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Abstract

The study of networks has been evolving because of its applications in diverse fields. Many 

complex systems involve multiple types of interactions and such systems are better modeled as 

multilayer networks.The question “which are the most (or least) important nodes in a given 

network?”, has gained substantial attention in the network science community. The importance of 

a node is known as centrality and there are multiple ways to define it. Extending the centrality 

measure to multilayer networks is challenging since the relative contribution of intra-layer edges 

vs. that of inter-layer edges to multilayer centrality is not straight-forward. With the growing 

applications of multilayer networks, several attempts have been made to define centrality in 

multilayer networks in recent years. There are different ways of tuning the inter-layer couplings 

which may lead to different classes of centrality measures. In this article, we provide an overview 

of the recent works related to centrality in multilayer networks with a focus on key use cases and 

implications of the type of inter-layer coupling on centrality and subsequent uses of the different 

centrality measures. We discuss the effect of three popular interlayer coupling methods viz. 

diagonal coupling between adjacent layers, diagonal coupling and cross coupling. We hope the 

colloquial tone of this article would make it a pleasant read for understanding the theoretical as 

well as experimental aspects of the work.

Keywords

Multilayer networks; Multiplex networks; Interconnected networks; Betweenness centrality; 
PageRank centrality; Eigenvector centrality

1 Introduction

Many real-world complex systems can be modeled as networks. The interacting agents of 

the system are represented by nodes and interactions among them are represented by a set of 

edges. Study of networks is profoundly an interdisciplinary area and has different sets of 

problems in different domains. The importance of a node in the network, also known as the 

* tkumar@cse.iitm.ac.in. 

Publisher’s Note 
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Europe PMC Funders Group
Author Manuscript
J Indian Inst Sci. Author manuscript; available in PMC 2021 July 18.

Published in final edited form as:
J Indian Inst Sci. 2019 June ; 99(2): 237–246. doi:10.1007/s41745-019-0103-y.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



node centrality, has applications in several domains such as finding the most influential 

people in social networks, essential genes/proteins in biological networks, crucial 

infrastructures in transportation networks and hubs of information in information networks. 

Similar to node centrality, we can also find important edges or other structures (such as sub-

networks) in the network12, 24, 39. We focus on node centrality (hereafter referred to as 

centrality) in this work.

Centrality can be defined in multiple ways depending on the type of a network (directed/ 

undirected, size) or application domain. For example, PageRank is an appropriate centrality 

measure for ranking the web pages in response to a search query17, whereas betweenness 

centrality is useful for designing the packet routing strategies in computer networks14. In 

this section, we will introduce this term. We will not provide a thorough study of centrality 

measures for monoplex (i.e., single layer) networks, which can be found at32. Let A ∈ 
ℝN × N be the adjacency matrix of a monoplex network with N nodes, where Aij is the 

strength of the ij th connection. Let x ∈ R N be the centrality vector of a network where xi 

represents the centrality of node i. For a given adjacency matrix A, the corresponding 

centrality vector x can be calculated in the ways mentioned in Table 1. With the advent of 

data collection methods and superior data processing techniques, many times we have access 

to multiple views of the data. For example, a set of authors can have multiple types of 

relationships among them such as co-authorship, citation, co-citation, etc. Networks that 

change their structure with time can also give rise to multiple data views. In such cases, each 

view corresponds to the network structure at one particular time stamp. Such networks are 

known as temporal networks and they can be modeled by multilayer networks. Multilayer 

networks have found immense applications in ecological systems36, biological systems19, 

transport systems2, social network analysis49, etc. With the abundance of applications in 

several domains, multilayer networks are known by different terminologies such as 

multiplex networks, interconnected networks, multidimensional networks, etc.27. The key 

difference between a multilayer network and a set of monoplex (single layer) networks is the 

presence of inter-layer edges in the former.

Finding centrality in multilayer networks has immense applications such as the study of the 

emergence of congestion in transport flows45, ranking in evolving networks29, and analyzing 

different life stages in the species41. In multilayer networks, the local neighborhood of a 

node can comprise nodes from the same layer as well as nodes from other layers. To define a 

centrality measure for multilayer networks, one has to come up with a way to handle the 

multilayer neighborhood of a node. Recently there have been several attempts at defining 

centrality measures for multilayer networks. Most of these methods differ in the way they 

handle inter-layer coupling. For instance, the multiple layers can be merged to form a 

monoplex network, or at the other extreme, the multilayer network itself can be treated as a 

giant monoplex network. The coupling methods have their own implications when combined 

with the centrality measures. Despite the availability of several multilayer centrality 

measures, there is a lack of study on the applicability of these methods. In this work, we 

review the effect of inter-layer coupling on different centrality measures, and discuss their 

use cases.
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In this article, we do not cover the entire spectrum of centrality measures but focus only on 

the study of different inter-layer coupling methods and their effect on the prominent 

centrality measures. Related reviews exist in the literature on multilayer networks in 

general3, 6, 25, 53, and centrality measures in particular10, 21. However, these works largely 

survey the centrality measures for only one particular kind of inter-layer coupling. Our work 

attempts to cover the centrality works involving different types of inter-layer coupling.

2 Mathematical Notations

Different centrality measures require the multilayer network to be represented in different 

formats and we represent two popular ways of representing a multilayer network here.

2.1 Supra-Adjacency List Representation

We represent a graph by G = (V, E), where V is a finite set of nodes with | V |= N and E is a 

set of node–node pairs representing the edges; E ⊆ V × V. Let L be the number of layers 

present in the multilayer network. As defined in21, let VM ⊆ V × L represents the node–layer 

pairs such that (v, l) ∈ VM if and only if v is present in layer l. The edge set spanning both 

within and across layers can be represented by EM ⊆ VM × VM. A multilayer network can be 

represented by a quadruplet M = (VM, EM, V, L). For example, the multilayer network M 
shown in Fig. 1 has V ={1, 2, 3, 4, 5} and three layers L ={L1, L2, L3}. The set of node–

layer pairs can be represented as: VM ={(1, L1), (2,L1), (3, L1),(4, L1), (5, L1), (1,L2),(2,L2),

(3,L2),(4,L2),(5,L2),(2,L3),(3,L3), (4, L3), (5, L3)} V × L. The set of edges (intra-layer and 

inter-layer) can be represented as: EM = {{(1,L1),(2,L1)}, {(1,L1),(3,L1)}, {(2, L1), (3, L1)}, 

{(3,L1),(4,L1)}, {(4,L1),(5,L1)}, {(1, L2), (2, L2)}, {(1,L2),(3,L2)}, {(1,L2),(4,L2)}, {(2, L3), 

(4, L3)}, {(4,L3),(5,L3)}, {(1,L1),(1,L2)}, {(2, L1), (1, L2)}, {(3,L1),(3,L2)}, {(4,L1),(4,L2)}, 

{(4, L1), (5, L2)}, {(5,L1),(5,L2)}, {(2,L1),(2,L3)}, {(2, L1), (3, L3)}, {(3,L1),(3,L3)}, 

{(4,L1),(3,L3)}, {(5, L1), (5, L3)}, {(2,L2),(2,L3)}, {(3,L2),(3,L3)}, {(4, L2), (4, L3)}, {(5, 

L2), (4, L3)}, {(5, L2), (5, L3)}}.

2.2 Supra-Adjacency Matrix Representation

Following the convention used in18, we can flatten the multilayer network to a 2-

dimensional supra-adjacency matrix. This is a special kind of matrix which has an inherent 

block structure. For the multilayer network shown in Fig. 1, the supra-adjacency matrix is 

shown in Fig. 2. Supraadjacency is an NL × NL dimensional matrix with diagonal blocks 

dedicated to intra-layer edges and non-diagonal blocks dedicated to interlayer edges. 

Presence of intra-layer edges is indicated by □ and inter-layer edges is indicated by □. Since 

all the edges (inter-layer and intra-layer) are undirected for this example, so the 

supraadjacency matrix is symmetric.

3 Inter-Layer Coupling Methods

There are different potential approaches for dealing with multiple layers and inter-layer 

edges of multilayer networks. The first approach is to ignore the layered structure of the 

network and treat nodes from all the layers like a giant network. One can use existing 

centrality measures on this entire network. This approach fails to distinguish between intra-
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layer and inter-layer edges, and hence not appropriate for analyzing multilayer networks. 

Another approach is to calculate the centrality of node i in each layer separately and get the 

vector c(i) = {x[1] (i),...x[L](i)}. Node centrality xi can be identified by finding the mean of 

c(i). In addition to finding the mean, there are several other possible ways such as finding a 

convex combination, finding the weighted average4, normalizing the eigenvector relative to 

the largest eigenvalue43, etc. This seems to be a straightforward approach; however, it 

ignores the inter-layer coupling of the network. Setting aside these two naive methods, we 

discuss the following coupling methods in greater detail in this paper.

3.1 Diagonal Coupling (Adjacent Layers)

Many real-world networks change their structure with time; such networks are known as 

temporal networks. Finding centrality in temporal networks has many applications such as 

dynamic network analysis30, finding temporal node centrality26, finding joint and marginal 

centrality52, etc. Network structure at different time stamps can be interpreted as multiple 

layers of a larger network16, 22. Working with the layers independently to define temporal 

network centrality measures may lead to undesired results like sudden fluctuations in the 

university rankings from year to year46.

Temporal networks have a special property of having the inter-layer coupling only between 

adjacent layers. Which means that the network can have inter-layer edges only between 

layers {α, α ± 1}. This special kind of coupling leads to diagonal blocks in non-diagonal 

positions (adjacent to diagonal blocks) of the supra-adjacency matrix as shown in Fig. 3. To 

extend the existing centrality measures to temporal networks, one obvious way is to use the 

NL × NL supra-adjacency matrix with different attention to the interlayer edges,

A =

A[1] ω(I) 0 ⋯

ω(I) A[2] ω(I) ⋱

0 ω(I) A[3] ⋱
⋮ ⋱ ⋱ ⋱

where ω ≥ 0 is known as the layer coupling coefficient. Traditional centrality measures can 

directly be applied on A which will lead to a centrality vector of size NL. The centrality 

vector can be interpreted to return the node centrality at each time stamp5. Clearly, this 

approach ignores the block diagonal structure of the matrix and does not distinguish between 

the inter-layer and intra-layer edges10. This issue can be circumvented by changing the 

representation of either the inter-layer edges or the intra-layer edges. We discuss both of 

these methods below:

3.1.1 Inter-Layer Coupling of Centrality Matrices—The idea of this approach is to 

find the centrality matrix for each layer and directly couple it to the centrality matrix of its 

adjacent temporal layers. Let C [α] denote the centrality matrix for the temporal network at 

layer α. Let ϵ = 1/ω Then the supra-centrality matrix48 can be represented as,
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ℂ =

C[1] I 0 ⋯

I C[2] I ⋱

0 I C[3] ⋱
⋮ ⋱ ⋱ ⋱

The above formulation works with the assumption that C[α] is non-negative and irreducible 

for every α ∈ L. Similarly, C is also non-negative and irreducible for any ε > 0, which leads 

to the Perron Frobenius theorem for non-negative matrices31 and ensures uniqueness of the 

largest eigenvalue and non-negativity of the corresponding eigenvector52. Thus, the C matrix 

can be viewed as an adjacency matrix to find centrality using standard methods.

3.1.2 Incorporating Inter-Layer Similarity—Let 

C[α, α + 1] = diag c1
[α, α + 1], c2

[α, α + 1], …, cN
[α, α + 1]  be the N × N dimensional inter-layer 

similarity matrix for layers α and α + 1. The supra-adjacency matrix can then be 

formulated52 as:

A=

A[1] C[1, 2] 0 …

C[2, 1] A[2] C[2, 3] ⋱

0 C[2, 3] A[3] ⋱
⋮ ⋱ ⋱ ⋱

where ci
α, α + 1 denotes the similarity between the same physical node at two adjacent layers. 

The supra-adjacency matrix A can now be used to find the centrality. There are many 

similarity measures to compute ci
α, α + 1 such as Adamic-Adar Index1, Jaccard Index, Salton 

Index20, Resource Allocation Index56, etc. For a detailed experimental study on this method, 

kindly refer to52.

3.2 Diagonal Coupling

In time-independent multilayer networks, the inter-layer coupling is not limited to adjacent 

layers. For example, a multilayer network can represent different relationships among 

authors such as citation, co-authorship, co-citation, etc. In such networks, one can observe 

inter-layer coupling among all pairs of layers as shown in Fig. 5. Without loss of generality, 

one can assume the same set of vertices but a possibly different set of edges in different 

layers. Finding centrality in such networks has multiple applications such as node ranking42, 

finding the most versatile nodes11, etc. For the same reason, multilayer centrality is also 

referred to as versatility. In the current section, we discuss two major approaches to find 

centrality— eigenvector-based and path-based.

3.2.1 Eigenvector-Based Centrality—Network structure in layer α may get 

influenced by the nodes from other layers α′. The centrality measure for multilayer network 

must take this influence into account. This influence among layers can be captured by a 

matrix W ∈ ℝL×L, where wαβ denotes the influence of layer α on layer β. Once the wαβ is 

Kumar et al. Page 5

J Indian Inst Sci. Author manuscript; available in PMC 2021 July 18.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



fixed, we can define the local multilayer eigenvector-like centrality cα as a leading 

eigenvector of the following matrix:

Aα = βwαβA[β, β]

Now, we can directly use this matrix to find centrality with traditional methods.

Sometimes, centrality of a node v in a layer not only depends on the other connected nodes 

in the same layer α but also on the nodes from other layers. In such networks, it becomes 

essential to consider the influence from the nodes across the layers. To find the centrality of 

a node in a particular layer, the following modified adjacency matrix can be used43.

A⊗ =

w11A[1, 1] w12A[2, 2] … w1LA[L, L]

w21A[1, 1] w22A[2, 2] … w2LA[L, L]

⋮ ⋮ ⋱ ⋮

wL1A[1, 1] wL2A[2, 2] … wLLA[L, L]

∈ ℝNL × NL

Where A⊗ is the Khatri-Rao product of the following matrices:

W =
w11 … w1L

⋮ ⋱ ⋮
wL1 … wLL

and A[1, 1]A[2, 2]…A[L, L]

A⊗ can be viewed as a giant adjacency matrix and can be used to find centrality by the 

measures defined on monoplex networks. To read up on the existence and uniqueness of the 

leading eigenvector of A⊗, please refer to43.

3.2.2 Path-Based Centrality—Betweenness centrality is a prominent path-based 

centrality measure. To extend betweenness

centrality measure to multilayer networks, we have to accommodate the fact that a path can 

comprise of nodes and edges from multiple layers. Let σiαjβ be the count of edge distinct 

shortest paths from (i, α) to (j, β). The cross betweenness centrality C(v) of a node-layer pair 

(v, μ) is defined as the fraction of times (v, μ) occurs on the shortest path between any 

origin–destination pair {(i, α), (j, β)}. Mathematically,

C vμ = i, j ∈ V : i ≠ j α ∈ L
σiαjαν

σiαjα + (1 − )α, β ∈ L:α ≠ β
σiαjβ

νμ

σiαjβ

where σiαjβ
vμ

 is the number of times node–layer pair (v, μ) occurs on the shortest path from (i, 

α) to (j, β). Here ε is a tuning parameter which balances between the importance of inter-
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layer and intra-layer edges. Cross betweenness centrality of a node can be computed in 

O(NLE) 7.

3.3 Cross Coupling

This is the most general case of coupling among all the methods discussed in this article. A 

node– layer pair (i, α) can be influenced by the nodes in the same layer ((j, α) : i = j) as well 

as nodes of any other layer ((j, β) : α = β) as shown in Fig. 1. Note that the coupling 

techniques discussed in earlier sections are the special cases of this particular coupling, 

which makes it important to extend (or reformulate) the centrality measures for these 

networks. We do so by adopting as is the framework of random walk on weighted 

(monoplex) graphs, and only changing the graph on which this framework is applied (viz., 

applying this random walk framework as is to a large weighted graph constructed out of our 

multilayer network as described below).

To define the centrality measures first, we introduce the random walk operator for a 

multilayer network M = (VM, EM, V, L). A weighted multilayer network can have weights 

associated to the edges. Let wij(α, β) be the weight of the edge between (i, α) and (j, β). Let 

siα = j, βwij(α, β) be the node strength of (i, α). We can write the transition probability from 

(i, α) to (j, β) as

Tjβ
iα =

wij(α, β)
max siα,

where ϵ > 0 is a constant. Note that is a fourdimensional matrix (also known as tensor). At 

time t, let piα (t) be the probability of finding the random walker at (i, α).Then,

pjβ(t + 1) = (i, α) ∈ V MTjβ
iαpiα(t)

The steady state solution for the random walk can be given by the leading eigentensor 44,

Tjβ
iαΠiα = λΠjβ

Intuitively a random walker should visit the nodes with high strength more frequently than 

the nodes with lesser strength. This is also evident from our formulation as, πiα ∝ siα. The 

transition tensor Tjβ
iα can be defined in multiple ways9, but in this article we focus on the one 

similar to a random walk on monoplex networks35.

We can use this formulation to define different centrality measures on multilayer networks. 

Following the discussion from11, in PageRank, a walker can move from one node to its 

neighbor with probability r and it can teleport to any other node with probability (1 - r). 

Considering the uniform probability of getting a node picked while teleportation, the 

transition tensor can be given by,
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Rjβ
iα = rTjβ

iα + (1 − r)
NL ujβ

iα

where ujβ
iα is the unit tensor of rank 4. PageRank centrality for multilayer networks is given 

by the solution of this master equation. As we discussed in Sect. 3.2.2, betweenness 

centrality is another important centrality measure. There we measured the betweenness 

centrality as the fraction of times a node j occurs on all pair shortest paths. However, in 

many real-world networks, information does not necessarily propagate through the shortest 

path. For example, packets over the internet or rumors over a social network are not always 

restricted to following the shortest path15, 47. In such cases, the shortest path betweenness 

centrality is not the right choice to make. One possible proxy for the betweenness is the 

random-walk betweenness, which is the number of random walks between any pair of nodes 

that pass through a node j 33. To analytically compute this number, it is convenient to use the 

absorbing random walk. Since we are interested in counting the number of times a node j 
appears on the random walk, we assume node v as the absorbing state. For multilayer 

networks, we can define an absorbing random walk by the following 4-rank tensor,

T[v] jβ
iα =

0 ifj = v

Tjβ
iα otherwise

Following the discussion from44, the number of times a random walker passes through a 

node j in layer β, irrespective of time step, is given by,

τ[v] jβ
iα = δ − T[d]

−1
jβ
iα

where δ is a 4 - d tensor such that δjβ
iα = δj

iδβ
α and δ represents the Kronecker delta. It can be 

noticed that the number of times the random walker visits node j depends on the layers 

where j and starting node are located. Let o be the starting node, the matrix representation of 

a random walker which can start from any layer σ and pass through j in any layer is given 

by,

τ[v] j
o = 1

L τ[v] jβ
oσuβuσ,

where uβ and uσ are unit column vector and unit row vector, respectively. The final 

betweenness centrality vector can be obtained by averaging over all possible origin–

destination pairs as follows,

τj = 1
N(N − 1)Nv = 1 τ[v] j

ouo

For theoretical justification and empirical evidences kindly refer to44. In addition to using 

the supra-adjacency list and supra-adjacency matrix representation of multilayer networks, 
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there are other popular approaches such as representing the multilayer network as a 

collection of nodes and multilinks23. To observe the effect of inter-layer cross-coupling on a 

node, one can find the centrality using the measures defined in this section and subtract it 

from the centrality calculated by the measures defined in the previous sections.

4 Conclusion

Multilayer networks can capture multiple types of interactions among nodes. Due to the 

variety of applications of multilayer networks, different aspects of these networks have been 

studied such as their robustness against node attacks13, 54, 55, process spreading8, 50 and 

evolutionary games51. In this paper, we discussed different types of inter-layer coupling in 

multilayer networks, their use-cases, and their implications on centrality measures. 

Currently, the study of multilayer networks is confined to layers which capture 

homogeneous entities and their pairwise relationships to one another. Many complex 

systems are better modelled by other richer graph structures such as hypergraphs28, 38, 40, 

and knowledge graphs34, 37. It can be a promising future direction to extend the multilayer 

network framework to capture such complex graph structures and study their properties.
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Figure 1. A multilayer network depicting the cross inter-layer coupling.
A node is allowed to have as many connections with nodes within the layer and nodes from 

other layers. The node set in the layers need not be the same among all layers, as node 1 is 

missing in L 3.
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Figure 2. Supra-adjacency matrix representation M of the multilayer network shown in Fig. 1.
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Figure 3. Supra-adjacency matrix representation of multilayer network shown in Fig. 4 
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Figure 4. A multilayer network depicting the diagonal inter-layer coupling of adjacent layers, for 
example, time-series points.
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Figure 5. Supra-adjacency matrix representation of multilayer network as shown in Fig. 6.
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Figure 6. A multilayer network depicting the diagonal inter-layer coupling. Every node in a layer 
is connected to its counterpart in all other layers.
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Table 1

Centrality measures for monoplex networks. For detailed description of these measures and many others, 

please refer32

Centrality measure Centrality of node i Description

Eigenvector centrality xi = λ−1jAijxj λ is the leading eigenvalue

PageRank centrality xi = αjAij
xj
kj

α is a scalar and kj is the degree of node j

HITS centrality 
(authority)

xi = αjAijyj α is a scalar and yj is the hub centrality of node j

HITS centrality (hub) yi = αjAijxj α is a scalar and xj is the authority centrality of node j

Betweenness centrality xi = st
nsti

gst
ni st is the # of shortest paths between sandt that go through i. gst is the total # of 
shortest paths between nodes sand t
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