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Abstract

Climate change affects human health; however, there have been no large-scale, systematic efforts 

to quantify the heat-related human health impacts that have already occurred due to climate 

change. Here, we use empirical data from 732 locations in 43 countries to estimate the mortality 

burdens associated with the additional heat exposure that has resulted from recent human-induced 

warming, during the period 1991-2018. Across all study countries, we find that 37.0% (range 

20.5-76.3%) of warm-season heat-related deaths can be attributed to anthropogenic climate change 

and that increased mortality is evident on every continent. Burdens varied geographically but were 

of the order of dozens to hundreds of deaths per year in many locations. Our findings support the 

urgent need for more ambitious mitigation and adaptation strategies to minimize the public health 

impacts of climate change.

Human activity has already changed the climate1. The world is now an average of ~1°C 

above the pre-industrial era, although with substantial geographic heterogeneity; several 

high-population regions have warmed by >2 °C, while others have experienced relatively 

little change1. An immediate and direct impact of climate change is through human exposure 

to high outdoor temperatures, which is associated with morbidity and an increased risk of 

premature death (mortality)2–4. Although several studies have projected the impacts of heat 
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exposure under different potential future climate scenarios5,6, there have been no systematic, 

large-scale studies quantifying the heat-related health burdens attributable to climate change 

that have already occurred.

Detection and attribution studies evaluate the contribution of different factors, including 

anthropogenic forcings, to observed changes in climate and weather7,8. These studies are 

often conducted in the climate science disciplines and rarely take the additional step of 

estimating associated human health impacts9–11. Here, we take that step and quantify the 

contribution of human-induced warming to the heat-related mortality burden in 732 

locations from 43 countries over the period 1991–2018. We do so by applying state-of-the-

art methods from climate change epidemiology to the largest database ever assembled on 

weather and health and the latest climate simulations carried out in support of attribution and 

detection studies. To our knowledge, this is the largest attribution study to date on the health 

impacts of climate change.

Attributing heat-related mortality to climate change

Our analysis proceeded in two steps. In the first step, we applied cutting-edge time-series 

regression techniques to observed temperature and mortality data from all 732 locations 

(Table 1 and Supplementary Tables 1 and 2) to estimate location-specific exposure-response 

functions12–15. These functions characterize the complex relationship between daily mean 

temperature and mortality from all causes (or non-external causes) by simultaneously 

accounting for the nonlinear and delayed dependencies typically found in this type of 

assessment2. The functions were estimated using an extension of the widely applied two-

stage design that uses a mixed model approach to properly account for the hierarchical 

structure of the data (Methods)12–14. As described in detail in the Methods, a first-stage 

model estimates associations for each location, which are then pooled in a meta-analysis (the 

second stage). The observed temperature and mortality data were collected through the 

Multi-Country Multi-City (MCC) Collaborative Research Network, the largest weather and 

health data consortium to date (https://mccstudy.lshtm.ac.uk). Supplementary Table 1 

provides a brief description of the observed MCC Collaborative Research Network 

temperature and mortality series, including the data sources and level of aggregation (city, 

metropolitan area or small region). The data used in the present study consisted of counts of 

daily mortality from all causes or non-external causes only (International Classification of 

Diseases, ICD-9: 0-799; ICD-10: A00-R99) and daily mean temperature (°C). The analysis 

was limited to the warm season, defined as the four warmest consecutive months in each 

location, to focus on heat-related mortality only (see Supplementary Table 2 for selected 

months in each location). The analysis included 29,936,896 deaths across all 732 locations 

from 43 countries in overlapping periods between 1991 and 2015 (Table 1). The study 

countries vary widely in terms of local climate, ranging from average warm-season 

temperatures of ~15 °C in countries of North and Central Europe and Canada to much hotter 

weather >25 °C in South Asia, the Middle East and parts of Central and South America.

In the second step, we used the estimated exposure-response functions to compute the heat-

related mortality burden between 1991 and 2018 for each location under two scenarios: a 

factual scenario consisting of simulations of historical climate (all climate forcings) and a 
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counterfactual scenario where climate simulations are driven by natural forcings only, thus 

approximating the climate that would have occurred in a world without human-induced or 

anthropogenic climate change16. A more detailed description of the scenarios and how the 

impacts were quantified is provided in the following paragraphs and Methods.

The factual and counterfactual scenarios

The two scenarios (factual and counterfactual) were based on simulation runs from the 

Detection and Attribution Model Intercomparison Project (DAMIP)17,18. DAMIP is the 

component of the Coupled Model Intercomparison Project Phase 6 (CMIP6) that aims to 

assess the individual contributions of different external factors, including anthropogenic 

forcings, on past and future changes in global and regional climate. We used pairs of 

factual–counterfactual ensemble runs of daily mean temperature between 1991 and 2018 

from ten general circulation models (ACCESS-ESM1-5, CanESM5, CESM2, FGOALS-g3, 

GFDL-ESM4, HadGEM3-GC31-LL, IPSL-CM6A-LR, MIROC6, MRI-ESM2-0 and 

NorESM2-LM; Supplementary Table 3) for which suitable data were available at the time of 

the analysis. Specifically, for the factual scenario, we used CMIP6 historical simulations 

merged with SSP2-4.5 runs of each model which accounts for anthropogenic and natural 

forcings. The corresponding counterfactual consists of simulations of the historical climate 

driven with natural forcings only (that is, anthropogenic forcings are absent) derived from 

the ‘hist-nat’ experiment. Location-specific temperature series were extracted from the 

gridded products on the basis of the corresponding centroid and bias-corrected following a 

method described elsewhere19. The burden attributable to recent human-induced climate 

change is defined as the difference in heat-related mortality during the warm season between 

the two scenarios.

Figure 1 reports a summary description of the simulated warm-season mean temperatures in 

the factual (accounting for natural and anthropogenic forcings) and counterfactual 

(accounting for natural forcings only) scenarios. Across the 732 locations, the annual 

average temperature in the warm season in the factual scenario increased from nearly 21.5 

°C at the end of the twentieth century to almost 23 °C in the 2010s, whereas in the 

counterfactual scenario, annual temperatures remained relatively stable at around 21.5 °C 

(Fig. 1a, model-specific time-series plots are shown in Extended Data Fig. 1). Similar 

patterns of warming over time can be observed across countries, although with variable 

magnitude (Extended Data Fig. 2). Warming is also reflected in the overall temperature 

difference between scenarios over the study period (1991–2018), with ~0.8 °C increase on 

average and strong differences across regions of the world (Fig. 1b and Extended Data Fig. 

3). For example, the country-specific average temperature increase ranged from ~0.5 °C in 

Argentina to >1 °C in Iran, Kuwait, some countries in South and Central America and North 

of Europe (Fig. 1b). Figure 1c shows the temperature differences for each of the 732 study 

locations, with some of the largest effects seen in Brazil and western locations in South 

America, Southern Europe and Thailand.
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Location-specific temperature-mortality relationships

Exposure-response associations were estimated for all 732 locations. The curves for 16 

representative locations—including at least one from each (inhabited) continent—are 

presented in Fig. 2. The functions represent the cumulative relative risk of death over a 10-d 

lag period for each temperature value in the observed range. Prior research has demonstrated 

that heat risks tend to occur quickly after exposure and then disappear within 10 d (ref. 20). 

Relative risk is a measure of association which represents the change in mortality risk at any 

given temperature compared with a reference temperature, which in this case corresponds to 

the point of minimum mortality (the temperature value for which the risk of death is lowest), 

often referred as the ‘optimum’. In Chicago, for example, a 31 °C day (corresponding to the 

99th percentile temperature of the warm season) was associated with a 36% (95% 

confidence interval (CI): 28–47%) increase in mortality risk from all causes, whereas in 

Johannesburg the 99th percentile temperature (24 °C) was associated with a 9% (95% CI: 

0.5–17%) increase and in Berlin (28 °C) a 57% (95% CI: 47–67%) increase.

The displayed curves indicate potential geographical patterns in the heat-mortality 

relationship across and between regions, a finding particularly evident in Fig. 3, which 

summarizes the exposure-response functions for all 732 locations, again as the relative risk 

of death at the 99th percentile temperature versus the optimum. Heat-related mortality risks 

ranged from 0.97 to 2.47 but with only 28 of the 732 locations <1. Larger risks are observed 

in the European region, in particular the Western and Central area of the continent, while 

smaller estimates <1.5 were found in most locations in Asia and the Americas. All risks 

should be interpreted as an approximation of the average heat-mortality association in each 

location across the study period.

Heat-mortality impacts attributed to climate change

The estimated heat-related mortality burden by country for each scenario is derived by 

applying the location-specific exposure-response functions to the corresponding modelled 

location-specific daily mean warm-season temperature series and average baseline mortality 

between 1991 and 2018 (see Methods for further details on the estimation of mortality 

burden). Results are reported as heat-related mortality fractions estimated as the number of 

deaths attributed to heat (days above the optimum) divided by the total number of deaths 

during the warm season in each location. The level of uncertainty of the impact estimates is 

expressed in terms of 95% CI, which account for both the statistical uncertainty when 

estimating the exposure-response function and the variability in the temperature series 

across model-specific simulations (see Methods section for further details on the 

quantification of uncertainty). Across all locations, heat-related mortality in the factual 

scenario amounted to an average of 1.56% (95% CI, 0.62–2.41) of all warm-season deaths 

(Fig. 4a). The country-specific estimates ranged from <1% (for example, the USA, 

Colombia, Sweden, Norway, UK, Japan and South Korea) to >5% in countries of Southern 

Europe (Supplementary Table 4). As expected, there was less heat-related mortality in all 

countries under the counterfactual scenario, with an average estimate of 0.98% (95% CI, 

0.26–1.80) across all locations.
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The difference between the factual and counterfactual scenarios is interpretable as the 

proportion of total deaths during the warm season attributable to human-induced climate 

change. The overall estimate that 0.58% (95% CI: 0.24–1.14) of all warm-season deaths are 

attributable to climate change translates to an average of 9,702 (95% CI, 4,005–19,135) 

deaths across the 732 locations (see Supplementary Table 5 for location-specific estimates). 

Country-specific estimates (Fig. 4b) show a clear north-south pattern within regions; human-

induced climate change attributable deaths are <1% of total deaths for countries in northern 

subregions of America, Europe and Asia, while larger contributions were observed in 

southern Europe, southern and western Asia and some countries in southeast Asia and South 

America. This geographical gradient can be also observed in Extended Data Fig. 4 that 

displays the location-specific estimates.

To further contextualize the results, Fig. 4c displays the percentage of warm-season heat-

related mortality (as opposed to total mortality) that is attributable to human-induced climate 

change. The overall estimate is 37.0% but this percentage varied widely across subregions 

and countries. The largest climate change-induced contributions (>50%) were in southern 

and western Asia (Iran and Kuwait), southeast Asia (Philippines and Thailand) and several 

countries in Central and South America (see Supplementary Tables 4 and 5 and Extended 

Data Fig. 5 for location-specific estimates).

Taken together, our findings demonstrate that a substantial proportion of total and heat-

related deaths during our study period can be attributed to human-induced climate change, 

which is in line with the small number of existing attribution studies on this topic, mainly 

from Europe10,21. Unlike those studies, however, the wide and heterogeneous geographical 

scope of our dataset allowed us to assess spatial patterns in the estimated impacts and to 

identify areas that have already been disproportionately affected. Impacts were evident in all 

of our study countries, which included locations on every inhabited continent (Fig. 4 and 

Extended Data Figs. 4 and 5). As locations differ in size, Fig. 5 displays the heat-related 

deaths attributable to human-induced climate change as a mortality rate, indicating a 

relatively heavy population-level burden in southern and eastern Europe, where rates in 

several countries are >6 per 100,000 population over the 1991–2018 period compared to the 

study average of 2.2 per 100,000.

Some limitations of this study should be acknowledged. Despite the extensive spatial extent 

of our study, we were not able to include locations in all world regions—for example, large 

parts of Africa and South Asia—due to a lack of the empirical data needed to estimate the 

exposure-response functions. For reference, our overall estimate that heat exposure from 

human-induced climate change is responsible for ~0.6% of total warm-season deaths would 

translate to more than a hundred thousand deaths per year if applied globally. However, we 

caution against this sort of crude extrapolation considering the variation we observed in 

location-specific estimates of attributable fractions (Fig. 4, Extended Data Fig. 4 and 

Supplementary Table 5). Whether the excluded regions would have high or low heat-related 

mortality burdens is difficult to predict and may depend on factors including the level of 

warming, the built environment and the age structure and underlying health status of the 

population (amongst other factors)11,22,23. Additionally, estimates should not necessarily be 

considered representative of country-specific average effects, as the study included a sample 
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of locations which, in some cases, were restricted to one or two cities (for example, Finland 

and Iran). Another limitation is the use of a single, time-invariant exposure-response 

function in each location. This approach can be interpreted as an approximation of the 

average effect across the study period in each location but would not capture the precise 

dynamics of any potential attenuation in heat-related risks, which has been reported in some 

locations24,25.

We have conducted this large attribution study on the health impacts of climate change by 

applying cutting-edge epidemiological modelling techniques to the most expansive database 

ever assembled on weather and health (the MCC Collaborative Research Network database) 

and the latest temperature simulations developed for climate change attribution and detection 

studies (DAMIP data). The methodology allowed us to properly account for the uncertainty 

that arose from estimating the exposure-response functions and the variability across climate 

models (see Extended Data Fig. 6 for the model-specific estimates for heat-related 

mortality). We have demonstrated that health burdens from anthropogenic climate change 

are occurring, are geographically widespread and are non-trivial; in many locations, the 

attributable mortality is already on the order of dozens to hundreds of deaths each year 

(Supplementary Table 5). This has occurred with average global temperature increase of 

only ~1 °C, which is lower than even the strictest climate targets outlined in the Paris 

Agreement (1.5–2 °C) and a fraction of what may occur if emissions are left unchecked26. 

As a result, our findings provide further evidence of the potential benefits of adopting strong 

mitigation policies to reduce future warming and of enacting adaptation interventions to 

protect populations from the adverse consequences of heat exposure.

Online content

Any methods, additional references, Nature Research reporting summaries, source data, 

extended data, supplementary information, acknowledgements, peer review information; 

details of author contributions and competing interests; and statements of data and code 

availability are available at https://doi.org/10.1038/s41558–021-01058-x.

Methods

Observed temperature and mortality data: the MCC Collaborative Research Network 
database

We extracted observed daily temperature and mortality data for the 732 locations from the 

MCC Collaborative Research Network database (http://mccstudy.lshtm.ac.uk/). 

Supplementary Table 1 provides information on data collection for each country, while 

descriptive statistics for each location are reported in Supplementary Table 2. Data used in 

the present study consisted of counts of daily mortality from all causes or non-external 

causes (ICD-9: 0-799; ICD-10: A00-R99) and daily mean temperature (°C). The length of 

the observed data varied by location but included part or all of our study period (1 January 

1991 to 31 December 2018). As we were interested in heat-related mortality, we restricted 

the data series to the warmest four consecutive months in each location (Supplementary 

Table 2).
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Description of the factual and counterfactual climate datasets

We defined two scenarios, one representing the historical (factual) climate and an alternative 

(counterfactual) that approximates a hypothetical world without anthropogenic climate 

change. The temperature series for these scenarios were extracted from the DAMIP (http://

damip.lbl.gov) climate database. DAMIP is part of the CMIP6 and was specifically designed 

to allow for the assessment of the individual contributions of various external factors to past 

and future changes in global and regional climate17,18. This study included the ensemble 

member simulations of ten general circulation models included in CMIP6 from two different 

experiments for which relevant data were available at the time of the analysis. Information 

about the models and selected simulations are shown in Supplementary Table 3. For the 

factual scenario, we used historical climate simulations (‘hist’) of mean daily temperature 

available up to 2014 merged with simulations of ssp2rcp45 for the remaining years until 

2018. These simulations are driven by all types of natural and anthropogenic forcings, which 

mimics the actual historical climate. The corresponding counterfactual climate data 

consisted of the simulations of the ‘hist-nat’ experiment, for which only natural forcings are 

considered (solar irradiance and stratospheric aerosols). The counterfactual climate dataset 

approximates a hypothetical climate with no human influences (that is, an absence of 

anthropogenic climate change) since the beginning of the twentieth century where only 

natural forcings were present. This approach allows for a formal distinction between natural 

and anthropogenic climate change. Location-specific series of daily mean temperature (near 

surface air temperature—tas) were extracted from the globally gridded datasets (https://esgf-

node.llnl.gov/search/cmip6/) and bias-corrected using local weather station data (MCC 

Collaborative Research Network database) following a method described elsewhere15,27,28. 

In brief, observed temperature series were used to bias-correct the temperature series in the 

factual scenario and apply the same correcting factors to the modelled series of the 

counterfactual scenario.

Description of the epidemiological analysis

We estimated the association between heat and mortality using observed data in each 

location through a two-stage approach widely applied in multilocation time-series studies.

First stage—To estimate location-specific heat-mortality associations, we performed 

separate time-series analyses with generalized linear models using observed temperature and 

mortality data over the four warmest consecutive months in each location (see 

Supplementary Table 2 for the selected months in each location). We applied a quasi-

Poisson regression in which a quasi-likelihood was used to scale the standard deviation of 

the coefficients proportionally to the potential overdispersion. We modelled the nonlinear 

and delayed association using distributed-lag nonlinear models (DLNMs), a class of models 

that can describe the complex nonlinear and lagged dependencies typically found in 

temperature-mortality studies12. DLNMs account for delayed effects of time-varying 

exposures and quantify net effects over a predefined lag period. Following the DLNM 

methodology, we modelled the bidimensional exposure-lag-response association through the 

combination of two functions defined within a cross-basis term. Specifically, we selected a 

natural spline function with two internal knots at the 50th and 90th percentile of the warm-

season temperature distribution to model the exposure-response curve and a natural spline 
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function with two internal knots at equally spaced values in the log scale over 10 d of lag for 

the lag-response dimension. Seasonality was modelled with a natural spline with 4 degrees 

of freedom (d.f.) of day of the year. We introduced an interaction between this spline term 

and year to allow different seasonal trends across the study period. The model also included 

a natural spline function of time with aproximately one knot every 10 years to control for 

long-term trends and an indicator for day of the week. These choices that specify the cross-

basis and model terms used to control for long-term and seasonal trends were based on 

related studies from the MCC Collaborative Research Network20,24. The resulting 

bidimensional set of coefficients from each location was then reduced across the lag 

dimension into the overall cumulative exposure-response curve representing the association 

between heat and mortality across the 10 d of lag13.

Second stage—The location-specific set of reduced coefficients estimated in the first 

stage were then pooled in a multivariate metaregression model14. This approach provides 

improved estimates of heat-mortality associations at the location level, defined as best linear 

unbiased predictions (BLUPs). BLUPs borrow information across units within the same 

hierarchical level and can offer more accurate estimates, especially in locations with small 

daily mortality counts or short series. We also included, as metapredictors, country-level 

gross domestic product, location-specific average temperature and interquartile range and 

indicators of climatic classification29. We tested the presence of heterogeneity using 

multilevel extensions of the Cochran Q test and I 2 statistic30. The location-specific 

associations defined by the BLUPs were used in the quantification of the heat-related 

mortality impacts. All the analyses were performed in the R software environment (v.3.5.2) 

using the packages dlnm and mixmeta, which were developed by the authors14,31.

Quantification of heat-related mortality—Finally, we quantified the heat-related 

mortality in each location during the warm season in each location during the study period 

of 1991–2018 under both scenarios, following a method we describe in previous work15. For 

each location-scenario-model-day combination, we computed the number of heat-related 

deaths on the basis of the corresponding modelled temperature series, daily baseline 

mortality and the estimated heat-mortality association represented by the location-specific 

BLUPs16. The daily baseline mortality corresponds to the annual series of total mortality 

counts derived as the average number of deaths per day of the year in each location. The 

annual series was then replicated along the study period of 1991–2018. We then estimated 

the total number of heat-related deaths in each location/scenario for each model and 

ensemble across the study period by summing the daily mortality contributions when the 

temperature on a specific day was higher than the location-specific reference temperature. 

This reference value corresponds to the minimum point of the BLUP curve and represents 

the optimal temperature value with the lowest mortality risk, often referred to as the 

minimum mortality temperature. We quantified the uncertainty of the estimates by 

generating 1,000 samples of the coefficients of the BLUPs (representing the association) 

through Monte Carlo simulations, assuming a multivariate normal distribution for the 

estimated spline model coefficients and then generating results for each of the ten models4. 

We obtained empirical confidence intervals corresponding to the 2.5th and 97.5th percentiles 

of the empirical distribution of the heat-related mortality impacts across coefficients and 
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models. In this way, the derived empirical confidence intervals account for both the 

imprecision of the exposure-response function and the inherent variability of the temperature 

simulations across models in each scenario.

To obtain the contribution of climate change, we subtracted the heat-related mortality 

estimates in the counterfactual scenario from those in the factual scenario. Finally, we 

computed the mortality fractions in both scenarios and the estimated difference using the 

related total number of deaths as the denominator. Climate change attributable heat-related 

mortality rates for each country were estimated by multiplying the attributable fraction(s) by 

the corresponding crude mortality rate for each country. These were computed as the 

average crude mortality rates in each country between 1991 and 2017 (https://

datacatalog.worldbank.org/dataset/world-development-indicators) and multiplied by a factor 

corresponding to the warm-season mortality divided by the total annual mortality in each 

country.
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Extended Data

Extended Data Fig. 1. Time series plots of the warm-season mean daily temperatures in each 
scenario provided by each model.
The time series plots depict the temporal trends in average warm-season temperatures across 

the 732 locations included in the study. Factual scenario (with natural and anthropogenic 

forcings) is depicted in brown, while counterfactual scenario (with natural forcings only) in 

orange. The grey dark area corresponds to the study period 1991–2018. (ACC: ACCESS-

ESM1–5, CAN: CanESM5, CNR: CESM2, FGO: FGOALS-g3, GFD: GFDL-ESM4, HAD: 
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HadGEM3-GC31-LL, IPS: IPSL-CM6A-LR, MIR: MIROC6, MRI: MRI-ESM2–0, Nor: 

NorESM2-LM).

Extended Data Fig. 2. Time series plots of the warm-season mean daily temperatures in each 
scenario in the 43 countries included in the study.
As Fig.1, factual scenario (with natural and anthropogenic forcings) is depicted in brown, 

while counterfactual scenario (with natural forcings only) in orange. The shaded area 

corresponds to 1 standard deviation across model-specific average estimates. The dashed 

line shows the start of the study period (1991–2018).
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Extended Data Fig. 3. Country-averaged warm-season temperature distributions modelled in 
each scenario.
As Fig.1, factual scenario (with natural and anthropogenic forcings) is depicted in brown, 

while counterfactual scenario (with natural forcings only) in orange.
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Extended Data Fig. 4. Location-specific heat-related mortality attributed to human-induced 
climate change (CC) between 1991–2018.
Map with the location-specific estimates of heat-related mortality fractions attributed to 

human-induced climate change (expressed in %). Estimates ranged between 0.2% and 0.8%, 

corresponding to the interquartile range, with a maximum value of 3.8%, and 23 locations 

reported an estimate below 0 (minimum value of −0.1%).
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Extended Data Fig. 5. Proportion of heat-related mortality attributed to human-induced climate 
change (CC), between 1991–2018.
Map with the location-specific estimates of the proportion of heat-related mortality 

attributed to human-induced climate change (expressed in %). Estimates ranged between 

28.6% and 54.2%, corresponding to the interquartile range, with a maximum value of 92%, 

and 1 location with estimates below 0 (minimum value of −0.1%).
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Extended Data Fig. 6. Model-specific estimates of the heat-related mortality attributed to 
human-induced climate change (CC) for each country, expressed as mortality fraction (%).
The plot shows the model-specific estimates of heat-related mortality fraction attributed to 

human-induced climate change for each country (1991–2018). ACC: ACCESS-ESM1-5, 

CAN: CanESM5, CNR: CESM2, FGO: FGOALS-g3, GFD: GFDL-ESM4, HAD: 

HadGEM3-GC31-LL, IPS: IPSL-CM6A-LR, MIR: MIROC6, MRI: MRI-ESM2-;0, Nor: 

NorESM2-LM.
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Fig. 1. Temperature modelled under the factual (with both anthropogenic and natural forcings) 
and counterfactual (with only natural forcings) scenarios.
a, Warm-season average temperature since 1900, including the 1991–2018 study period 

(shaded) across the 732 locations. b, Temperature differences between scenarios in the 43 

study countries, respectively, during the study period (warm season only). Country results 

are based on included locations only. c, Average temperature difference between scenarios 

during the study period in the 732 study locations (warm season only).
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Fig. 2. Heat-mortality associations in 16 representative locations.
Exposure-response associations are estimated as best linear unbiased predictions (BLUPs; 

Methods) and reported as relative risks (with 95% CI, shaded grey) for a cumulative 10-d lag 

of warm-season temperature, versus the optimum temperature (corresponding to the 

temperature of minimum mortality). For comparison across locations, vertical red dotted 

lines indicate the 99th percentile of location-specific warm-season temperature.
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Fig. 3. Heat-related mortality associations in the 732 locations.
These are expressed as the estimated relative risk at the 99th percentile of the location-

specific warm-season temperature distribution using the temperature of minimum mortality 

as reference. Estimates are represented by the location-specific BLUPs (Methods).
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Fig. 4. Heat-related mortality and the contribution of human-induced climate change, 1991–
2018.
a, Heat-related mortality as a percentage of total mortality during warm season (mortality 

fraction (%)) estimated in the 43 countries under the factual (all anthropogenic and natural 

forcings (shaded)) and counterfactual (natural forcings only (unshaded)) climate scenarios. 

b, Percentage of total deaths during warm season attributable to heat-related human-induced 

climate change, estimated as the difference in heat-related mortality in the factual compared 

to the counterfactual scenario, with the corresponding 95% CI. c, Proportion of heat-related 
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mortality attributable to human-induced climate change estimated as the fraction of heat-

related mortality in the factual scenario that results from the contribution of anthropogenic 

forcings.
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Fig. 5. Heat-related mortality rate attributable to human-induced climate change, 1991–2018.
The estimated rate in each country is based on the attributable fractions for the location(s) 

within the country. The rates indicate the total burden in the population and are thus a 

complementary measure of impact to that of Fig. 4b, which reports the attributable fraction. 

For example, the rate shown here for Brazil is relatively modest, whereas the fraction is 

high; the opposite is true in a country like Greece.
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Table 1
Summary of the observed temperature and mortality data for the 732 locations during the 
warm season

Region Country Locations (n) Data period Total deaths 
(n)

Daily deaths 
(median [IQR])

Daily mean 
temperature (median 
[IQR])

Australia Australia 3 1991–2009 311,185 45.3 [40.0; 51.0] 21.8 [20.2; 23.9]

North America Canada 26 1991–2015 999,566 12.5 [10.1; 14.8] 17.8 [15.1; 20.2]

North America USA 210 1991–2006 5,978,402 14.4 [12.2; 16.9] 23.2 [20.9; 25.3]

Caribbean and 
Central America

Costa Rica 1 2000–2016 9,485 4.0 [3.0; 6.0] 23.3 [22.7; 24.0]

Caribbean and 
Central America

Guatemala 1 2009–2016 20,826 21.0 [18.0; 25.0] 20.5 [19.7; 21.2]

Caribbean and 
Central America

Mexico 10 1998–2014 921,711 43.8 [38.1; 50.2] 22.4 [20.9; 23.8]

Caribbean and 
Central America

Panama 1 2013–2016 3,895 8.0 [6.0; 10.0] 28.7 [27.9; 29.4]

South America Argentina 3 2005–2015 205,651 51.3 [46.1; 57.0] 23.8 [21.7; 26.0]

South America Brazil 18 1997–2011 1,091,290 33.9 [29.8; 38.6] 26.1 [25.2; 27.0]

South America Chile 4 2004–2014 98,028 27.5 [24.2; 31.2] 18.3 [16.6; 19.7]

South America Colombia 5 1998–2013 322,750 32.8 [28.4; 37.0] 23.9 [23.1; 24.6]

South America Ecuador 2 2014–2016 21,729 30.0 [26.0; 34.5] 21.7 [21.0; 22.3]

South America Paraguay 1 2004–2016 12,665 8.0 [6.0; 10.0] 27.2 [25.6; 28.9]

South America Peru 18 2008–2014 208,060 13.4 [11.0; 16.0] 19.4 [18.6; 20.2]

South America Uruguay 1 2012–2016 45,487 75.0 [68.0; 81.0] 24.3 [21.6; 26.3]

Northern Europe Estonia 5 1997–2015 46,094 3.8 [2.6; 5.2] 15.4 [13.1; 17.8]

Northern Europe Finland 1 1994–2014 48,810 19.0 [16.0; 22.0] 15.7 [13.2; 18.1]

Northern Europe Ireland 6 1991–2007 222,228 17.5 [15.0; 20.7] 14.3 [12.9; 15.7]

Northern Europe Norway 1 1991–2016 40,054 13.0 [10.0; 15.0] 13.6 [11.4; 15.7]

Northern Europe Sweden 3 1991–2016 215,611 22.3 [19.3; 25.7] 16.3 [14.1; 18.4]

Northern Europe UK 70 1991–2016 1,781,605 7.8 [6.2; 9.6] 15.8 [14.1; 17.5]

Western Europe France 18 2000–2014 512,911 15.3 [12.9; 17.8] 19.2 [17.1; 21.4]

Western Europe Germany 12 1993–2015 975,429 28.5 [24.8; 32.6] 17.2 [14.7; 20.0]

Western Europe Netherlands 4 1995–2016 953106 88.2 [81.5; 95.6] 16.3 [14.5; 18.5]

Western Europe Switzerland 8 1995–2013 75,022 3.9 [2.5; 5.3] 18.0 [15.4; 20.6]

Eastern Europe Czech Republic 4 1994–2015 226,645 20.8 [17.5; 24.0] 17.4 [14.5; 20.3]

Eastern Europe Moldova 4 2001–2010 18,828 3.8 [2.8; 4.8] 21.0 [18.1; 23.3]

Eastern Europe Romania 8 1994–2016 300,031 13.1 [10.8; 15.6] 20.6 [18.0; 23.0]

Southern Europe Greece 1 2001–2010 90,845 73.0 [66.0; 82.0] 27.6 [24.6; 29.6]

Southern Europe Italy 11 1991–2010 224,176 11.9 [9.7; 14.0] 23.4 [20.9; 25.5]

Southern Europe Portugal 5 1991–2016 351,284 22.0 [18.6; 25.0] 21.1 [19.3; 23.2]

Southern Europe Spain 52 1991–2014 884,307 5.6 [4.2; 7.1] 22.4 [20.2; 24.5]

Eastern Asia China 14 1996–2015 336,900 38.4 [33.5; 44.6] 25.0 [22.7; 27.1]

Eastern Asia Japan 47 1991–2015 7,864,627 53.8 [46.6; 62.5] 24.8 [22.3; 27.1]

Eastern Asia South Korea 36 1997–2016 867,142 9.6 [7.9; 11.6] 23.3 [21.2; 25.5]
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Region Country Locations (n) Data period Total deaths 
(n)

Daily deaths 
(median [IQR])

Daily mean 
temperature (median 
[IQR])

Eastern Asia Taiwan 3 1994–2014 385,617 50.0 [44.0; 56.0] 28.7 [27.6; 29.7]

Southern and 
Western Asia

Iran 1 2004–2013 40,824 32.0 [26.0; 40.0] 26.4 [24.0; 28.3]

Southern and 
Western Asia

Kuwait 1 2000–2016 22,347 11.0 [8.0; 13.0] 38.1 [36.3; 39.6]

Southeastern Asia Philippines 4 2006–2010 90,034 36.5 [32.2; 41.2] 29.1 [28.4; 29.8]

Southeastern Asia Thailand 61 1999–2008 610,780 7.9 [6.1; 10.1] 29.1 [28.1; 30.0]

Southeastern Asia Vietnam 2 2009–2013 37,677 37.5 [33.5; 42.5] 29.5 [28.5; 30.4]

Africa South Africa 45 1997–2013 2,454,409 26.3 [20.7; 31.9] 22.3 [20.6; 23.9]

Total
a 732 1991–2016 29,936,896 9.0 [4.0; 22.0] 22.6 [18.9–25.6]

IQR, interquartile range.

a
Estimates derived from the city-specific summaries.
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