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Abstract

Common lung diseases are first diagnosed via chest X-rays. Here, we show that a fully automated 

deep-learning pipeline for chest-X-ray-image standardization, lesion visualization and disease 

diagnosis can identify viral pneumonia caused by Coronavirus disease 2019 (COVID-19), assess 

its severity, and discriminate it from other types of pneumonia. The deep-learning system was 

developed by using a heterogeneous multicentre dataset of 145,202 images, and tested 

retrospectively and prospectively with thousands of additional images across four patient cohorts 

and multiple countries. The system generalized across settings, discriminating between viral 

pneumonia, other types of pneumonia and absence of disease with areas under the receiver 

operating characteristic curve (AUCs) of 0.88–0.99, between severe and non-severe COVID-19 

with an AUC of 0.87, and between severe or non-severe COVID-19 pneumonia and other viral and 

non-viral pneumonia with AUCs of 0.82–0.98. In an independent set of 440 chest X-rays, the 

system performed comparably to senior radiologists, and improved the performance of junior 

radiologists. Automated deep-learning systems for the assessment of pneumonia could facilitate 

early intervention and provide clinical-decision support.

The outbreak of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and its 

disease COVID-19, led to a pandemic of the highest concern1–6. The genome of the new 
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virus, the epidemiological and clinical features of the infection have been reported1–4. The 

viral infection frequently presented as an upper respiratory-tract infection or pneumonia 

(COVID-19 pneumonia) that can rapidly progress to acute respiratory failure, multi-organ 

failure, and death. Chest X-ray (CXR) radiography is the mainstay of screening, triaging, 

and diagnosing varieties of pneumonia, including bacterial, viral, and other types of 

pneumonia5–7. During the flu season, viral pneumonia is prevalent, and CXR plays a critical 

role in frontline patient care. Radiologists are aware of certain CXR features that may 

suggest the diagnosis of viral pneumonia; it is multifocal, reflecting the underlying 

pathogenesis, and may induce more rapid alveolar and potentially endothelial damages.

Recent developments in artificial intelligence (AI) have provided new potential opportunities 

for the rapid growth of radiological diagnostic applications8–11. Previous studies have 

proposed the concept of radiomics/imageomics, referring to the extraction of quantitative 

imaging feature information in a high-throughput manner12. The AI model also 

demonstrated general applicability in retinal diseases and childhood diseases with medical 

images, pretrained with data of conventional approaches based on transfer learning13. To 

diagnose common lung and heart diseases based on CXR, AI models using weakly-

supervised classification14, or attention-based convolution neural network15 have also been 

studied.

Although computational methods have been proposed for lung disease detection, there is 

still a lack of a fully automatic analysis pipeline that is robust toward variable CXR image 

conditions and meets the standard of actual clinical application6,16,17. One of the challenges 

is anatomical landmark detection, which plays a vital role in medical image analysis. 

Radiologists routinely align an input image to these landmarks and perform diagnosis and 

quantification18–21. However, most landmark detection methods were developed for facial 

recognition. Today, it remains a challenge to standardize medical images to facilitate the 

downstream diagnostic tasks automatically. Other challenges for the translation of AI 

systems to clinical applications include the lack of the gold standard for clinical evaluation 

and the generalization of the systems to different populations or new settings. Another 

critical obstacle for the medical AI system’s general use is that deep learning algorithms’ 

inner decision-making processes remain opaque, which hinders the translation into clinical 

practice. Therefore, under this unprecedented COVID-19 pandemic, it will be of great 

significance to develop a general AI system for CXR that can give a fast and accurate 

diagnosis and severity assessment of viral pneumonia even before molecular test results are 

available. It is of utmost importance to public health as this system can be deployed quickly 

to healthcare centers to provide the first-line assessment with a quick turn-around time.

Here we aim to develop a comprehensive system to combat the SARS-CoV-2 or any other 

emerging upper respiratory viral pandemic. The shortcoming of CXR images is evident. A 

plain CXR image is the summation of the effect of X-ray on all tissues between the X-ray 

source and the capturing film; tissue structures are less well defined in an X-ray compared to 

a CT image and lack 3-dimensional information. To overcome these shortcomings, we 

integrate multiple state-of-the-art computational methods to construct a robust AI system for 

CXR diagnosis. This CXR diagnostic system detects common thoracic pathologies, 

performs viral pneumonia diagnosis, and differentiates COVID-19 from other viral 
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pneumonia. Technically, our AI system is a modular analysis pipeline consisting of 

automated detection of the anatomical landmarks, lung-lesion segmentation, and pneumonia 

diagnosis prediction, using CXRs as input. In addition, the AI system could assess 

COVID-19 clinical severity based on the proposed CXR lung-lesion segmentation model 

(Fig. 1 and Supplementary Fig. 6).

To develop this AI system, we utilized a large-scale hospital-wide dataset (n=120,702) for 

the detection of common thoracic pathologies and a large multi-center dataset for pneumonia 

analysis. We also explored the deliverability of the AI system. To assess its real-world 

clinical performance and generalizability, we applied the system to external datasets 

collected from different populations from those used for the model training. Furthermore, we 

compared the performance of the system with that of radiologists in routine clinical practice. 

The results showed that the AI’s performance is accurate and robust across multiple 

populations and settings. The system might be integrated into the workflow to improve a 

radiologist’s diagnostic performance.

Results

Image characteristics and system overview

We constructed a large CXR dataset based on the China Consortium of Chest X-ray Image 

Investigation (CC-CXRI) to develop the AI system. The CC-CXRI consisted of two large-

scale datasets: the first one, a CXR database for common thoracic diseases containing 

145,202 CXR images retrospectively collected from the Memorial Hospital of Sun Yat-sen 

University (SYSU), and the second, a CXR dataset (CC-CXRI-P) containing 16,196 CXR 

images for detecting suspicious pneumonia, including COVID-19 pneumonia. In this study, 

a general AI system was developed for identifying common thoracic diseases and 

pneumonia diagnoses and triaging patients using CXR images with an application to 

COVID-19 pneumonia. Our proposed AI system, an automated CXR analysis pipeline, 

consisting of three modules: (1) a CXR standardization module, (2) a common thoracic 

disease detection module, and (3) a final pneumonia analysis module.

The CXR standardization module consisted of anatomical landmarks detection and image 

registration techniques (Fig. 1 and Supplementary Fig. 7). This module was designed to 

overcome the notorious problem and well-known challenges of data diversity/variations and 

non-standardization of CXR images. This study used 12 anatomical landmarks labeled on 

676 CXR images to train the landmark detection model. We implemented and compared 

three deep learning models for the landmark detection, including the U-Net22, fully 

convolutional networks (FCN)23, and DeepLabv324, using a five-fold cross-validation test 

(see more details in Supplementary Methods). DeepLabv3 showed the best performance, so 

we adopted DeepLabv3 for the landmark detection and subsequent analyses (Supplementary 

Fig. 8 and Supplementary Table 3). Supplementary Fig. 9a showed a visualization example 

of our AI model compared with the radiologist’s annotation, which obtained accurate 

landmark detection results. Interestingly, we observed that all three models performed better 

for the right part of landmarks than for the left, probably due to the contrast condition caused 

by the cardiovascular region (Supplementary Fig. 9b).
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The common thoracic disease detection module classified the standardized CXR images into 

14 common thoracic pathologies that are frequently observed and diagnosed, including 

cardiomegaly, consolidation, edema, effusion, emphysema, fibrosis, hernia, infiltration, 

mass, nodule, pleural thickening, pneumonia, and pneumothorax (Table 1).

The pneumonia analysis module that consists of a lung-lesion segmentation model and a 

final classification model estimates the subtype of pneumonia (e.g., viral pneumonia) and 

assesses the severity of COVID-19. We trained the lung-lesion segmentation using 1,016 

CXR images that were manually segmented into four anatomical categories and common 

lesions of opacification (Supplementary Table 4). We implemented and compared the three 

segmentation models. The results showed that DeepLabv3 outperformed both FCN and U-

Net, and its performance was compared to that of manual delineations by radiologists 

(Supplementary Table 5).

The SCR dataset is a public CXR dataset with annotated landmarks for lung segmentation 

(https://www.isi.uu.nl/Research/Databases/SCR/)25,26. We validated our system on this 

database and achieved good performance for landmark detection with a mean of 

5.568(±6.175) mm on the actual physical distance error. As the SCR database was 

established to facilitate studies on anatomical segmentation of CXR images, we also 

validated our lung segmentation model, which showed good accuracy with Dice of 0.954 

and 0.961 for segmentation of the left lung field and right lung field, respectively 

(Supplementary Table 7).

Multi-label classification of common thoracic diseases

Here, a large-scale dataset (SYSU set) from CC-CXRI, which consisted of 120,702 CXR 

images from 92,327 patients with labels of 14 common thoracic pathologies, was used for 

model training. All patients were from hospital visits between October 2018 and July 2020. 

This dataset was randomly partitioned into three subsets with a ratio of 8:1:1 for training, 

validation, and testing, respectively. The images were first analyzed by automated detection 

of anatomical landmarks to permit image registration. Then the standardized CXR images 

were classified into 14 common thoracic pathologies. All 14 labels were common lung 

pathologies extracted from real-world clinical reports for CXR images. As some pathologies 

may co-exist or overlap on the same CXR image, we employed a multi-label classification 

approach instead of a multi-class classification method, where overlaps between labels were 

allowed, and labels were predicted individually before integrated into a final prediction. The 

AI system achieved a macro performance with an area under the receiver operating 

characteristic curve (AUC) of 0.930 on the test set (Supplementary Table 1). Among the 14 

pathologies, pneumonia belongs to the category of pulmonary opacity, which represents the 

pattern of a decrease in the ratio of gas to soft tissue (blood, lung parenchyma, and stroma) 

in the lung. The opacity can be broadly divided into five levels of atelectasis, mass, edema, 

pneumonia, and consolidation, which are vital for the differential diagnosis of pneumonia. 

On the test set, the AI system achieved an AUC of 0.914 for differentiating pneumonia from 

all other groups and an AUC of 0.935 for the overall classification of lung opacity (Fig. 2a).

To evaluate the AI system’s generalizability across various screening settings, we tested it on 

a cohort called SYSU-PE, which consisted of additional 24,500 CXR images from 23,585 
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patients who underwent a routine annual health-check. Compared with the SYSU cohort, 

there were fewer consolidation or edema cases among the SYSU-PE cohort. The results 

showed an over-all AUC of 0.916 for multi-label image classification of commonly 

occurring lung opacity (Fig. 2b). We further applied our AI model to the open public data 

source RSNA Kaggle competition dataset, and the results also show that our method 

achieved good performance for lung opacity detection (Supplementary Fig. 1).

Training of the AI system to identify viral pneumonia

To develop a model to differentiate viral pneumonia from other types of pneumonia and 

absence of pneumonia based on CXR images, we constructed a deep neural network based 

on the DenseNet-12127 architecture. The AI system first standardized an input CXR image 

through anatomical landmark detection and registration before performing lung-lesion 

segmentation and pneumonia diagnosis (Supplementary Fig. 7).

The diagnosis of pneumonia was verified by a positive polymerase chain reaction (PCR) test 

or other laboratory test methods, including culture and staining, which served as the ground 

truth. Medical imaging has been considered part of the diagnostic workup of symptomatic 

subjects with suspected COVID-19 in settings where laboratory testing information was not 

available or results are delayed or initially negative in the presence of symptoms attributable 

to COVID-1928. Here, we adopted the terms “gold-standard labels” or “silver-standard 

labels” to differentiate between the labels obtained from a confirmed laboratory-based 

ground truth versus clinical and radiographic finding based diagnosis by a consensus of 

radiologists29,30. CXR images were classified into three types, viral pneumonia, other 

etiologies/types of pneumonia, and absence of pneumonia (normal). The viral pneumonia 

group consisted of common types of viral pneumonia and COVID-19 patients.

The CXR images in the CC-CXRI-P dataset were all confirmed cases with a definitive 

“gold-standard label” determined by a gold standard viral RT-PCR or other standard 

laboratory diagnostic tests. Among the 16,196 images in the CC-CXRI-P dataset, 4,436 

were viral pneumonia, which included 1,571 COVID-19 pneumonia, 6,282 were other types 

of pneumonia, and 5,478 were absence of pneumonia. To train our AI model to be 

generalizable across different populations and new settings, we purposely included CXRs 

with “silver-standard labels” from the CheXpert for training. The CheXpert dataset is an 

open-source retrospective patient cohort containing mixtures of different types of pneumonia 

and other lung disorders. Our radiologists manually re-graded 13,148 CXR images with a 

label of “pneumonia” and classified them into 2,840 viral pneumonia, 5,309 other types of 

pneumonia, and 4,999 absence of pneumonia. This re-annotated pneumonia dataset is named 

CheXpert-P.

For the model training, we initially trained the AI system with the “golden-standard labels” 

on the subset of 13,158 images from CC-CXRI, and then tested it on an independent test set 

with 1,519 CXR images from the CC-CXRI. The CXR images in CC-CXRI were all 

confirmed with definitive “gold-standard labels” using PCR-based or other standard 

laboratory diagnostic tests. The three-way classification results showed an overall 

performance of an AUC with 0.963 (95% CI: 0.955-0.969) (Supplementary Fig. 10a). Next, 

we added the CheXpert-P dataset with “silver-standard labels” into the training set of CC-
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CXRI. Again, we re-trained the AI model and tested it on the same test set from the CC-

CXRI. The results showed better performance with AUC of 0.977 (95% CI: 0.971-0.982) for 

the three-way classification. Thus, we conclude that including the weak labels or “silver-

standard labels” for training can potentially lead to improved classification performance. 

The improvement is due to the AI model being exposed to different types of images. As a 

result, the AI system differentiated viral pneumonia from the other two groups with 92.94% 

sensitivity, 87.04% specificity, and an AUC of 0.968 (95% CI: 0.957-0.978) (Fig. 3a and 

3b).

To quantify the standardization module’s impact on the diagnostic performance, we 

evaluated the AI system on the test set with the whole module or part of the module skipped. 

The AI system performed poorly without the image registration, lesion segmentation, or 

both (Supplementary Fig. 10b). The whole pipeline demonstrated a statistically significant 

improvement in absolute specificity from 76.2% to 91.1% (permutation test, P < 0.001 for 

superiority) compared to the baseline model (Supplementary Table 8). The results showed 

that with a specific decision threshold, the whole pipeline achieved a significantly higher 

specificity while retaining a sensitivity of 90%. This demonstrated the importance of every 

component of the pipeline to screen patients for suspicious pneumonia.

External validation in multi-country datasets

To test the AI system’s generalizability to various clinical settings, we conducted four 

external validations. The first test was performed on a prospective pilot study in a non-

epidemic area of China with 1,899 CXR images containing 240 viral pneumonia (including 

98 COVID-19 pneumonia), 610 other types of pneumonia, and 1,049 absence of pneumonia 

(normal). The AI system achieved an average of an AUC of 0.941 (95% CI: 0.931-0.952) in 

the three-way classification. For differentiating viral pneumonia from other types of 

pneumonia and normal, it achieved 90.00% sensitivity, 87.40% specificity, and AUC of 

0.947 (95% CI: 0.931-0.962) (Fig. 3c and 3d).

The second external validation was performed on another Chinese population screening 

cohort that included participants in a routine clinical care setting for suspected pneumonia. 

The external test set contains a total of 1,034 CXR images, including 46 viral pneumonia, 

220 other types of pneumonia, and 768 normal (Table 2). The AI model achieved an AUC of 

0.938 (95% CI: 0.922-0.955) in the three-way classification, and 89.13% sensitivity, 93.02% 

specificity, and an AUC of 0.969 (95% CI: 0.943-0.987) (Fig. 3e and 3f), for differentiating 

viral pneumonia from the other two groups.

The third external validation was performed on an international patient cohort from Ecuador 

and other open public data sources comprising a total of 650 CXR images (Table 2). Our AI 

system achieved 0.934 (95% CI: 0.917-0.950) of an AUC for the three-way classification, 

and an AUC of 0.920 (95% CI: 0.891-0.942) for differentiating viral pneumonia from the 

other two groups (Supplementary Fig. 2a).

The fourth external validation was performed on an open public Kaggle-pneumonia dataset 

(https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia). Our AI model 

achieved an AUC of 0.948 (95% CI: 0.943-0.953) for the three-way classification, and an 
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AUC of 0.916 (95% CI: 0.907-0.924) for viral pneumonia detection (Supplementary Fig. 

2b). Overall, these results firmly demonstrated a high-level consistency of our AI system’s 

performance and proved its generalizability.

Potential for triaging of patients with COVID-19

We attempted to use the AI system to identify COVID-19 pneumonia. A total of 17,883 

CXR images, including 1,407 COVID-19 and 5,515 other viral pneumonia, and 10,961 other 

pneumonia from CC-CXRI, were used to train and validate the AI model (Table 2).

We first evaluated the model on a test set with 164 COVID-19 and 630 other pneumonia, 

and obtained an AUC of 0.966 (95% CI: 0.955-0.975), 92.07% sensitivity, and 90.12% 

specificity (Fig. 4a and 4b). A separate, independent dataset containing 164 COVID-19 

pneumonia and 190 other types of viral pneumonia was also used to test the model. The 

results showed an AUC of 0.867 (95% CI: 0.828-0.902), a sensitivity of 82.32%, and a 

specificity of 72.63% (Fig. 4d and 4e). Both results confirmed that the AI system is sensitive 

to subtle lesion information CXRs in triaging COVID-19 pneumonia and differentiating it 

from other pneumonia with reasonable accuracy as a first-line diagnostic tool. We conducted 

additional experiments to differentiate different subgroups of the COVID-19, severe and 

non-severe COVID-19 from other types of viral pneumonia. The results showed that the 

detection of the non-severe COVID-19 had relatively inferior performance than that of the 

severe COVID-19 (Fig. 4c and 4f).

We then tested the AI system on the public BIMCV dataset from the Valencia region of 

Spain31, which includes 663 COVID-19 from BIMCV-COVID19 and 1,277 normal from 

BIMCV-COVID19-PADCHEST. The results showed an AUC of 0.916 (95% CI: 

0.904-0.933) to identify COVID-19 as viral pneumonia and differentiate it from normal. The 

AI without the image registration and lesion segmentation (the baseline model) obtained 

inferior performance with an AUC of 0.856 (95% CI: 0.838-0.876) (Supplementary Fig. 3).

Assessing the clinical severity of COVID-19

We next investigated the feasibility of assessing the severity level of COVID-19 pneumonia 

based on our AI analytic module. We hypothesized that the lung severity could be 

systematically scored by quantifying a CXR image, which we called the severity index 

based on the lung-lesion segmentation. Fig. 5e presents an example of viral pneumonia with 

comparable lung-lesion segmentation by the AI model and human radiologists. Compared to 

human experts, the AI model produced smoother and clearer lesion segmentation boundaries 

with higher accuracy. This showed that our AI system could be used as a visualization/ 

reference tool to highlight the lesion areas for radiologists.

The CXR severity index was determined as follows. Each CXR image was divided into 12 

sections defined horizontally by four anatomical categories (lung field, and periphery of the 

lung field) and vertically by the vertebral column (Supplementary Fig. 4a). Each section was 

assigned an opacity score from 0 to 4 by a group of trained radiologists, based on the 

section’s percentage with lung lesions. The 1,207 CXR images of the COVID-19 patients 

were also graded manually with the CXR severity index by radiologists. We evaluated the 

association between the severity scores by radiologists and by the AI model based on the 
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quantification of the CXR images. The severity index graded by human radiologists and the 

AI reviewer showed a strong linear relationship, with a Pearson correlation coefficient 

(PCC) of 0.81 and a mean absolute error (MAE) of 8.64 (Fig. 5a). Bland-Altman plot 

showed a good agreement between the AI model and the human reviewers with an intraclass 

correlation coefficient (ICC) of 0.68 (95% CI: 0.60-0.74), while the agreement between 

radiologists’ evaluation achieved an ICC of 0.73 (95% CI: 0.64-0.81) (Fig. 5b).

We further hypothesized that the severity index used in a chest radiograph is correlated with 

the severity of clinical outcomes. The severe level of a respiratory distress state in the 

clinical setting was defined by blood oxygen saturation < 92%, respiratory rate < 36, or 

PO2/FiO2 < 300 mmHg. It usually corresponded to diffuse interstitial pneumonia, which 

obscured normal lung markings32. A total of 1,207 CXRs were manually graded based on 

clinical diagnoses and classified into 437 severe and 770 non-severe labels. Then we used 

the severity index scores by the AI model and the radiologist reviewers as an input of a 

logistic regression model to generate clinical severity prediction (see more details in 

Methods). The results showed that our AI system could predict the COVID-19 pneumonia 

severity with an AUC of 0.868 (95% CI: 0.816-0.915), a specificity of 80.65%, and a 

sensitivity of 82.05% (Fig. 5c), whereas the human radiologists achieved a comparable AUC 

of 0.832 (95% CI: 0.782-0.885) with a specificity of 74.84% and a sensitivity of 79.49% 

(Fig. 5c and Supplementary Fig. 4). The results demonstrated that the analytic pipeline could 

also aid in predicting the severity of COVID-19 pneumonia.

The AI system versus radiologist performance study

An independent test set of 440 CXR images was used to compare the AI system’s 

performance against practicing radiologists in classifying viral pneumonia, other types of 

pneumonia, and normal. A total of eight radiologists with different levels of clinical 

experience were enrolled to participate in this study: four junior radiologists with over 10 

years of experience and four senior radiologists with over 20 years of experience. The 

ground truth was determined by positive molecular test results together with the CXR 

findings verified by another independent group of 3 senior radiologists.

The performance was evaluated by the AUC and the sensitivity/specificity (Fig. 6a and 

Supplementary Table 6). The AI system achieved comparable performance to the senior 

radiologists’ level with an AUC of 0.981 (95% CI: 0.970-0.990) for the viral pneumonia 

diagnosis. The operating point, selected from the validation dataset, generated better 

sensitivity (P < 0.001) and comparable specificity than the average junior radiologists 

(Supplementary Table 6).

One of our AI system’s objectives is to investigate whether it could assist junior radiologists 

in improving their diagnostic performance. In this experiment, four junior radiologists 

performed their initial diagnosis, and two weeks later, they were given the diagnosis 

probability provided by our AI system and asked to repeat the image grading without 

providing any other prior information. Weighted error, which was calculated based on a 

penalty score system, was employed as a metric to evaluate and compare the performance of 

our AI system and the practicing radiologists. The junior radiologists’ performance with the 
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AI assistance yielded an average weighted error of 9.82%, a significant improvement (P < 

0.001) compared to that of 27.44% without the AI assistance (Fig. 6b).

We also explored the AI system’s potential role in enhancing diagnostic performance by 

radiologists in the workflow. In this simulated scenario, a specific diagnosis was made by 

two radiologist readers (see more details in Methods). When there was a disagreement, an 

“arbitrator” was involved in reaching a decision. The average weighted error was 20.11% 

when taking a consensus diagnostic decision by the radiologist group. In comparison, when 

the AI system acted as an “arbitrator”, the error was reduced to 16.65%, and when the AI 

system acted as a second reader, it was further reduced to 7.08% (Fig. 6c). These results 

demonstrated that the AI system could improve radiologists’ performance and reduce 

imaging reading workload. The details of the ROC curves and confusion matrices of the 

eight radiologists’ performance were given in the Supplementary Fig. 5.

Discussion

This study showed a few crucial points. First, despite the limitation of a plain CXR image, 

an accurate AI system can assist radiologists in identifying viral pneumonia and COVID-19 

accurately, showing that it can be used as a frontline tool in an emergency clinic, remote 

places, or the developing world. A noteworthy feature of the AI system is that the modular 

processing pipeline, including anatomical landmark detection, registration, lung-lesion 

segmentation, and diagnosis prediction, provided robust and explainable results. Second, this 

AI system can help junior radiologists to perform close to the level of senior radiologists. 

Finally, this system can differentiate COVID-19 from other types of viral pneumonia with 

reasonable accuracy. The AI system can also accurately determine the severity of the lesions 

in patients with established COVID-19. Overall, this diagnostic tool can assist radiologists in 

managing COVID-19 cases.

A rapid diagnosis of viral pneumonia with high suspicion of COVID-19 is an important first 

step for clinical management. A positive result should trigger a molecular viral test for 

SARS-CoV-2, sending the patient to an infectious disease unit with isolation. If confirmed, 

contact tracing should be initiated quickly. The patient may then receive CT imaging with an 

AI-based system or CT analysis that is accurate in providing a more detailed description of 

lesion pathologies33. However, the chest CT scan is not a front-line tool, as it takes more 

time to conduct, is more expensive, and is not readily available in remote places, thereby 

limiting its application in the general population. In contrast, CXR is a front-line tool with a 

quick turn-around time and could be used more conveniently in an intensive care setting.

The optimal use of the AI system to improve the clinical workflow remains to be explored. 

Pneumonia fundamentally is a clinical diagnosis, and in suspected COVID-19, RT-PCR is 

the reference gold standard. However, due to high rates of false-negative test results for 

SARS-CoV-2 PCR testing by nasal swab sampling, imaging findings may also be used to 

make a presumptive diagnosis. Previous studies indicated that CXR images contained 

specific differences in imaging findings between viral pneumonia and bacterial pneumonia. 

These differential or subtle features can be detected by the AI system, yet are beyond 

clinicians’ observational ability and comprehension. The specificity advantage exhibited by 
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the AI system suggests that it could help to reduce the false-negative rate of PCR testing. 

Taken together, CXR has been considered as part of the diagnostic workup of symptomatic 

subjects with suspected COVID-19 in settings where laboratory testing (RT-PCR) is not 

available or results are delayed or initially negative in the presence of apparent symptoms 

attributable to COVID-1928. Such workflow could help healthcare/hospital administrators 

plan and make an informed decision on resource allocation during an epidemic/pandemic.

Although there are published studies that used AI in diagnosing pneumonia, the actual 

clinical applicability remains unknown since they have not been shown to be free of 

experimental data bias, and they have not been tested by the peer-reviewed gold standard 

labels and by external data in different populations and new clinical settings to show 

generalizability. In this paper, we explored the general applicability of the current AI system. 

We first trained our AI system using large, heterogenous, multi-center datasets. Then we 

present evidence of the ability of the AI system to translate between different populations 

and settings. In particular, we trained a model to detect common thoracic diseases on 

patients coming for hospital visits (SYSU set), and then measured performance on 

populations coming for physical examination (SYSU-PE set). Compared with the training 

set, the external validation set represented populations with less chest pathology. In this 

context, the system continued to achieve accurate performance. This practice is rare in the 

current literature.

Notably, the AI system can also assist in the assessment of patient severity. This is 

particularly important in the intensive care setting or when resources are stretched, as CXR 

imaging is much easier to perform than a chest CT scan. As a monitoring tool, it will assist 

the intensive care physicians in assessing patients more comprehensively. In addition, the 

CXR severity index that is automatically scored by the AI model can be used to assess 

patients’ risk level of complications and mortality, leading to earlier detection, intervention, 

and treatment of high-risk patients with COVID-19.

Despite these potential advantages, it is critical to emphasize that this AI system is an 

assistant to radiologists for diagnosis. A comprehensive analysis of all other clinical and 

laboratory information is necessary for an accurate diagnosis. Our demonstration that this AI 

system improved the junior radiologists’ performance proved the benefit of integrating it 

into radiologists’ current workflow. This integration can be crucial during a pandemic, like 

the current COVID-19 situation when resources are stretched thinly. Our AI system’s ability 

to recognize features in the diffuse pattern of lung involvement, which is relatively common 

among viral diagnostics but difficult to discern by radiologists, may represent an advantage 

offered by the AI system.

Our study has several limitations, which we hope to address in the future. First, since the AI 

system was trained in a population where more than 90% are symptomatic patients with 

abnormal imaging findings, its ability for diagnosing very early COVID-19 cases will need 

to be validated. Although our AI system achieved good performance with an AUC of 0.901 

when evaluated on patients with no apparent findings versus normal x-ray images (using the 

test set of CC-CXRI), further training with more non-evident COVID-19 cases is necessary 

to establish its clinical utility in a broad range of populations. Another limitation is its ability 
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to differentiate COVDI-19 from non-focal (diffuse) acute respiratory distress syndrome 

(ARDS). However, ARDS is a crucial acute condition with associated pulmonary edema; 

therefore, by additional clinical findings or laboratory testing, it can be differentiated from 

severe COVID-19.

Finally, this study demonstrated an AI system’s value in assisting medical professionals for 

rapid and accurate diagnoses of pneumonia in a pandemic. Future refinement and 

improvement will expand its use into diagnostic assessments of other common and routine 

lung disorders such as tuberculosis and malignancies.

Methods

Images from human subjects

CXR images were extracted from the China Consortium of Chest X-ray Image Investigation 

(CC-CXRI) data, which were collected from multiple hospitals, including Sun Yat-sen 

Memorial Hospital and the Third Affiliated Hospital, both affiliated with Sun Yat-sen 

University, West China Hospital, Guangzhou Medical University First Affiliated Hospital, 

Nanjing People’s Hospital, the First affiliated hospital of Anhui Medical University, and 

Yichang Central People’s Hospital. All CXRs were collected as part of the patients’ routine 

clinical care. For the analysis of CXR images, all radiographs were first de-identified to 

remove any patient-related information. The CC-CXRI images consisted of both anterior-

posterior view and posterior-anterior view of CXR images. There are two sets of data in CC-

CXRI: a large-scale dataset for common thoracic disease detection from the Sun Yat-sen 

University Hospital System (the SYSU set), and a pneumonia assessment survey (CC-

CXRI-P). COVID-19 diagnosis was given when a patient had pneumonia with a confirmed 

viral reverse-transcriptase-PCR test. The other types of pneumonia were diagnosed based on 

standard clinical, radiological, or culture/molecular assay results (Supplementary Table 9). 

Institutional Review Board (IRB)/Ethics Committee approvals were obtained from the Sun 

Yat-sen University Memorial Hospital, West China Hospital, and all patients signed a 

consent form. The work was conducted in a manner compliant with the United States Health 

Insurance Portability and Accountability Act (HIPAA). It was adherent to the tenets of the 

Declaration of Helsinki and in compliance with the Chinese CDC policy on reportable 

infectious diseases and the Chinese Health and Quarantine Law.

CXR dataset construction of common thoracic diseases

We constructed CXR datasets for the development and evaluation of the AI model for 

common thoracic diseases. We used an NLP pipeline to extract disease labels from clinical 

reports for CXR images. The pipeline included disease concept detection and negation 

classification, similar to CheXpert34 and NIH Chest X-ray dataset35 (please see more details 

in Supplementary Methods).

We selected fourteen common thoracic diseases according to their clinical significance and 

prevalence, as defined based on the ICD-10 and the NIH Chest X-ray dataset35. They were 

extracted from real-world clinical reports for corresponding CXR images, and each label 

comes with both the localization of the critical finding and the classification of common 
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thoracic diseases that can be revealed by the CXR image. These disease labels included 

atelectasis, cardiomegaly, consolidation, edema, effusion, emphysema, fibrosis, hernia, 

infiltration, nodule, mass, pleural thickening, pneumonia, and pneumothorax. We also 

defined another label of “No finding” that is positive if and only if all other labels of a CXR 

image are negative. Thus, each CXR image in the dataset was annotated by the presence or 

absence of the fifteen labels.

Two datasets were constructed. The SYSU dataset is composed of 120,702 CXR images 

from 92,327 patients between October 2018 and July 2020 in both inpatient and outpatient 

centers. The SYSU-PE dataset is comprised of 24,500 CXR images from 23,585 patients 

coming for the health check. The SYSU dataset is used for model development and internal 

validation, and the SYSU-PE dataset is used for external validation. The labels of the 

validation data were manually reviewed for a reliable evaluation.

Silver-standard labels of pneumonia

Previous works suggested specific differences in CXR imaging findings between viral 

pneumonia and bacterial pneumonia. Thus, imaging has been considered part of the 

diagnostic workup of symptomatic subjects with suspected COVID-19 in settings where the 

laboratory testing (RT-PCR) is not available or results are delayed or initially negative in the 

presence of symptoms attributable to COVID-1928.

In this study, we manually curated CheXpert to expand the dataset for training. The 

CheXpert dataset is a public dataset containing 224,316 CXR images from 65,240 patients. 

Each image was labeled with the presence or absence of each of 14 common chest 

radiographic observations. The original CXR images were only given a general diagnosis of 

pneumonia without a detailed label of viral pneumonia or other types of pneumonia. Here, 

we considered the manually graded image as a silver standard, contrasting with the ground 

truth gold-standard labels discussed below. A total of 15 radiologists with over 10 years of 

clinical experience manually reviewed and graded a subset of CheXpert with pneumonia 

labels. They labeled them with viral pneumonia, other types of pneumonia (including 

bacterial pneumonia and mycoplasma pneumonia), and absence of pneumonia (normal). 

Next, 20% of their results in the dataset were checked and validated by a group of five 

independent senior radiologists, each with over 20 years of clinical experience. In case of 

inconsistency, the expert consensus was used to correct labels. A total of 13,148 CXR 

images from CheXpert were re-labeled into three categories: 2,840 viral pneumonia, 5,309 

other types of pneumonia, and 4,999 normal CXRs. We named this re-annotated dataset as 

CheXpert-P and treated it as a “silver-standard label” dataset for training.

Gold-standard labels and ground truth of pneumonia

All CXR images from the CC-CXRI dataset had definitive diagnosis determined by the gold 

standard PCR-based / standard laboratory diagnosis; each CXR image was given a specific 

and definitive diagnosis of COVID-19 pneumonia, other viral, or bacterial pneumonia. The 

above laboratory test results serve as ground-truth for the data used for validation. More 

specifically, the CC-CXRI dataset consists of 4,436 viral pneumonia (including 1,571 

COVID-19 pneumonia), 6,282 other types of pneumonia, and 5,478 normal CXRs. We used 
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the CC-CXRI for model development and testing. Specifically, patients were randomly 

assigned for training (80%), validation (10%), or testing (10%) (Table 1).

Quality control of image labels of CXR

For all CXRs for validation/testing, each image went through a tiered grading system 

consisting of two layers of trained graders of increasing expertise for verification and 

correction of image labels. Each image imported into the database started with a label 

matching the diagnosis of the patient. This first tier of graders conducted initial quality 

control of the image labels to exclude unreadable images, including those missing the whole 

bilateral lungs or with metal artifacts. The second tier of five senior independent radiologists 

read and verified the true labels for each image. In case of disagreement, an expert of 

consensus was used to correct the labels. The resulting labels serve as the ground truth for 

the evaluation dataset.

Annotation of landmarks and lung-lesion segmentation on CXR

We used 676 manually annotated CXR images from viral pneumonia, other pneumonia, and 

normal subjects for training the anatomical landmark determination. Twelve anatomical 

landmarks were labeled on each CXR image: midpoint of clavicle left (MCL) and right 

(MCR), sternal end of clavicle left (SECL) and right (SECR), hilar angle left (HAL) and 

right (HAR), costophrenic angle left (CAL) and right (CAR), diaphragmatic dome left 

(DDL) and right (DDR), cardiac diaphragmatic angle left (CDAL) and right (CDAR).

We manually segmented 1,016 CXR images at the pixel level to train and evaluate our 

semantic segmentation model. Among these CXR images, 228 were from patients with viral 

pneumonia (including 121 COVID-19 pneumonia patients), 1,163 from patients with 

bacterial pneumonia, 187 from patients with other types of pneumonia, and 438 from normal 

subjects. The annotation was done via polygons. The lung segmentation labels included lung 

field (left), the periphery of the lung field (left), lung field (right), the periphery of the lung 

field (right). The lesion segmentation labels consisted of two classes: opacification and 

interstitial pattern, which were relevant pneumonia lesion features. The segmentations were 

annotated and reviewed by five senior radiologists. A five-fold cross-validation test was 

applied for the landmark detection and lung-lesion segmentation.

Performance comparisons with radiologists

To evaluate the performance in classifying the three types of pneumonia, we constructed an 

independent validation set of 440 CXR images, including 160 viral pneumonia, 160 other 

types of pneumonia, and 120 normal cases. We used this set to compare the performance of 

our AI system and the diagnosis of the radiologists. A weighted error scoring was employed 

to consider that a false negative result (failing to refer to a viral pneumonia case) is more 

detrimental than a false positive result (making a referral when it was not warranted). 

Predicted errors based on a weighted penalty table were used to compute a metric to evaluate 

and compare performance between the AI system and the radiologists. We weighted the 

misidentification of a “viral pneumonia” as “normal” with an error score of 2, which is 

larger than the score of 1 for the misidentification of the other two groups (Supplementary 
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Fig. 5f). This is because if a patient with COVID-19 or other viral pneumonia is mis-triaged 

to normal, this may cause the spread of the disease.

We conducted a simulation study in which the AI system was deployed firstly as a “second 

reader” and secondly an “arbitrator” of radiologists’ diagnostic decisions. As for the role of 

a second reader, we used a junior radiologist as the first reader and the AI system as the 

second reader. Whenever there existed a disagreement, the opinion of the senior reader was 

introduced. We also simulated the scenario in which the AI system acted as an “arbitrator” 

by using human radiologists as the first and second readers and the opinion of the AI as a 

final reader. The weighted error was also calculated. The performance of the AI system was 

compared with that of the radiologists based on AUC curves, sensitivity, and specificity. The 

operating point of the AI system was chosen based on the separate validation set. For the 

statistical significance of the comparison results, we computed confidence intervals and P-

values using 1,000 random re-samplings (bootstraps).

Transfer learning and deep learning

We trained our AI model using a large number of CXR images from three public datasets, 

CheXpert dataset36, MIMIC-CXR dataset37, and NIH Chest X-ray dataset14.

Transfer learning was adopted by pretraining a DenseNet-121 model27 for the CXR image 

classification. The DenseNet-121 architecture has proven to be effective for CXR 

classification tasks36. The convolutional layers were fine-tuned when transferring to other 

tasks, while the fully connected layer was trained from scratch. The number of the outputs 

was also modified in the last fully connected layer to adapt to the appropriate classification 

task. The softmax operation was used for the classification tasks. For data augmentation, 

each CXR image is transformed through geometric transformations (such as scale and 

translation) and changes in contrast and saturation. Four DenseNet-121 models were trained 

separately to classify common chest diseases, identify pneumonia conditions, differentiate 

viral pneumonia from other types of pneumonia, triage COVID-19 from other types of viral 

pneumonia, and predict the severity level of COVID-19 patients. The input CXR images 

were resized to 512×512 by bilinear interpolation.

We employed the cross-entropy loss function and adopted an Adam optimizer38 for training, 

with a learning rate of 0.003, and the batch size was set to 32. All deep learning models were 

implemented with Pytorch 1.439. A validation set was used for early-stopping with a 

patience of 10 to avoid overfitting. The model with the best validation loss was finally 

selected. All training, validation, and testing procedures were conducted on NVIDIA 

GeForce 1080Ti graphical processing units.

Overview of the AI system

Our proposed AI system applied a modular pipeline approach, which consisted of three main 

components: a CXR standardization module, a common thoracic disease detection module, 

and a pneumonia analysis module. A detailed description of the AI system is available in the 

Supplementary Methods.

Wang et al. Page 14

Nat Biomed Eng. Author manuscript; available in PMC 2021 October 15.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



The CXR standardization module performs invert-grayscale CXR40 detection, anatomical 

landmarks detection, and CXR image registration in this study. We first trained an invert-

grayscale CXR detection model to detect whether the input of CXR was inverted-grayscale, 

and if so, the system automatedly converted it into a conventional CXR. After that, the 

anatomical landmark detection model performs the detection of landmarks of the CXR. 

Based on detected landmarks, we generated a registered CXR image via the image 

registration algorithm. These components were specially designed to address the common 

problems encountered in computer-aided detection with CXR: variations/inconsistency of 

the radiographs due to orientation, distance, and the difference in imaging pathology area, 

breathing movement, and spatial alignment. These registered CXR images were used as the 

input to the model for disease classification or severity prediction.

The common thoracic disease detection module was developed for chest disease detection. 

As some pathologies may co-exist or overlap on the same CXR image, we employed a 

multi-label classification approach that could predict multiple categories at the same time 

and thus is more suitable for clinical settings where combinations or simultaneous 

occurrences of the categories often exist. Using the standardized CXR images, we trained a 

multi-label classification model with fifteen binary classifications, including fourteen 

disease labels and one no-finding label. The number of the output scalars was fifteen with a 

sigmoid activate function. For the scenario of opacity detection, the case is defined positive 

if at least one label of atelectasis, mass, edema, pneumonia, and consolidation is present. 

The predicted probability of opacity was composited by averaging over outputs of 

atelectasis, mass, edema, pneumonia, and consolidation.

The pneumonia analysis module is a two-stage architecture for pneumonia for identifying 

the subtype of pneumonia, predicting the presence and absence of COVID-19, and assessing 

the severity of COVID-19. In the first stage, a lung-lesion segmentation module identifies 

suspicious regions in the segmented lung region. The networks were trained sequentially: the 

lung segmentation network was trained using the registered CXR images as inputs, and then 

extracted lung regions were used to train the lesion segmentation network. Since the raw 

CXR images may contain irrelevant information for lesion segmentation (e.g. body parts not 

related to the lungs), a lung segmentation network was trained to discard such information 

so that the lesion segmentation network can concentrate on the lung area. Next, the 

diagnostic model, a neural network classifier, made a prediction based on the previous 

models’ outputs, namely the anatomical landmark detection model, the lung segmentation 

model.

To design the classifier, we conducted experiments to compare the multi-channel model with 

the single-channel model. The results showed that the multi-channel model had better 

performance (Supplementary Fig. 11).

Classification of severity levels

We investigated how to score the CXR images to quantify the severity of lung opacity and 

then investigated whether this CXR severity score is associated with the clinical severity of 

COVID-19 patients. The clinical severity level is a clinical diagnosis of a respiratory distress 

state: blood oxygen saturation < 92%; respiratory rate < 36, or PO2/FiO2 < 300 mmHg. It 
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usually corresponds to diffuse interstitial pneumonia, which obscures normal lung 

markings32. For the analysis of the severity of COVID-19 pneumonia patients, a total of 

1,207 CXR images were manually graded, resulting in 437 images with “severe” labels and 

770 images with “non-severe” labels.

We first calculated the CXR severity index by dividing CXR images into 12 sections. The 12 

sections were defined horizontally by the four anatomical parts (including the lung fields 

and periphery of the lung fields) and vertically by the vertebral column (Supplementary Fig. 

4). Each section was assigned a severity index from 0 to 4 to quantify the extent of opacity 

by radiologists (corresponding to <1, 1-25, 25-50, 50-75, 75-100, respectively), whereas the 

AI system automatedly segmented the lung-lesion and quantified the CXR image’s severity. 

Each CXR image of 1,027 COVID-19 patients was given a severity score by a group of 

radiologists based on the above definition. To evaluate the association between the AI model 

and radiologists for scoring the CXR severity, we calculated Mean Absolute Error (MAE) 

and Pearson Correlation Coefficient (PCC). Bland-Altman plot41 and Intraclass Correlation 

Coefficient (ICC) were also used for assessing agreement between the AI reviewer and 

radiologists. We further associated the CXR severity index with clinical outcomes. Instead of 

directly using the final CXR index, we predicted the clinical severity by using all 12 

sections’ scores as input features and adopted the logistic regression as the classification 

model. An ROC curve and a confusion table were then generated.

Operating point selection

An AI system for pneumonia diagnosis was proposed to produce a probability score for each 

class. For different clinical applications, the operating point can be set differently to 

compromise between the true positive rate (TPR) and the false-positive rate (FPR) 

(Supplementary Table 2).

Statistical analysis

An ROC analysis and AUC were employed to assess model performance for each 

classification task. For multi-class tasks, the macro-average of ROC and AUC were used as 

the metrics for each class. The ROC curves were plotted by using the true positive rate 

(sensitivity) versus the false positive rate (1 – specificity) under different decision 

thresholds. For a given ROC curve TPR=f(FPR), where FPR∈[0,1], the AUC is defined as: 

AUC = ∫0

1
f(x)dx. Normalized confusion matrices were used to illustrate the classification 

results. To evaluate the models’ and experts’ performance, the weighted error was calculated 

by weighting the error of the i-th class being predicted by the j-th class by a defined weight 

matrix. We evaluated the landmark detection’s performance on our annotated dataset using 

two evaluation metrics, normalized distance error and successful detection rate. 

Furthermore, we evaluated landmark detection performance on the external dataset SCR 

using two additional metrics, pixel distance error and physical distance error. The 

normalized distance error is defined as the distance between the predicted normalized 

coordinates and the normalized true coordinates, where original coordinates are normalized 

with x and y divided by the width and the height of the image, respectively. The successful 

detection rate (SRD) is defined as the number of accurate detections versus the total number 
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of detections, where an accurate detection is a prediction with a margin error less than or 

equal to a specified threshold. Physical distance errors were reported when the pixel size was 

known (e.g. 0.175mm pixel size on the SCR dataset). We evaluated the segmentation 

model’s performance with two evaluation metrics, including Intersection over Union (IOU) 

and Dice Coefficient (DC). The IOU is the area of the overlap between the predicted 

segmentation and the ground truth divided by the area of the union. The DC is twice the area 

of the overlap between the predicted segmentation and the ground truth divided by the sum 

of the areas of the predicted segmentation and the ground truth.

A bootstrapping strategy (1,000 random re-sampling) was adopted to analyze the confidence 

intervals (CI) of AUC. The empirical distribution of the test dataset was used to approximate 

the data distribution and draw n samples from the empirical distribution (n is the size of the 

test dataset) to calculate an AUC. Repeating such an operation yields the sampling 

distribution of AUC, from which the CI of AUC was calculated. The shortest two-side 95% 

CIs of AUC were reported for each experiment. P values for sensitivity, specificity and 

weighted-error comparisons were generated through a two-sided permutation test of 10,000 

random re-samplings. The ROC curves and confusion matrices were generated using the 

Python scikit-learn library and plotted with the Python matplotlib and seaborn libraries. The 

measures of sensitivity, specificity, and accuracy were calculated using the Python scikit-

learn library.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. The AI system for the detection of viral pneumonia.
a, Model development of the AI system. The system included a pipeline consisting of a 

CXR standardization module, a common chest thoracic disease detection module, and a 

pneumonia analysis module. The pneumonia analysis module consisted of viral pneumonia 

classification, COVID-19 detection, and COVID-19 severity assessment. b, Application and 

evaluation of the AI system. Left panel: An AI system was trained to identify the presence 

and absence of 14 common thoracic pathologies, and its performance was evaluated in 

external validation cohorts. Middle panel: In training with the Chinese cohort (CC-CXRI-P) 

and the re-annotated public dataset (CheXpert-P), the AI system made a diagnosis of viral 

pneumonia (including COVID-19 pneumonia). The model was then tested on external 

cohorts to assess the AI system’s generalizability. Right panel: the performance of the AI 

system was compared with the performances of radiologists and with the performance of the 

combination of human and machine intelligence.

Wang et al. Page 22

Nat Biomed Eng. Author manuscript; available in PMC 2021 October 15.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Fig. 2. Performance of the AI system in the multi-label classification of common chest diseases 
encompassing opacity.
Receiver operating characteristic curves (ROC) and normalized confusion matrices of the 

classification model. Opacity included atelectasis, mass, edema, pneumonia, and 

consolidation. a, The AI system’s performance on the hold-out test dataset. b, The AI 

system’s performance on the external validation cohorts that represent the population for 

physical examination. Compared with the patient distribution from a, there existed merely 

edema, and consolidation.
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Fig. 3. Performance of the AI system in the discrimination of viral pneumonia, other types of 
pneumonia, and absence of pneumonia, from CXR images.
Receiver operating characteristic curves (ROC) and normalized confusion matrices of the 

classification model. a and b, AI system’s performance on the hold-out test dataset. c and d, 

The AI system’s performance on the independent external validation data in the China 

cohort. For the three-way classification. e and f, The AI system’s performance on the 

external validation set for subjects screening for suspicious pneumonia. CI, confidence 

interval.
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Fig. 4. Performance of the AI system in the identification of COVID-19 pneumonia from CXR 
images.
ROC curves and normalized confusion matrices for binary classification. a and b, The AI 

system’s performance on differentiating COVID-19 pneumonia from others (e.g., bacterial 

pneumonia) on test dataset: AUC = 0.966 (95% CI: 0.955-0.975), sensitivity = 92.07%, 

specificity = 90.12%. d and e, The AI system’s performance on differentiating COVID-19 

pneumonia from other viral pneumonia (OVP) on the test dataset: AUC = 0.867 (95% CI: 

0.828-0.902), sensitivity = 82.32%, specificity = 72.63%. c and f, ROC curves showing the 

AI system’s performance on identifying severe or non-severe COVID-19 from others 

pneumonia (c) (e.g., bacterial pneumonia) and other types of viral pneumonia (f).
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Fig. 5. Severity analysis of COVID-19 pneumonia patients from CXR images.
a, Scatter plot showing the correlation of the CXR severity index by the AI model versus the 

CXR severity index by the radiologist’s assessment. b, Bland-Altmann plot showing the 

agreement between the AI predicted severity index and the radiologist assessed severity 

index. X-axis represents the mean of the two measurements, and the Y-axis represented the 

difference between the two measurements. c, ROC curves for the binary classification of the 

clinical severity. The blue curve represented the severity prediction by using the AI predicted 

severity index as input: AUC = 0.868 (95% CI: 0.816-0.915). The orange curve represented 
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the severity prediction by using the radiologist assessed severity index as input: AUC = 

0.832 (95% CI: 0.782-0.885). d, Confusion matrix for the binary classification of the clinical 

severity. The performance of the AI reviewer: accuracy = 81.12%, sensitivity = 82.05%, 

specificity = 80.65%. e, An example of lung-lesion segmentation of viral pneumonia of a 

CXR image. PCC, Pearson correlation coefficient; MAE, mean absolute error; ICC, 

Intraclass correlation coefficient.
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Fig. 6. Performance of the AI system and of radiologists in identifying pneumonia conditions 
from CXR images.
The performance comparison of four groups: the AI system, an average of a group of four 

junior radiologists, an average of a group of four senior radiologists, and an average of the 

group of four junior radiologists with AI assistance. a, The ROC curves for diagnosing viral 

pneumonia from the rest (other types of pneumonia and normal). The star denoted the 

operating point of the AI system. Filled dots denoted the junior and senior radiologists’ 

performance, while the hollow dots denoted the performance of the junior group with the 

AI’s assistance. Dashed lines linked the paired performance values of the junior group. b, 
Weighted errors of the four groups based on a penalty metric. P < 0.001 computed using a 

two-sided permutation test of 10,000 random re-samplings. c, An evaluation experiment on 

diagnostic performance when the AI system acted as a “second reader” or an “arbitrator”.
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Table 1
The CXR datasets for the training, validation and testing of the deep-learning system.

Cohorts
Developmental Dataset External

validation

  Training dataset   Tuning dataset   Testing dataset   (SYSU-PE)

Number of images 96,543 12,035 12,124 24,500

Number of subjects 73,917 9,160 9,250 23,585

Inpatient 38,438 (52.0%) 4,761 (52.0%) 4,871 (52.7%) --

Outpatient 35,479 (48.0%) 4,377 (47.8%) 4,354 (47.1%) --

Physical Examination -- 22 (0.2%) 25 (0.2%) 23,585 (100.0%)

Male (%) 31,019 (42.0%) 3,840 (41.9%) 3,850 (41.6%) 11,868 (50.3%)

Age (years), mean (IQR) 44.9 (32-59) 45.1 (32-60) 44.9 (32-59) 37.8 (28-46)

Atelectasis 167(0.23%) 26(0.28%) 22(0.24%) 4(0.02%)

Cardiomegaly 1,828(2.47%) 242(2.64%) 239(2.58%) 46(0.20%)

Fibrosis 4,405(5.96%) 523(5.71%) 560(6.05%) 431(1.83%)

Infiltration 7,085(9.59%) 914(9.98%) 886(9.58%) 88(0.37%)

Mass 708(0.96%) 86(0.94%) 82(0.89%) 17(0.07%)

Nodule 4,187(5.66%) 550(6.00%) 554(5.99%) 463(1.96%)

Pleural thickening 4,192(5.67%) 545(5.95%) 544(5.88%) 412(1.75%)

Pneumonia 8,099(10.96%) 1,015(11.08%) 1,042(11.26%) 164(0.70%)

Pneumothorax 552(0.75%) 67(0.73%) 61(0.66%) 0(0.00%)

Consolidation 118(0.16%) 12(0.13%) 12(0.13%) 0(0.00%)

Edema 133(0.18%) 12(0.13%) 21(0.23%) 0(0.00%)

Effusion 3,903(5.28%) 485(5.29%) 462(4.99%) 43(0.18%)

Hernia 23(0.03%) 3(0.03%) 1(0.01%) 1(0.01%)

Emphysema 715(0.97%) 84(0.92%) 84(0.91%) 29(0.12%)

No finding 55,320(74.84%) 6,823(74.49%) 6,882(74.40%) 22,319(94.63%)
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Table 2
Number of CXR images for training, validation and testing in differentiating among viral 
pneumonia, other types of pneumonia, and absence of pneumonia (normal).

Cohorts

Viral pneumonia

Other types of viral 
pneumonia

COVID-19 
pneumonia

Other types of 
pneumonia Normal Total

Training

“Gold-standard labels” China (CC-
CXRI) 2,506 1,248 5,015 4,389 13,158

“Silver-standard labels” US 
(CheXpert-P) 2,840 -- 5,309 4,999 13,148

Validation
  “Gold-standard labels” (CC-CXRI) 169 159 637 554 1,519

Testing
  “Gold-standard labels” (CC-CXRI) 190 164 630 535 1,519

External validation
  “Gold-standard labels” 142 98 610 1,049 1,899

Population Study
  “Gold-standard labels” 46 0 220 768 1,034

International cohort
  “Gold-standard labels” on COVID-19 63 132 226 229 650
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