
Effects of Tracer Arrival Time on the Accuracy of High-
Resolution (Voxel-Wise) Myocardial Perfusion Maps from 
Contrast-Enhanced First-Pass Perfusion Magnetic Resonance

Niloufar Zarinabad*,
Division of Imaging Sciences and Biomedical Engineering, The Rayne Institute, St. Thomas’ 
Hospital, London, SE1 7EH, U.K

Gilion L. T. F. Hautvast,
Philips Group Innovation-Healthcare Incubators, Philips Research High Tech Campus 34 5656 
AE Eindhoven, The Netherlands

Eva Sammut,
Division of Imaging Sciences and Biomedical Engineering, The Rayne Institute, St. Thomas’ 
Hospital, London, SE1 7EH, U.K

Aruna Arujuna,
Division of Imaging Sciences and Biomedical Engineering, The Rayne Institute, St. Thomas’ 
Hospital, London, SE1 7EH, U.K

Marcel Breeuwer,
Philips Healthcare, Imaging Systems-MR 5680, DA Best, The Netherlands and is also with the 
Biomedical Engineering, Biomedical Image Analysis, Eindhoven University of Technology, PO 
Box 513 - NL-5600 MB Eindhoven, The Netherlands

Eike Nagel,
Division of Imaging Sciences and Biomedical Engineering, The Rayne Institute, St. Thomas’ 
Hospital, London, SE1 7EH, U.K

Amedeo Chiribiri
Division of Imaging Sciences and Biomedical Engineering, The Rayne Institute, St. Thomas’ 
Hospital, London, SE1 7EH, U.K

Gilion L. T. F. Hautvast: Gilion.Hautvast@Philips.Com; Eva Sammut: eva.sammut@kcl.ac.uk; Aruna Arujuna: 
aruna.arujuna@kcl.ac.uk; Marcel Breeuwer: marcel.breeuwer@philips.com; Eike Nagel: eike.nagel@kcl.ac.uk; Amedeo 
Chiribiri: amedeo.chiribiri@kcl.ac.uk

Abstract

First-pass perfusion cardiac magnetic resonance (CMR) allows the quantitative assessment of 

myocardial blood flow (MBF). However, flow estimates are sensitive to the delay between the 

arterial and myocardial tissue tracer arrival time (t Onset) and the accurate estimation of MBF relies 

on the precise identification of t Onset. The aim of this study is to assess the sensitivity of the 

quantification process to t Onset at voxel level. Perfusion data were obtained from series of 
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simulated data, a hardware perfusion phantom, and patients. Fermi deconvolution has been used 

for analysis. A novel algorithm, based on sequential deconvolution, which minimizes the error 

between myocardial curves and fitted curves obtained after deconvolution, has been used to 

identify the optimal t Onset for each region. Voxel-wise analysis showed to be more sensitive to t 

Onset compared to segmental analysis. The automated detection of the t Onset allowed a net 

improvement of the accuracy of MBF quantification and in patients the identification of perfusion 

abnormalities in territories that were missed when a constant user-selected t Onset was used. Our 

results indicate that high-resolution MBF quantification should be performed with optimized t 

Onset values at voxel level.

Index Terms

Myocardial perfusion quantification; tracer arrival time delay; voxel-wise

I Introduction

FIRST-PASS perfusion cardiac magnetic resonance (CMR) allows the noninvasive and 

radiation-free assessment of myocardial blood flow (MBF) and enables a far better spatial 

resolution than nuclear medicine techniques [1]. Recently, the feasibility of quantitative 

voxel-wise analysis has been demonstrated by us and by others using a hardware perfusion 

phantom and microspheres in dogs, respectively [2], [3].

Voxel-wise quantification has the potential to combine the advantages of visual analysis with 

the objective and reproducible evaluation made possible by true quantitative assessment. 

However, before voxel-wise quantification becomes a robust clinical tool, there are several 

technical challenges to overcome. Voxelwise quantitative analysis involves lower signal-to-

noise ratio (SNR) levels, which affect the accuracy of the MBF estimation [3].

Another source of error is the sensitivity of quantification methods such as Fermi function 

modeling to the delay between tracer arrival time into the arterial input and the tissue (t AIF 

and t Onset, respectively) and subsequently the data interval used for quantification [4]. 

Previously demonstrated for segmental analysis, this issue is likely to be even more 

important on a voxel-wise analysis due to the reduced SNR, which makes the selection of 

the real t Onset for each voxel even more difficult, and to significant variations of t Onset 

among different voxels within the same or different segments due to anatomical and 

physiological factors. Therefore, an optimization of these analysis parameters could 

potentially improve the accuracy of voxel-wise quantification. However, the individual 

optimization of t Onset for each voxel can be time consuming and warrants an automated 

method.

In the present study, we aimed to explore the latter issue systematically. In particular, we 

sought to demonstrate the importance of t Onset on voxel-wise MBF analysis and to propose 

a method for voxel-wise t Onset optimization. A preliminary version of this study has been 

reported [5], [6]
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II Theory

Prevalent available quantitative techniques for estimating MBF use the central volume 

principle and deconvolve the tissue signal during the first pass of a bolus of contrast agent 

with the arterial input function sampled from the LV or aorta. According to the central 

volume principle the concentration of the contrast agent in the tissue region C tiss(t) is 

related to the concentration of the contrast agent in the arterial input C aif (t) via the 

following convolution problem [7]:

Ctiss(t) = Caif(t) ⊗ ℎ(t) (1)

where h(t) is the unknown tissue impulse response. Equation (1) needs to be deconvolved to 

estimate h(t) and, therefore, quantify the MBF according to h(t = 0).

The intensity values after arrival of the contrast agent into the blood pool and tissue will be 

used for quantification.

Assuming that the tissue residual curve C tiss(t) has been delayed by t rel dynamics respective 

to C aif (t), then (1) would be rewritten as

Ctiss* (t) = Ctiss(t − trel) = Caif(t) ⊗ ℎ*(t) (2)

where t rel (relative t Onset) accounts for the delay time between the appearance of the signal 

in the LV blood pool and myocardial region of interest (ROI) (t rel = t Onset – t AIF).

This implies that the delayed tissue residue curve can be represented as convolution of the 

arterial input curve and a new impulse response (h*(t)), which is not equal to h(t) and results 

in a wrong estimation of MBF. If we line up the points in which the onset of contrast agent 

occurs in the left ventricular blood pool (t AIF) and tissue (t Onset), this delay will disappear 

and t rel = 0.

One of the most favorable and used deconvolution techniques is Fermi function modeling. 

Jerosch-Herold et al. [8] and Wilke et al. [9] fitted time curves for the tissue impulse 

response function h(t) to the Fermi function with the following analytical expression:

ℎ(t) = R 1

e(t − τ0 − trel)k + 1
u(t − trel) (3)

using a Marquardt-Levenberg nonlinear least-square algorithm by letting k, R, and τ 0 vary 

and keeping t rel fixed. In (3), u(t − t rel) is the unit step function; τ 0 characterizes the width 

of the shoulder of the Fermi function during which little or no contrast agent has left the 

ROI; R is the index of contrast agent influx parameter; and k represents the decay rate of h(t) 
due to contrast agent wash out.

Previous studies [10], [11] have fitted the h(t) to Fermi model, keeping t rel as a free global 

parameter and showed favorable results. However, Jerosch-Herold et al. [4] demonstrated 

sensitivity of Fermi to onset time of the curves at segmental level. At voxel level (i.e., high 
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resolution), this sensitivity will be even higher due to low contrast-to-noise ratio (CNR) of 

the data and the significant variations of t Onset among different voxels. These factors might 

result in quantification errors at high resolution if not addressed correctly. It is therefore vital 

to evaluate the effects of using individual voxel’s onset time and appropriate interval of the 

data for high-resolution quantification.

Here, we developed an algorithm for the detection of individual voxel’s t Onset. The 

algorithm performs a sequential deconvolution to determine the dynamic with the smallest 

curve fit error (optimized t Onset).

The sequential deconvolution algorithm begins by using a starting t Onset equal to t AIF + 

1dynamic. At each stage of the process, the residual curve fit error (i.e., x = ||C tiss(t) − C aif 

(t) ∗ h(t)||) for the obtained h(t) is calculated. This process continues by incrementing the t 

Onset by one dynamic, and it stops when the current dynamic residual error is greater than 

the 10 preceding dynamics. The dynamic with the smallest residual curve fit error is 

considered as the optimized t Onset. C tiss (t) and C aif (t) will be aligned in time based on the 

optimized t Onset, and it will be used for quantitative analysis.

III Methods

In the first set of experiments, we used synthetic data to demonstrate the sensitivity of 

deconvolution and MBF estimation to the delay time between t AIF and t Onset.

Then we tested the accuracy of the t Onset detection algorithm and validated it against gold 

standard perfusion measurements using an MR-compatible perfusion phantom.

In both experiments, we evaluated the impact of CNR on the detection of the onset arrival 

time and, thus, on the accuracy of perfusion estimates. For this purpose, the original data 

were corrupted by adding Rician noise of variable amplitudes to both C aif (t) and C tiss(t) 
[12], [13]. The range of noise amplitude was chosen so that CNR in the both C aif (t) and C 

tiss(t) would be between 5 and 40. Equal noise amplitudes were added to both C aif (t) and C 

tiss(t) at each CNR level.

Finally, we compared the results of voxel-wise and segmental analysis performed with 

optimized t Onset with the results obtained from considering t Onset a free global parameter in 

phantom and in vivo.

All the analyses described in this study were performed using house-made software 

programmed with MATLAB (Mathworks, Natick, MA, USA, version R2010b). All data 

(phantom and patient) were acquired on a Philips Achieva 3T (TX) system, equipped with a 

32-channel cardiac-phased array receiver coil (Philips Healthcare, Best, The Netherlands).

A Simulated Data

Simulated data with known perfusion values [MBFGS = 1 to 5mL/(g · min)] have been 

generated using published methods [3].
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For this propose, series of noiseless gold standard tissue impulse responses h GS(t) were 

constructed by using the following pharmacokinetic model, described by Lindsey et al. [14]:

ℎGS(t) = eλ1t − eλ2t
λ1 − λ2

u(t) − eλ1t − eλ3t
λ1 − λ3

u(t) (4)

where u(t) is the unit step function. The physiological parameters, i.e., λ 1, λ 2, and λ 3 were 

chosen to generate tissue responses of the same order as those obtained by the fitting of real 

series of DCE-CMR acquisitions [3].

C aif(t) used in this experiment is a convolution of many exponentials as suggested in [15] to 

model the propagation of an impulsive bolus injection through several compartments of the 

cardiovascular system

Caif(t) = δ(t) ∗ [ve−vt]1 ∗ [ve−vt]2 ∗ ⋯ ∗ [ve−vt]n . (5)

For simplicity, we assumed the same mean transit time (1/v > 0) and, thus, the same 

compartment kernel ve−vt for all compartments. Initial C tiss(t) was then obtained by 

convolving h GS (t) with the simulated C aif (t) [15].

Subsequently, Rician noise of different amplitudes (CNR = 5 to 30) was added to the data 

and sensitivity of the Fermi quantification method to the arrival time at different noise and 

flow rates was tested. The results of Fermi deconvolution with t Onset were compared with 

the outcome of quantification when τd is assumed to be free global parameter.

Moreover, simulated data were used to quantitatively evaluate the error in optimized t Onset 

estimation and efficiency of the automated t Onset detection algorithm. For this purpose, the 

actual t rel was kept fixed as 3 dynamics and the t Onset relative error (r trel) in synthetic data 

for the CNR levels of 5, 10, 20, and 30 and perfusion rates of 1, 2.5, and 5 mL/(g·min) was 

calculated as

rtrel = estimated trel−actual trel ∣
actual trel

. (6)

At each flow rate and CNR level, an absolute error of (ea) was calculated as

ea = |MBF−MBFGS| (7)

where MBFGS is the gold standard perfusion value. The absolute error of the perfusion 

estimates at different flow and CNR levels was used to demonstrate the importance of time 

delay.

For the phantom and human data, the residual curve fit error is calculated as

x = ||Ctiss(t) − Caif(t) ∗ ℎ(t) || . (8)
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B Hardware Perfusion Phantom

The second experiment was performed on validated perfusion phantom data [3], [16], [17]. 

The perfusion phantom allows an efficient and reproducible simulation of myocardial 

perfusion acquisition, providing validated data suitable for quantification. Unlike the 

noiseless synthetic data, the phantom datasets are acquired using the same hardware, 

software, and similar sequence to those used in patients [17]. The perfusion phantom data 

were used to validate the sequential deconvolution algorithm at different levels of CNR and 

perfusion rate.

For this purpose, Rician noise of different amplitudes (CNR = 10 to 40) was added to the 

data. Sensitivity of the Fermi to t Onset and its accuracy at various flow rates [MBFGS = 1, 

2.5, and 5 mL/(g·min)] under different CNR levels was tested. The results were compared 

with the outcome of quantification when τd is assumed to be a free global parameter.

Phantom data were acquired in one slice in a transverse geometry, visualizing the 

progression of the bolus of contrast agent in the large thoracic vessels and the myocardial 

compartments in the same image, with a saturation recovery gradient echo method (typical 

parameters: repetition time/echo time 3.0 ms/1.0 ms, flip angle 15°; effective k-t SENSE 

acceleration 3.8-fold, spatial resolution 1.2 × 1.2 × 10 mm, saturation delay 120 ms, matrix 

size 132 × 132, bandwidth 2.137 Hz, FOV 24 × 24 cm2) [18]–[20].

To avoid any confounding effects due to signal saturation, a universal dual-bolus injection 

scheme was performed in the perfusion phantom [21], similar to clinical data. In the 

phantom experiments, we used a dosage of Gadolinium of 0.001 mEq/kg of body weight as 

a prebolus and 0.01 mEq/kg of body weight as bolus (Gadobutrol Gadovist, Bayer Schering, 

Germany) [17]. The boluses were injected at 4 mL/s followed by a 20 mL saline flush. Here, 

the search for the inflection point in C tiss(t) starts from the dynamic in which the main bolus 

of contrast agent appears in the aorta of the phantom.

C Clinical MR Data

The feasibility of automated t Onset detection algorithm and a comparison with using free 

global parameter for deconvolution were performed in a small group of healthy volunteers (n 
= 5) and patients (n = 5) with anginal symptoms and definite coronary artery disease on 

invasive coronary angiography. These patients were scanned using a clinical adenosine-

stress perfusion protocol (140 μg/(kg·min) of adenosine for at least 3 min before the 

acquisition of the images). The study was performed at Guy’s and St Thomas’ Hospital 

London (U.K.). The institutional review board approved the study, and all subjects signed an 

informed consent to be included.

Patient’s perfusion data were acquired in three slices (apical, mid-cavity, and basal) in short-

axis geometry with similar methods to the perfusion phantom experiment. Typical 

parameters for the saturation-recovery gradient echo method were: repetition time/echo time 

3.0 ms/1.0 ms; flip angle 15°; effective k--t SENSE acceleration 3.8-fold; spatial resolution 

1.2mm × 1.2mm × 10mm; saturation delay 120 ms; matrix size 251 × 251; bandwidth 724 

Hz; FOV 31 × 31 cm2 [18]–[20].
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Similarly to phantom experiments, a universal dual-bolus injection scheme was performed 

[21]. We used a dosage of Gadolinium of 0.0075 mEq/kg of body weight as a prebolus and 

0.075 mEq/kg of body weight as bolus (Gadobutrol Gadovist). The boluses were injected at 

4 mL/s followed by a 20 mL saline flush.

D MR Image Processing

Accurate voxel-based MBF estimation requires respiratory motion correction and 

myocardial contour delineation. We developed an automated approach based on published 

methods [22], [23], in which respiratory motion was removed using affine image registration 

by maximization of the joint correlation between consecutive dynamics within an 

automatically determined region of interest. Then, a temporal maximum intensity projection 

was calculated to serve as a feature image for an automatic contour delineation method 

based on active contour models [22]–[25]. Signal intensities were then sampled using 

bilinear interpolation at a grid of 60 angular positions and 10 transmural positions (or 

layers). The transmural positions were located on chords perpendicular to the myocardial 

centerline [24], [26]. To maximize reproducibility of MBF quantification, care was taken to 

obtain C aif (t) in a robust and reproducible way. C aif (t) was obtained by sampling the 

trimmed median intensity within a region of interest in the blood pool of the basal slice. To 

be robust against the presence of papillary muscles, the region of interest was obtained by 

downscaling the endocardium contours. Furthermore, the trimmed median operator ignores 

15% of outlier samples [25].

Prior to deconvolution analysis, baseline correction that includes scaling of the signal 

intensities proportional to coil sensitivity and correcting for an offset to shift the baseline 

signal to zero has been performed. The constrained least-square problems were solved using 

lsqnonlin in MATLAB [15], [27]. The perfusion estimates were computed by deconvolving 

the measured blood and tissue enhancement data during the first pass of contrast agent in 

myocardium.

Absolute error (ea) has been used to compare the outcome of the quantification in synthetic 

and phantom data where a standard reference was available. Analysis of variance (ANOVA) 

has been used in patients and phantom to compare the results of using optimized t Onset for 

quantification with assuming τd as a free global parameter.

IV Results

A Simulated Data

The box plots in Fig. 1 represent the relative error(r = ea/MBFGS) in estimation of MBF at 

different perfusion rates over a range of CNR level (CNR = 5 − −30). This figure compares 

the accuracy and performance of Fermi with onset (MBFonset) and Fermi model with τd as a 

free global parameter (MBFfree) and examines their robustness to CNR level. Both of the 

quantification approaches (i.e., Fermi with onset and Fermi with τd as a free global 

parameter) showed to be more sensitive to CNR level of the data at low flow rates. This 

sensitivity to noise is higher when τd has been kept as a free global parameter.
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In Fig. 2, differences between relative error r onset and r free(|e afree − e aonset | /MBFGS = r 

free − r onset) at different noise (CNR levels ranging from 5 to 30) and perfusion rates [MBF 

ranging from 1 to 5 mL/(g·min)] is shown in a surface plot.

Fig. 3 represents the relative error in estimation of optimized t Onset (r trel) for the CNR 

levels of 5,10,20, and 30 and perfusion rates of 1,2.5, and 5 mL/(g·min). The automated t 

Onset detection algorithm showed to be sensitive to CNR level and perfusion rate. Best match 

to the actual onset of the data was achieved at CNR = 30 for all flow rates.

B Hardware Perfusion Phantom

In order to validate the t Onset detection algorithm in the perfusion phantom with MBFGS = 5 

mL/(g·min), the estimated MBF with its corresponding curve fit error at each step of the 

sequential deconvolution in a random voxel has been calculated and shown in Fig. 4. The 

deconvolution process has begun from the starting t Onset (t AIF + 1) and it has been repeated 

for 10 consecutive dynamics.

The dynamic with the smallest curve fit error corresponded to the smallest absolute error (ea/

x = 0.4/0.15). This dynamic was the optimal t Onset selected by the automatic t Onset 

detection algorithm. Here, a small shift from the optimized t Onset resulted in a significant 

error in estimated MBF value demonstrating sensitivity of the deconvolution algorithm into t 

Onset.

Fig. 5 is a scatter box plot of the estimated MBF values in the phantom with MBFGS = 

5mL/(g · min), comparing MBFonset for voxel-wise quantification (low CNR) with MBFfree. 

A significant difference between the MBFfree and MBFonset for voxel-wise analysis was seen 

(P-values = 1.3E–98).

The error bars in Fig. 6(a) and (b) represent the mean and standard deviation of the relative 

error (r) for both MBFonset and MBFfree in the perfusion phantom at various CNR (10−40) 

and flow rates [1,2.5, and 5 mL/(g·min)], respectively. Here, in both figures, Fermi with 

optimized t Onset showed to have less error and be more accurate at all conditions.

Fig. 6 demonstrates that keeping τd as a free global parameter for deconvolution yields to a 

higher relative error compared to when an optimized t Onset has been used at all CNR levels 

and flow rates. This difference is more apparent at low CNR levels [see Fig. 6(a)] and high 

flow rates [see Fig. 6(b)].

In Fig. 6(a), a significant difference between the obtained values using optimized t Onset and 

with keeping τd as a free global parameter at low CNR levels (P < 0.05) was observed. 

These two approach, however, performed similarly at high CNR levels (P > 0.05).

At low flow rates [Fig. 6(b)] [i.e., MBF1 mL/(g·min)], there is not a significant difference 

between optimized t Onset and with keeping Td as a free global parameter due to low level of 

contrast enhancement, which has impaired the assessment of t Onset. Similar results were 

observed for synthetic data at low flow rates (see Fig. 2).
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C Clinical MR Data

In order to demonstrate the importance of tracer arrival time detection for myocardial 

perfusion estimation in clinical MR data, first we have examined the myocardial segmental 

analysis sensitivity to tracer arrival time. Then the t Onset detection algorithm has been 

applied to voxel-wise analysis and sensitivity of voxel-wise analysis to tracer arrival time 

has been tested. Voxel-wise results have been compared with the results obtained from 

segmental analysis.

Fig. 7 compares (|MBFonset − MBFfree|) obtained from segmental analysis (high CNR) with 

voxel-wise analysis (low CNR) in normal and ischemic regions of a group of patients. The 

results show a high discrepancy between MBFonset and MBFfree in normal and ischemic 

regions in voxel-wise analysis compared to segmental analysis. This difference is more 

apparent in normal regions of the voxel-wise analysis.

Histograms of relative t Onset (t rel) values in a group of healthy volunteers and patients are 

represented in Fig. 8(a) and (b), respectively. In healthy volunteers group, relative t Onset has 

a homogenous distribution with the majority of the values distributed between 1 and 4 s. 

This figure demonstrates that t Onset detection algorithm does not lead to tOnset variations.

On the other hand, as it can be seen from Fig. 8(b), the distribution of the values in patient’s 

pool is divided into two groups: first one is between 0 and 4 s; second one is between 4 and 

10 s. Here, more than 80% of the values, which are related to normal voxels in this group, 

are distributed between 0 and 4 s. Voxels with relative t Onset between 5 and 10 s are 

associated with the ischemic areas in the group of patients.

The relative t Onset (t rel) in myocardial basal, mid-cavity, and apical layers in a random 

patient with abnormal perfusion and a healthy volunteer is represented in Fig. 9. The 

inhomogeneity of the t Onset is apparent in the patient’s t Onset maps, whereas the healthy 

volunteer showed to have a relatively homogeneous distribution of t Onset, which is also 

shorter on average.

On a 2.8 GHz PC, optimized t Onset approach takes around 1.8 min and free parameter 

approach just less than a minute to perform the analysis.

Table I represents the coefficient of variation of the tOnset value for the five patients and five 

volunteers. A significant difference between the CV in the patient group and healthy 

volunteer group was observed (P-value = 0.0004). Overall, patients had a higher CV 

compared to healthy volunteers.

V Discussion

Based on the results obtained in vivo, in a hardware phantom and in computer simulations, 

we have shown that quantification of myocardial perfusion is sensitive to the delay between 

the arrival of contrast agent into the LV blood pool and myocardial tissue and consequently 

an inaccurate selection of tracer arrival time can cause a significant error in estimation of 

MBF.
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As our results demonstrated, this issue becomes even more important in voxel-wise analysis 

as it is more sensitive to delay time compared with a segmental analysis due to its higher 

spatial detail and lower CNR level. Therefore, the use of an optimized t Onset for 

deconvolution is needed to improve the accuracy of MBF estimations.

This study proposes to improve flow estimates in voxel-wise analysis by automatically 

finding the delay between t AIF and t Onset in each voxel and use it for quantification of MBF.

In this study, the assessment of reconstructed tissue curve goodness of fit as a function of the 

time shift was the basis for determining the optimized t Onset and, consequently, improving 

the accuracy of flow estimates. The algorithm introduced here considers the interaction 

between the delay time and the fit error to obtain an optimal estimate of the t Onset.

Our results demonstrated that the proposed algorithm for detection of t Onset is highly 

sensitive to noise level and flow rate. The proposed method showed to be more accurate in 

estimating the onset time of contrast agent at high CNR levels and flow rates.

However, despite the hurdle in estimation of onset time, using the optimized t Onset approach 

for quantitative analysis at low CNR levels (i.e., voxel-wise analysis) results in a higher 

accuracy in estimation of MBF compared with when the delay between t AIF and t Onset has 

been assumed as a free global parameter. Moreover, optimized t Onset method showed to be 

more accurate in estimation of MBF at all flow rates compared with when t Onset is assumed 

as a free global parameter.

Similar results were reflected in our experiments and clinical data, where the use of 

optimized t Onset allowed a significant improvement in the accuracy of the voxel-wise 

perfusion maps.

Moreover, the difference between the delay times in arrival of contrast agent in myocardium 

normal and ischemic voxels allows for the evaluation of diseased areas of by estimating the 

time point of tracer arrival at a particular voxel. This parameter, which its estimation is less 

complex compared to deconvolution analysis, could also be used as an impaired flow reserve 

marker with the ability distinguish between the arrival time at endocardial and epicardial 

segments.

A Limitations

The clinical findings presented here are preliminary and meant to demonstrate the feasibility 

of t Onset optimization on patients’ data. Additional studies involving a larger cohort of 

patients are necessary to better determine the predictive power of MBF maps.

To determine the impact of t Onset estimation on accurate quantitative flow estimation in 

patients, future prognostic studies testing the importance of voxel-wise MBF analysis in 

patients will be required. Moreover, a systematic study needs to be conducted to evaluate the 

impact of baseline correction on the t Onset estimation algorithm and, consequently, the 

accuracy of quantitative MBF assessment.
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It is important to note that myocardium signal intensity curves should always be aligned 

with the bolus of arterial input function of interest, independent of the used method (i.e., 

main bolus when dual-sequence or single-bolus techniques are used and prebolus when dual 

bolus is used). This is, however, not shown by the data presented in this paper, and a further 

study evaluating effects of t Onset estimation on these techniques is required.

Also, it is expected to have longer relative t Onset at apical layer compared to basal and mid-

cavity slice. However, due to the faster speed of blood at apical coronary arteries (200–500 

cm/s at rest) and more importantly the relatively low temporal resolution of the perfusion 

CMR, the capacitance effects of epicardial vessels are masked. This issue has not been 

addressed in this study and requires further investigations.

VI Conclusion

Voxel-wise perfusion estimates based on first pass perfusion CMR have many desirable 

characteristics including high sensitivity in identifying the tissue at risk. MBF estimates, 

however, are biased by several factors, including the tracer arrival time into myocardial 

tissue, and therefore attempts to quantify MBF without using the t Onset may be premature. 

An accurate estimation of MBF and thus clearer delineation of the ischemic region in the 

perfusion maps relies on the precise identification of t Onset.
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Fig. 1. 
Box plot representing the relative error (r) in estimation of MBF using Fermi method when 

τd has been kept as a free global parameter (Green/Dashed box) and when optimized t Onset 

has been used at different flow rates (Blue/Solid box). At each flow rate the range of CNR 

varies from 5 to 30. Sensitivity of the quantification methods has decreased as the flow rates 

increased.
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Fig. 2. 
Surface plot representing the difference between estimated r onset and r free (|ea free − ea onset 

| /MBFGS) overflow rate of 1–5 mL/(g·min) and CNR level of 5–30 for simulated data.
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Fig. 3. 
Error bars representing the relative error in estimation of optimized t Onset (r trel) in synthetic 

data for different levels of CNR and perfusion rates. Actual t rel here is equal to 3 dynamics.
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Fig. 4. 
Estimated MBF (blue circles) with its corresponding curve fit error (red triangles) for a 

random voxel in perfusion phantom with MBFgs = 5 mL/(g·min). The horizontal axis shows 

the shift of the starting t Onset. The dynamic that gives the smallest curve fit error 

corresponds to the smallest absolute error. Here, t rel is equal to timeshift + 1 as the 

sequential process starts form t AIF + 1 (t rel = timeshift + 1). These results demonstrate that 

the sequential deconvolution algorithm can be used to detect the optimized t Onset.
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Fig. 5. 
Scatter box plot representing the estimated voxel-wise MBF values in the phantom [average 

MBFGS = 5 mL/(g·min)], comparing the results obtained using an optimized t Onset with 

keeping τd as a free global parameter. Each individual green dot shows the estimated MBF 

at each voxel, and they have been spread for visualization reasons and clarity. On each blue 

box, the central red mark is the median; the edges of the box are the 25th and 75th 

percentiles. The CNR of the phantom data at voxel-wise analysis was equal to 19 ± 3.8.
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Fig. 6. 
Error bar plot representing the mean ± SD of MBF relative error r onset (solid line/blue) and r 

free (dashed line/back), under different CNR (a) and flow rates (b). Data in (a) are average 

over all flow rates (i.e. 1,2.5, and 5 mL/gr/min) at each CNR level and in (b) are averaged 

over all CNR levels (10, 20, 30, and 40) for each flow rates. At all flow and CNR levels 

Fermi with optimized t Onset performed favorably compared to Fermi with τd as a free global 

parameter. The difference between the two approaches is more apparent at CNR levels = 20 

and 30 [see Fig. 6(a)] and high flow rates [see Fig. 6(b)].
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Fig. 7. 
Box plot representing the difference between MBFonset and MBFfree from quantification in 

segmental and voxel-wise analysis in a group of patients. The difference between the 

obtained MBF values in both normal and ischemic regions of myocardium in voxel-wise 

analysis (low CNR, CNR = 17 ± 5.2) is higher than found in segmental analysis (high CNR, 

CNR = 28 ± 3.7). This higher difference proves the sensitivity of voxel-wise analysis to 

tracer arrival times. No significant difference between the results obtained in segmental 

analysis with and without using optimized t Onset was observed.
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Fig. 8. 
Histogram of the relative t Onset data in a group of (a) healthy volunteers and (b) patients. In 

the healthy volunteers group, relative tOnset has a homogenous distribution. The distribution 

of the values in patient’s pool is divided into two groups. First one is between 0 and 4 s, 

which corresponds to normal areas. Second group of values that are between 4 and 10 s are 

associated with the ischemic areas in the patients.
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Fig. 9. 
Delay maps illustrating the relative t Onset (t rel) in (top row) apatient with right coronary 

artery (RCA) disease and (bottom row) a healthy volunteer. The inhomogeneity of the t Onset 

in the tissue is apparent in the patient’s t Onset map. The healthy volunteer delay map showed 

to have a relatively homogenous distribution of t Onset. The difference between tOnset in 

voxels makes voxelwise quantification of MBF without using their real onset time 

inadequate.
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Fig. 10. 
Scatter-box plot representing the estimated voxel wise MBF values in a patient with RCA 

disease (empty circle/grey) and a healthy volunteer (filled circles/green), comparing results 

obtained using an optimized tOnset with keeping as a free global parameter. Each individual 

green dot shows the estimated MBF at each voxel and they have been spread for 

visualization reasons and clarity. On each blue box, the central red mark is the median; the 

edges of the box are the 25th and 75th percentiles.
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Table I
tOnset Coefficient of Variation in the Five Patients and Five Volunteers

Subject Patients Healthy Volunteers

1 0.59 0.45

2 0.62 0.24

3 0.55 0.31

4 0.78 0.19

5 0.53 0.27
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