive interval is given by a binomial distribution 

Eaton-Rosen et al. Page 3

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2021 June 22.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Binomial(n, (1 – α)), assuming i.i.d. data, which can be approximated by a normal 

distribution for large n. The loss, LQD, is then defined as the sum of a width term and the 

log-likelihood term.

ℒQD = W captured + λ n
α(1 − α)max 0, 1 − α − q 2

(1)

where Ŵcaptured is the mean interval width for intervals that capture their associated ground 

truth, λ is a constant, n is the number in a batch, and q is the fraction of points that lie within 

their estimated predictive interval bounds.

2.3 Proposed Extension

In practice, we found LQD difficult to optimise. We observed periodic instabilities in the 

training and attributed this, in part, to the one-sided nature of the second term; we sought to 

modify its formulation appropriately. With this in mind, let Ps be a discrete probability 

distribution function representing the probability of being ‘in’ or ‘out’ of the predicted 

interval, where the subscript s denotes ‘state’, i.e. Pin = 1 – α, Punder = α/2 and Pover = α/2. 

For any minibatch, we define the observed proportions of ‘over’, ‘under’ and ‘out’ samples 

as Qs, and use the Kullback-Leibler divergence (KL) to enforce similarities between the 

target P and the observed Q. With this framework, Q could be encouraged to match any 

desired distribution P (for instance, estimating several bounds to correspond to percentiles). 

Note that, in this proposed framework, and contrary to [8], P can represent any chosen 

distribution.

ℒdistribution = KL(P ∥ Q) = ∑
s

Pslog Ps
Qs

= ∑
s

Pslog Ps − Pslog Qs (2)

Since the target distribution P is constant, minimizing Ldistribution is identical to minimising 

the cross-entropy term with respect to the network weights; this means that we are simply 

promoting that the proportion of inliers in a given minibatch matches our desired 

distribution. As this loss function uses the categorical membership of the yi to estimate Q, a 

soft membership function is used to make this operation differentiable and hence suitable for 

back-propagation.

We calculate the proportion inside the bounds as Qin,soft = σ (ξ (y – bl)) ⊙ σ (ξ (bu – y)). 

The minibatch of ground truth counts y is compared with the regressed bounds, bl and bu, 

with σ representing the sigmoid function and ξ being a positive softening constant (set to ξ 
= 2). This formulation of the soft boundaries is as in [8], with the other soft memberships 

(over, under) being set analogously.

Our proposed loss is given by:

ℒproposed = W captured + λ∑
s

Pslog Qs (3)
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In short, instead of using a one-sided data likelihood term, we used the crossentropy 

calculated between the chosen P and Q. This reformulation has not only added flexibility, 

allowing for different state chosen P distributions, but we also found it easier to train than 

the model in Eq. 1.

2.4 Network Architectures and Implementation Details

The U-Net [13] forms the basis of all of our CNNs. The multi-task network has a U-Net 

backbone with the same parameters as for the single-task approaches. It then splits into 

separate branches (one for segmentation and one for density prediction).

For the proposed method of uncertainty prediction, we fit a regression network with three 

output quantities. First, it outputs a ‘predicted count’ which is trained with an L 2 loss. The 

other two quantities are the upper and lower bounds, for a given a. In our experiments we 

choose α = 0.1, making them 90% intervals. The architecture was chosen to have residual 

blocks as part of the arm to avoid vanishing gradients.

Due to the complexity of our network, we train it in stages. First, we train the U-Net part on 

the segmentation and density tasks. We then freeze the weights and train the predictive 

intervals, with a batch size of 64: as discussed, a large batch size to estimate good batch-

wise statistics. In our experiments, we set λ = 30. The auxiliary L 2 loss is set to 1e-3. We 

parametrise the outputs of the network as such: the estimate for the mean value has no final 

activation. The upper and lower residuals go through a softplus activation function and are 

then added or subtracted, as appropriate, to the mean estimate. The segmentation has a 

sigmoid output, and the density a square function. Models are trained with early stopping as 

determined on the validation set, in NiftyNet [14].

2.5 Data

The proposed counting methods are applied to the counting of cells from histological slides 

[10]. This dataset has 33 labelled slides of dimension 512 x 512, taken from 7 different types 

of tissue, and each slide has an associated cell label map used here as the count ground truth. 

We separated this into 7 ‘test’ images (21%), one from each cell type, and 4 ‘validation’ 

images. To have larger batch sizes, we trained on images of size 256 x 256 and hence 

quartered each image while keeping the same fold label. Heavy augmentation is applied to 

the images in the training set (see figures in Supplementary Materials) using the ‘imgaug’ 

library [15].

We also fit to a white-matter hyperintensity (WMH) dataset [16]. In this task, we 

demonstrate a slightly different parameterisation of our bound prediction. We fitted an M-

Heads model to the WMH segmentation and used the same model as a feature extractor to 

train the predictive bounds. In this data, of the 60 subjects, we used an 80/10/10 split for 

training/testing/validation respectively.

3 Results

We show the results in Table 1. All of the models exhibit good performance in counting, 

with the correlation between predicted and GT counts being above 0.8 for all models. The 
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uncalibrated predictive intervals capture anything from 9% to 61% of the data. After 

calibrating these models, many achieved the correct percentage of inliers for the predictive 

intervals. Some (for example, the M-heads density regression with fin = 0.75) did not: this 

may indicate that the calibration methods were overfitting (despite having few parameters—

only an affine transformation). Our model predicted significantly smaller interval widths 

than for the baseline methods for both cells and lesions. While the baseline methods may 

seem to give large bounds, in the cases of cells, there may be a count of over 100 per image 

and in the lesions, up to 35. Because the EDT regression had the lowest MAE, we chose 

another, simple, baseline: we simply had a percentage count as the error. This method 

achieved a width of 18.6, compared to 12.20 (ours) in Fig. 3. It also does not capture the 

desired percentage of inliers, as it is too small. For the model fitted with LQD, we report the 

best results obtained after 3 independent model-fits, as we found the loss was unstable to fit

—however, it still underperformed our proposed loss function.

4 Discussion

The aim of this work was to accurately predict intervals, such that they were of minimal 

width while containing the desired numbers of ground truth values. Our predictive bounds 

were over 20% smaller than the nearest competitor method while retaining the correct 

number of inliers; these smaller bounds are correspondingly more informative. We have 

demonstrated these results on a cell histology dataset and on WM lesions. For the cells, the 

next-best method was applying a constant percentage uncertainty to the counts of the EDT 

regression framework. Fitting this percentage is, in essence, optimising the same loss as we 

applied, but only using the predicted counts (and none of the image features). The fact that 

our model outperforms this baseline implies that the imaging features are being used to 

make an informed estimate of predictive error.

One limitation of this work is that it is not likely to generalise to samples drawn from 

outside of the training distribution. Domain-adaptation methods could help ameliorate this. 

It is also not an interpretable model and hence it would of interest to use model introspection 

methods to investigate how the network decides on its bounds. As the model we have 

presented can, in principle, be applied to any estimate derived from a machine-learning 

model, future work will investigate its applicability to 3D counting problems and a wider 

range of clinical biomarkers.
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Fig. 1. 
An illustrative figure of the cell data. The image has ground-truth labels that we binarise for 

the segmentation targets. The density and Euclidean Distance Transform (EDT) are targets 

for regression.

Eaton-Rosen et al. Page 8

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2021 June 22.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Fig. 2. 
Multi-task architecture for simultaneous segmentation and uncertainty prediction. All 

convolutions are 3 × 3 by the channel width, denoted in the diagram. The U-Net is 

complemented by an ‘arm’ which has residual blocks followed by max-pooling (maintaining 

64 filters) until it reaches the output layer, where it returns an upper and lower bound. 

Dropout is enabled for methods that require MC-sampling where indicated in the diagram, 

with p = 0.5. The bounds are trained with the loss from Eq. 2.
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Fig. 3. 
Here we contrast our model (left) with the model with fitted percentage noise. The points 

represent the ground truths, and the lines represent the upper bound, mean and lower bound 

(note that the lines are for ease of visualisation: the x-axis is not continuous).
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Table 1

CEST is the average estimated count. The ground truth counts were 25.71 for cells and 8.19 for lesions. MAE 

is the mean absolute error, ± standard deviation. ρ is the correlation coefficient between estimated and ground 

truth counts. f is the fraction of the ground truth points within the bounds and W is the mean width of the 

intervals—evaluated on both uncalibrated and calibrated intervals.

Method Paradigm CEST MAE ± STD ρ funcal Wuncal fcal Wcal

Segmentation Thresholds 30.32 6.16 ± 5.43 0.90 0.61 15.33 0.86 23.42

M-Heads 25.14 2.83 ± 3.34 0.95 0.46 2.80 0.96 102.22

MC samples 31.36 6.70 ± 6.37 0.87 0.43 7.25 0.89 27.82

EDT regression MC samples 26.16 2.85 ± 2.03 0.97 0.25 3.00 0.96 48.09

% Errors — — — — — 0.82 18.61

Density regression M-Heads 26.42 3.53 ± 3.12 0.96 0.57 6.42 0.75 15.64

LQD PI-estimate 26.01 3.04 ± 2.82 0.96 — — 1.0 29.31

Ours PI-estimate 26.23 2.93 ± 2.93 0.96 — — 0.93 12.20

Lesions: segmentation M-Heads 6.08 2.89 ± 2.96 0.83 0.09 0.63 0.96 24.1

Ours PI-estimate 6.08 2.89 ± 2.96 0.83 — — 0.89 10.93
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