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Abstract

The purpose of this study is to enable high spatial resolution voxelwise quantitative analysis of 

myocardial perfusion in dynamic contrast-enhanced cardiovascular MR, in particular by finding 

the most favorable quantification algorithm in this context. Four deconvolution algorithms—Fermi 

function modeling, deconvolution using B-spline basis, deconvolution using exponential basis, and 

autoregressive moving average modeling —were tested to calculate voxel-wise perfusion 

estimates. The algorithms were developed on synthetic data and validated against a true gold-

standard using a hardware perfusion phantom. The accuracy of each method was assessed for 

different levels of spatial averaging and perfusion rate. Finally, voxel-wise analysis was used to 

generate high resolution perfusion maps on real data acquired from five patients with suspected 

coronary artery disease and two healthy volunteers. On both synthetic and perfusion phantom data, 

the B-spline method had the highest error in estimation of myocardial blood flow. The 

autoregressive moving average modeling and exponential methods gave accurate estimates of 

myocardial blood flow. The Fermi model was the most robust method to noise. Both simulations 

and maps in the patients and hardware phantom showed that voxel-wise quantification of 

myocardium perfusion is feasible and can be used to detect abnormal regions. Magn Reson Med 
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Introduction

Detection of myocardial ischemia is the key to the diagnosis of coronary artery disease (1). 

Several invasive techniques, including Doppler catheterization and coronary sinus thermo 

dilution, are available for measuring myocardial blood flow (MBF) in humans. These 

methods, which are variations of indicator dilution methods, are invasive and can only assess 

average perfusion of whole coronary artery territories. Amongst noninvasive imaging 

techniques, positron emission tomography (PET) is currently regarded as a gold standard for 

the quantification of absolute MBF. However, this technique has several drawbacks 

including low spatial resolution (making it unsuitable for the detection of subtle 

subendocardial perfusion defects), patient radiation exposure, and high cost (2,3).

Compared with PET, dynamic contrast-enhanced cardiovascular magnetic resonance (DCE-

CMR) imaging has several potential advantages: superior spatial resolution, absence of 

ionizing radiation, and availability of stable and inert contrast agents of low toxicity. 

Estimation of MBF from DCE-CMR studies has been reported using a number of different 

analysis techniques including quantitative and semiquantitative methods (4–14).

Although favorable results with semiquantitative techniques such as upslope analysis of the 

myocardial time-intensity curve have been reported, these methods have shown to 

underestimate the perfusion parameters (15,16). Moreover, semiquantitative analysis relies 

on a ratio which introduce a bias on the data itself and the relationship between MBF and the 

semiquantitative methods parameters such as the curve upslope is not as clear-cut as the 

relationship between MBF and the impulse response amplitude which we get from 

quantitative analysis (8,17), whereas using fully quantitative analysis allows the absolute 

quantification of MBF in units of ml/g/min and may permit more accurate and objective 

assessment of altered myocardial perfusion in patients with heart disease.

Quantitative methods can be further divided into two groups: model-based and model-

independent analysis.

Model-independent quantitative analysis, based on the central volume principle established 

by Zierler et al.(18), has been applied to DCE-CMR acquired data to determine myocardial 

perfusion (4–7,10,13). It is widely used with intravascular contrast agents and has been 

applied with extracellular contrast agents to quantify renal and tumor perfusion (11,19,20).

Model independent methods require that the measured blood, C aif(t) and tissue, C myo(t), 
enhancement data, which are related together through the following equation:

Cmyo(t) = ∫
0

t

Caif(t − τ)ℎ(τ)dτ = Caif(t) * ℎ(t) [1]

are mathematically deconvolved to estimate tissue impulse response function, h(t). The 

maximum amplitude of h(t) is directly related to the rate of perfusion (4,5,7,10,18), 

independent of biological parameters such as the distribution and permeability of the vessels 

within the tissue via:
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MBF = max(ℎ(t))
dt . SGmyo

where dt is the sampling rate of perfusion images and SGmyo is the myocardial density, 

which was assumed to be equal to 1.05 g/mL (18,21).

This task is challenging because it amounts to inverting the convolution of h(t) with C aif(t), 
which is in this context an ill-posed noise sensitive inverse problem and needs regularization 

(22,23).

To the best of our knowledge, myocardial perfusion estimates have only been calculated for 

segmental quantification of myocardial perfusion, i.e., time curves averaged over groups of 

voxels, while voxel-wise analysis, although previously used on an experimental isolated pig 

heart model (10), has not been developed for clinical practice.

Voxel-wise myocardium perfusion analysis allows the quantification of MBF with the 

potential to preserve the information about extension, localization, and transmurality of 

ischemia. This technique produces higher resolution images of MBF and thus has the 

potential to allow a more accurate diagnosis of coronary artery disease. However, the lower 

contrast to noise ratio (CNR) of single voxel curves may reduce the accuracy and reliability 

of the measurement.

The objective of this study is to demonstrate the feasibility and validation of voxel-wise 

perfusion analysis on high-resolution k-t perfusion data, by comparing the main regularized 

deconvolution methods in terms of accuracy and robustness to noise.

Theory

Although many regularization methods have been used for deconvolution, the most popular 

methods for kernel estimation in DCE-CMR include: Fermi function modeling (6,24), 

deconvolution using a B-spline basis (5,7), and deconvolution using an exponential 

approximation (11). More recently, autoregressive moving average (ARMA) has also been 

used to measure the tissue impulse response (10,25).

Fermi Function Modeling

The use of the Fermi function was motivated by the observed similarity between the 

simulated impulse response for an intravascular tracer and the shape of the Fermi function. 

Jerosch-Herold et al. (6) and Wilke et al. (24) fitted time curves for the tissue impulse 

response function, h(t), to the Fermi function with the following analytical expression:

ℎ(t) = R 1
e(τ − τ0 − τd)k + 1

u(t − τd) [2]

using a Marquardt-Levenberg nonlinear least square algorithm by letting k, R and τ0 vary 

and keeping τd fixed. In Eq. 2, u(t — τd) is the unit step function, τd accounts for the delay 
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time between the appearance of the signal in the LV blood pool and myocardial region of 

interest (ROI) and τ0 characterizes the width of the shoulder of the Fermi function during 

which little or no contrast agent has left ROI. R is the index of contrast agent influx 

parameter, and k represents the decay rate of h(t) due to contrast agent wash out. From Eq. 2, 

MBF is calculated as h(t) at t = 0.

Deconvolution Using B-Spline Basis

Jerosch-Herold et.al (7) developed a model-independent deconvolution method that 

parameterized h(t) as a sum of weighted B-spline functions (ℎ(t) = ∑j = 1
P ℎjBj

(k)(t)) and 

stabilized the solution by using Tikhonov regularization. In the above sum, Bj
(k) represents 

the jth B-spline of order k (7,26).

All previous studies that have used this method (4,5,7,8) have found the tissue impulse 

response by using the following least square minimization problem and Tikhonov 

regularization:

min
ℎj

{‖Cmyo(t) − ℎ(t) * Caif(t)‖2 + λ2 ∇ℎ(t) 2} [3]

where ▽ represents the temporal difference operator, λ is a regularization parameter, and ||·|| 

denotes the Euclidean norm. Using L-curve analysis or generalized crossvalidation, will lead 

to a good choice of (27). Singular value decomposition can be used to obtain a stable 

solution for this ill-posed least square minimization problem.

Exponential Basis Deconvolution

Recently, Keeling et al.(11) developed a model-independent deconvolution method using an 

approximation basis of exponential functions (ℎ(t) = ∑m = 1
M ℎme−λmt) constrained to be non-

negative and non-increasing for the tissue impulse response and demonstrated that this 

method compares favorably to the standard singular value decomposition method in brain 

perfusion imaging (11,20). Exponential basis deconvolution regularizes naturally by 

constraining the estimated kernel to be monotonic.

In addition to the choice of approximation basis, further regularization is implemented in 

terms of the number of base functions (M) and the distribution of their parameters (11).

Finally, h(t) is found by using the following linearly constrained least squares problem:

min(ℎx ‖Cmyo(t) − ℎ(t) * Caif ‖2 ℎ′(t) ≤ 0, ℎ(t) ≥ 0 [4]

Auto Regressive Moving Average

Autoregressive moving average (ARMA) models are mathematical models of the 

persistence, or autocorrelation, in a time series. The ARMA model assumes that the discrete 

time samples of measured C myo(t) and C aif(t) are related together according to:
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Cmyo(t) = ∑
i = 0

Q
biCaif(t − i) − ∑

j = 1

L
ajCmyo(t − j) [5]

To identify the aj and the bi, the above equation can be written for t = 1 … N

Caif (1) … 0 Cmyo (0) ⋯ 0
Caif (2) ⋮ ⋮ Cmyo (1) ⋮ ⋮

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
Caif (N) … Caif (N − Q) Cmyo (N − 1) … Cmyo(N − L)

⋅

b0
⋮

bQ
−a1

⋮
−aL

=

Cmyo (1)
⋮
⋮

Cmyo (N)

[6]

where N represents the number of acquisition data points and assuming null initial 

condition. The least squares solution of Eq. 6, after choosing the best value for L and Q 
which reduces the degree of freedom of the deconvolution equation and make it more stable, 

gives the coefficients aj, bi and hence h(t) can be computed by finding the solution of Eq. 5 

to the Dirac function (δ(t = 1) if t = 0 and zero if t ≠ 0) (10,25).

Estimation of the ARMA model order requires that the model to be fitted for many L and Q 

orders to find the smallest values of L and Q which provide an acceptable fit to the data and 

reduce the computational burden. A study has been done on the ARMA model to obtain the 

best order for perfusion quantification previously (25).

Finding appropriate orders for the ARMA model can be facilitated by plotting the partial 

autocorrelation functions for an estimate of L and similarly using the autocorrelation 

functions for an estimate of Q (28,29). Note that the ARMA approach is also justified from 

the physiological perspective, as it is a discrete-time version of perfusion modeling using 

linear differential equations with constant coefficients (25,30).

Material and Methods

Synthetic Data

A first experiment was performed by using simulated data with known perfusion values and 

by calculating the absolute error of quantification.

This experiment was undertaken to verify the reliability of the perfusion estimates at 

different simulated levels of CNR and flow for each quantification method.
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Noiseless gold standard tissue impulse response, h GS(t), were constructed by using the 

following phar-maco-kinetic model, described by Lindsey et al. (30):

ℎGS(t) = eλ1t − θλut
λ1 − λ2

u(t) − θλ1t − θλΔt
λ1 − λ3

u(t) [8]

where u(t) is the unit step function.

The physiological parameters, i.e., λ n, n = 1,2,3, were chosen to generate tissue responses 

of the same order as those obtained by the fitting of real series of DCE-CMR acquisitions. 

λ2 and λ3 have been kept fixed on 0.21 and 0.36, respectively, and the λ1 value has been 

changed to simulate a series of perfusion values between 0.5 and 5 mL/g/min. Table 1 

represents the chosen λ1 values for each simulated MBF level.

C aif(t) used in this experiment is a convolution of many exponentials as suggested in (11) to 

model the propagation of an impulsive bolus injection through several compartments of the 

cardiovascular system. The injected bolus typically travels through at least three major 

compartments: from the injection site through the right heart, from the right heart through 

the lungs to the left heart, and finally from the left heart to the myocardium tissue. For 

simplicity, we assumed same mean transit time (1/v > 0, v = 0.3897), and thus the same 

compartment kernel ve-vt for all compartments. As a result, the arterial input at the tissue site 

can be formulated as n (n = 4) convolution of the unit kernel:

Caif(t) = δ(t) * [ve−vt]1 * [ve−vt]2 * … * [ve−vt]n

Initial C myo(t) was then obtained by convolving hGS(t) with the simulated C aif(t) (11). 

Rician noise of variable amplitudes were added to both C aif(t) and C myo(t) (31,32). The 

range of noise amplitude was chosen so that CNR in the both C aif(t) and C myo(t) would be 

between 1 and 40. Equal noise amplitudes were added to both C aif(t) C myo(t) at each CNR 

level. CNR is defined as the ratio of the signal change from baseline to peak of enhancement 

data, divided by the standard deviation (STD) of the signal intensity curves before contrast.

MRI Image Acquisition

All data (phantom and patient) were acquired on a Philips Achieva 3T (TX) system, 

equipped with a 32-channel cardiac phased array receiver coil (Philips Health Care, Best, 

Netherlands).

To avoid any confounding effects due to signal saturation, a universal dual-bolus injection 

scheme was performed in patients and the perfusion phantom as described by Ishida et al. 

(33). We used 0.001 mEq/kg of body weight as a prebolus and 0.01 mEq/kg of body weight 

as bolus (Gadobutrol Gadovist®, Bayer Schering, Germany). The boluses were injected at 4 

mL/s followed by a 20 mL saline flush.

Hardware Perfusion Phantom

A second experiment was performed on a hardware perfusion phantom, which was recently 

developed by our group (34).The perfusion phantom resembles the anatomy of a 60 kg 
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patient. It allows an efficient and reproducible simulation of myocardial perfusion 

acquisition, providing data suitable for quantification and with the possibility of a validation 

of the perfusion quantification results with a true gold standard.

Phantom data were acquired in one slice in a transverse geometry, visualizing the 

progression of the bolus of contrast agent in the large thoracic vessels and the myocardial 

compartments in the same image, with a saturation recovery gradient echo method 

(repetition time/ echo time 3.0 ms/1.0 ms, flip angle 15°; effective k-t SENSE acceleration 

3.8 fold, spatial resolution 1.2 x 1.2 x 10 mm3, saturation delay 120 ms, Matrix size 132 x 

132, BW 2137 Hz, FOV 24 x 24) (35–37).

Myocardial perfusion was simulated for the following experimental conditions. The 

perfusion phantom has two compartments. Average flow in the reference compartment was 

kept constant at perfusion rate equal to 5 mL/g/min. Average perfusion rate in the variable 

compartment ranging across the following values: 1, 2, 3, 4, and 5 mL/g/min. CNR was 

manipulated by varying the distance of the anterior surface coil from the phantom (high-

CNR acquisitions with the coil as close as possible to the phantom; low-CNR acquisitions 

with the coil 10 cm from the phantom).

Patient Study

In this study, we present preliminary data obtained for voxel-wise quantification of DCE-

CMR data from five patients with angina symptoms referred to evaluate the presence and 

extension of inducible abnormalities of MBF during stress with adenosine and two healthy 

volunteers. The study was prospectively performed at Guy’s and St Thomas’ Hospital 

London (UK). The institutional review board approved the study, and all patients signed an 

informed consent to be included.

Aim of perfusion study was to prove the feasibility of the perfusion maps in patients with 

coronary artery disease and in volunteers.

Patients perfusion data were acquired in three slices (apical, mid cavity, and basal) in a short 

axis geometry, visualizing the progression of the bolus of contrast agent in the large thoracic 

vessels and the myocardial compartments in the same image, with a saturation recovery 

gradient echo method (repetition time/echo time 3.0 ms/1.0 ms, flip angle 15°; effective k-t 

SENSE acceleration 3.8 fold, spatial resolution 1.2 x 1.2 x 10 mm3, saturation delay 120 ms, 

Matrix size 251 x 251, BW 724 Hz, FOV 31 x 31) (35–37).

MR Image Processing

Accurate voxel-based MBF estimation requires respiratory motion correction and 

myocardial contour delineation. We developed an automated approach based on (38,39) in 

which respiratory motion was removed using affine image registration by maximization of 

the joint correlation between consecutive dynamics within an automatically determined ROI. 

Then, a temporal maximum intensity projection was calculated to serve as a feature image 

for an automatic contour delineation method based on active contour models (38,39). Signal 

intensities were then sampled using bilinear interpolation at a grid of 60 angular positions 
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and 10 transmural positions (or layers). The transmural positions were located on chords 

perpendicular to the myocardial centre-line.

To maximize reproducibility of MBF quantification, care was taken to obtain C aif(t) in a 

robust and reproducible way. C aif(t) was obtained by sampling the trimmed median intensity 

within a ROI in the blood pool of the basal slice. To be robust against the present of 

papillary muscles, the ROI was obtained by down scaling the endocardium contours. 

Furthermore, the trimmed median operator ignores 15% of outlier samples. The resulting 

signal is smooth and represents the AIF closest to the Ostia, (the true location of the input to 

the coronary system). Before deconvolution analysis, baseline correction that includes 

scaling of the signal intensities proportional to coil sensitivity and correcting for an offset to 

shift the baseline signal to zero has been performed. Moreover, spatial filtering, gaussian 

filter of size 5, and temporal filtering, a 30th order Hamming-window based low pass finite 

impulse response filter with normalized cut-off frequency of 0.23 (40), were performed on 

the extracted signal intensity curves. For all models, the perfusion estimates were computed 

by deconvolving the measured blood and tissue enhancement data during the first pass of 

contrast agent in myocardium.

The constrained least square problems were solved using lsqlin for Eq. 3, Eq. 4, and Eq. 6 

and lsqnonlin for Eq. 2 in MATLAB(Mathworks, Natick, Massachusetts, USA, version 

R2010b) (11,22). We used fourth-degree B-spline polynomial with 15 equally spaced break 

points (7) and 10 time scale (M = 10) for exponential bases deconvolution (11) for the 

representation of impulse response in this study. To render the deconvolution process more 

stable and reduce the computational burden, second-order autoregressive model, i.e., ARMA 

(Q = 0,L = 2), (25), was chosen for quantification.

Statistical Analysis

In synthetic numerical and hardware perfusion phantom experiments, considered methods 

were compared by using the curve fit relative error:

x = ‖Cmyo(t) − ℎ * Caif (t)‖
‖Cmyo(t)‖ [9]

and absolute perfusion error (e a), which is defined when the reference perfusion value, 

MBFGS is available as:

ea = |MBF − MBFGS|

Mean ± STD of ea was calculated for each different condition tested in the perfusion 

phantom and synthetic data.

Results

Synthetic Data

Figure 1a shows plots of simulated C aif(t) and C myo(t) curves for different level of CNR 

and perfusion rates. C myo for a synthetic myocardium voxel along with the estimated C myo 
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curves, which have been obtained using ARMA, exponential, B-spline, and Fermi method, 

at CNR = 40 and CNR = 5 are shown in Fig. 1b and c, respectively.

Figure 2 shows the absolute errors (e a) of the synthetic data MBF estimates obtained with 

the four methods— ARMA (a), exponential (b), B-spline (c), and Fermi (d)— at different 

levels of flow and CNR. e a is averaged over all voxels at each CNR level and perfusion rate.

Table 2 represents the mean ± STD of e a over different CNR levels at each perfusion rate 

for synthetic data. ARMA and exponential methods provided the most accurate and reliable 

estimates. When MBF is below 1 mL/g/ min, the Fermi model is as accurate as ARMA. As 

seen in Fig. 2 and Table 2 at a constant MBF absolute error was inversely related to CNR for 

ARMA, exponential and B-spline but relatively constant for Fermi. For comparable CNR 

levels, error increased proportionally to MBF with ARMA (a), exponential (b), and Fermi 

(d). The B-spline (c) method shows a bell-shaped error curve with error increasing for flow 

levels between 0.5 and 3.5 mL/g/min and decreasing thereafter. In general, the lowest error 

was obtained by ARMA and the exponential method. In terms of noise sensitivity, the Fermi 

model conferred the flattest slope suggesting that this method is most robust.

Hardware Perfusion Phantom

Using first-pass images acquired on the hardware perfusion phantom, perfusion estimates 

were computed for different perfusion rates on voxel-wise basis and incrementing levels of 

spatial averaging, i.e., averaging between a group of 10 voxels, 100 voxels, and 600 voxels 

(the whole slice). Voxel-wise perfusion estimates and results obtained from segmental 

analysis for different levels of spatial averaging for all four quantification methods are 

shown in Fig. 3.

The average estimated perfusion values obtained from the analysis was compared with the 

true average perfusion rates. Table 3 represents the perfusion estimates relative error (e prl)—

defined as absolute error divided by the true average perfusion value—for voxel-wise 

analysis and segmental analysis.

With the ARMA, Fermi, and exponential methods, reducing the ROI size from a segment, in 

which time curves averaged over 610 voxels, to one voxel did not have a significant effect on 

the estimation accuracy but altered the variability of error.

Figure 4 shows MR images of the hardware perfusion phantom and the corresponding 

perfusion maps using ARMA, exponential, B-spline, and Fermi. The inhomogeneities of 

flow that are evident in the MR pictures have been captured by voxel-wise perfusion maps.

Figure 5a shows a comparison between the mean of estimated perfusion values, averaged 

over all voxels at each MBF level at high CNR, and true average MBF values from the 

hardware perfusion phantom.

Figure 5b represents the mean of ea averaged over all voxels, at high and low CNR levels 

and different MBF rates in the perfusion phantom. The difference between ea at high and 

low CNR for each perfusion level was not significant for ARMA (STD = 0.031 mL/g/min), 

exponential (STD = 0.028 mL/g/min), and Fermi (STD = 0.014 mL/g/min), whereas it was 
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significant for B-spline (STD = 0.35 mL/g/min). It implies that ARMA, exponential, and 

Fermi methods are more reliable and robust to noise compared to the B-spline method.

Patient Study

The results obtained from patient studies are shown in Figs. 6–8. The voxel-wise SI curves 

obtained from the images for all cases had a CNR of 14.6 ± 7.4 before filtering and 27.7 ± 

8.4 after temporal and spatial filtering, which are of sufficient quality for accurate analysis 

(8).

Voxel-wise perfusion maps were generated following MBF analysis using the four models 

and overlaid over the CMR images from a patient dataset with angina (Fig. 6). Diseased 

areas are represented as light green and correlate well with the perfusion defects seen in the 

raw CMR images in the first row. Coronary angiographic findings in this patient 

demonstrated a chronic total occlusion of the LAD which was collateralized by a 75% 

stenosed LCx.

Figure 7a,b represents a histogram comparison of estimated perfusion distribution values in 

two regions of interest obtained from two patients with proven angiographic coronary artery 

disease. These graphs demonstrate that voxel-wise analysis allows clear discrimination 

between normal and ischemic region of myocardium. The ability to correctly distinguish 

between these regions was different depending on the method used. Figure 7c on the other 

hand is a histogram example in a healthy volunteer. The volunteer graph (Fig. 7c) yields a 

single gaussian-shaped graph for the healthy volunteer in comparison to a double gaussian-

shaped graph in the patient series.

It is important to note that the clear delineation of ischemic regions qualitatively illustrated 

in the perfusion maps achieved statistical significance on quantitative analysis of the 

differences between the estimated MBF.

Table 4 represents the respective P-value comparison of mean estimated MBF between 

normal regions and ischemic regions using the four methods. All P values were <0.05 

suggesting the presence of significant difference between normal and ischemic regions in 

abnormal myocardium. The largest discrimination was provided by both ARMA (P < 0.001) 

and the exponential method (P < 0.005). In contrast, the P-values in healthy volunteers 

represented in Table 5 are all greater than 0.05 indicating the absence of significant 

difference between compared regions of interests.

To facilitate clinical utility of these data, the 16 segment American Heart Association model 

was used to represent the quantified perfusion values. Figure 8 represents the bull’s-eye map 

of two coronary artery disease patients—(a) with LCx disease and (b) with LAD disease—

and a healthy volunteer (c). MBF values are averaged over all voxels in each segment.

Discussion

We believe that this is the first study to demonstrate the feasibility of voxel-wise analysis in 

detecting underlying ischemia and compare the differences in perfusion estimates, sensitivity 
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to noise, and different levels of spatial averaging between four different deconvolution 

methods.

First, methods were evaluated with simulated synthetic data. They were then validated with 

the perfusion phantom, which serves an ideal bridge between synthetic data and patient data. 

Finally, the validated methods were applied to patient data to show the feasibility of voxel-

wise perfusion maps.

The major strength of this study is that we were able to use a phantom as a reference for the 

different models, flows and noise levels. This is more realistic than synthetic data and thus 

allows a comparison of the estimated MBF with the true MBF, which is not possible in 

patients. Here, using the results obtained from phantom experiment, the performance of each 

method on patients and estimate the accuracy of each method can be predicted.

Based on the more horizontal slope and the low STD displayed in Table 2 and 3, Figs. 2 and 

5b, Fermi, ARMA, and exponential model are the least sensitive methods to noise. This 

characteristic enables a more robust analysis of MBF. However among those three methods, 

a higher variability of error is observed in ARMA and exponential model compared to Fermi 

(Fig. 3). This makes Fermi the more favorable method in terms of noise sensitivity for voxel-

wise analysis.

ARMA and the exponential method provide the most accurate estimates of MBF among the 

four methods (e prl < 6.5%) at all MBF levels on an experimental analysis. This is most 

pronounced at high perfusion rates (Table 2 and Figs. 2 and 5a).

In general, ARMA and the exponential method are more accurate at all flow rates (Figs. 4 

and 5), On the other hand, Fermi model is the most robust method to noise with highest 

precision for voxel-wise analysis. Inevitably, the choice of quantification method for data 

analysis boils down to a trade off between accuracy and precision of the estimation.

Perfusion maps and histogram graphs indicate that the difference between accuracy of 

perfusion estimates depend on the selected method. We conjecture that because C aif(t) and 

C myo(t) curves appear to be approximately biexponential, the exponential bases 

deconvolution and ARMA method, which can be considered as a generalization of the 

exponential method (25), provide more accurate and natural tissue kernel and therefore 

better MBF estimation.

Because voxel-wise analysis offers additional information on the heterogeneity of 

myocardial perfusion, these results provide a strong case for a voxel-wise approach in 

clinical applications of DCE-CMR.

Limitations

It is important to note that whilst PET is regarded as the gold standard for the quantification 

of absolute MBF, we were unable to obtain PET information for this study and compare our 

results with PET results. The aim of this study was to demonstrate feasibility of a voxel-wise 

analysis in patients. However, the sample size used here was small, and a larger study 
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examining the correlation between voxel-wise analysis and angiographic findings is 

currently underway. In addition, a cut-off value for MBF between ischemic and normal 

regions needs to be addressed by further studies validating the results against appropriate 

functional tests alongside obtaining histological evidence from animal work.

Further studies are required to investigate the correlation between perfusion estimates in the 

phantom and patient datasets. In addition, further optimization of the deconvolution 

methods, including finding the optimal order of considered methods such as ARMA, should 

be performed.

In this study, we have only used model independent analysis to quantify MBF. A direct 

comparison of modelindependent and model-dependent analysis will need to be addressed in 

further studies to define the most appropriate quantitative methods for voxel-wise analysis.

Finally as only one filtering method has been used in the study to remove the noise from 

signal intensity curves, a further study is needed to analyze the interaction between signal 

intensities sampling resolutions, temporal, and spatial filtering methods and MBF results 

obtained from deconvolution analysis.

Conclusions

This study demonstrates the feasibility of voxel-wise quantification of myocardial perfusion 

on high-resolution MR perfusion data sets. Moreover, it compares different algorithms to 

determine the most accurate and precise method for voxel-wise MBF quantification. 

Simulations and maps in patients and hardware phantom showed that voxel-wise 

quantification of myocardium perfusion is feasible and can be used to detect abnormal 

regions. The exponential and ARMA methods were more accurate than other methods, 

whereas Fermi was the most precise and robust method to noise in the voxel-wise analysis of 

myocardial perfusion.
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Fig. 1. 
In a, the synthetic input and output signal intensity (in arbitrary units: a.u.) curves at high 

simulated perfusion rate and low simulated perfusion rate at different CNR levels. The solid 

line corresponds to the synthetic C aif(t), and the dotted lines correspond to synthetic C 

myo(t). In b and c, C myo(t) for a synthetic myocardium voxel along with the estimated 

curves using ARMA, exponential, B-spline, and Fermi method are shown at CNR = 40 and 

CNR = 5 (MBFGS = 1 mL/g/min), respectively. In general, all methods give good results in 

terms of fit (x < 0.9% for high CNR; x < 2% for low CNR). [Color figure can be viewed in 

the online issue, which is available at wileyonlinelibrary.com.]
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Fig. 2. 
Surface plot of simulated flow rates (0.5 to 5 mL/g/min) absolute error (e a) at different CNR 

levels (5 to 40 with 15 steps) for the ARMA, exponential, B-spline, and Fermi model is 

represented in figures a, b, c, and d, respectively. ea is averaged over all voxels at each flow 

and CNR level. In general, the ARMA and the exponential model are more accurate at all 

flow levels. ARMA is more accurate at flow levels less than 3 mL/g/min and at high flow 

levels (MBF > 3.5 mL/g/min) when CNR is high (CNR > 20). B-spline is as accurate as 

exponential method (absolute error < 0.5) at flow level equal to 5 mL/g/min, when CNR is 

high (CNR > 25). Absolute error increased as the perfusion level increased with the Fermi 

model. CNR increases from right to left in the plots. [Color figure can be viewed in the 

online issue, which is available at wileyonlinelibrary.com.]
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Fig. 3. 
Scatter-Box plot of estimated MBF in the perfusion phantom experiment, with MBFGS =5 

mL/g/min at high CNR (CNR = 32) comparing voxel-wise with segmental analysis, using 

(a) ARMA, (b) exponential, (c) B-spline, and (d) Fermi method. Each individual green dot 

shows the estimated MBF at each ROI for different levels of spatial averaging (1 voxel, 10 

voxel, 100 voxel, and whole segment), and they have been spread for visualization reasons 

and clarity. On each blue box, the central red mark is the median; the edges of the box are 

the 25th and 75th percentiles. The red area around the median shows the points, which are 

laid over 95% of the confidence interval (the points with less than 5% difference from the 

median). [Color figure can be viewed in the online issue, which is available at 

wileyonlinelibrary.com.]
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Fig. 4. 
Maps of estimated MBF in perfusion phantom at high input flow rate (5 mL/g/min) and high 

CNR (CNR = 32) with exponential, ARMA, Fermi, and d B-spline method along with the 

phantom MR image, which is obtained by calculating maximum intensity projection 

(MIP)over time of the 10 upslope dynamics. The perfusion inhomogeneity is well depicted 

with exponential, ARMA, and B-spline model. However, perfusion values are 

underestimated with B-spline method. Average perfusion value in the reference 
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compartment (left compartment) has been used for calibration. [Color figure can be viewed 

in the online issue, which is available at wileyonlinelibrary.com.]
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Fig. 5. 
a: Plot of mean of estimated perfusion phantom MBF, averaged over all voxels at each flow 

level vs. true average flow values at high CNR (CNR = 32) obtained with ARMA, 

exponential, Fermi, and B-spline method. For flow levels less than 2.5 mL/g/min, the MBF 

is overestimated with Fermi method and underestimated thereafter. ARMA and exponential 

method overestimate MBF at all flow levels. At flow levels higher than 4.5 (mL/g/min), 

MBF is underestimated with B-spline method. True flow values were measured by means of 

precision flow-meters in the perfusion phantom. b: Perfusion estimates absolute error (e a) in 
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phantom at high CNR (CNR = 32) and low CNR (CNR = 18) obtained with ARMA, 

exponential, Fermi, and B-spline method using segmental analysis at true average perfusion 

equal to 1 mL/g/min (dotted lines) and 5 mL/g/min is represented. ARMA, exponential, and 

Fermi are the least sensitive methods to noise, whereas B-spline results vary significantly 

with CNR level. Absolute error was relatively constant between different MBF levels for all 

methods except Fermi (absolute error is high with Fermi model at high flow values). ARMA 

and exponential methods are more accurate at high perfusion rates compared with Fermi 

model.
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Fig. 6. 
Results of voxel-wise perfusion quantification for a 67-year-old female with chronic total 

occlusion of the LAD collateralized by the LCx. The LCx itself presents a 75% stenosis. The 

first column from right corresponds to apical layer, the middle-column corresponds to mid-

cavity and the last column corresponds to basal layer in myocardium. In the maps, the light 

green is the worst. The sensitivity of detection of ischemia at the edge of the ischemic area 

has shown a strict dependency on the used method.
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Fig. 7. 
Histogram of estimated MBF comparing distribution of perfusion values obtained by voxel-

wise analysis in two regions of interest in (a) 67-year-old male with 2-vessel coronary artery 

disease and (b) 48-year-old male with one vessel disease affecting the LAD and (c) a healthy 

volunteer.
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Fig. 8. 
Bull’s-eye map of two patients one with (a) LCx disease, (b) LAD disease, and (c) a healthy 

volunteer comparing the four different methods using American heart association 16 

segments representation. MBF values are averaged over all voxels in each segment. It can be 

seen that there is not a significant variation between different regions of myocardium in the 

healthy volunteer. The perfusion values are presented in mL/g/min. [Color figure can be 

viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Table 1
λi Values for Generating Synthetic Data

Simulated Flow (mL/g/min) λ 1

0.5 1.5

1 2.4

1.5 2.85

2 3.2

2.5 3.5

3 3.68

3.5 3.79

4 3.94

4.5 4.06

5 4.16
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Table 2
Mean and Standard Deviation (Mean ± STD) of Perfusion Estimates Absolute Error (e a) 

in ml/g/min, over Different CNR Levels at Different Perfusion Rates for Synthetic Data

MBFGS ARMA Exponential Fermi
a

spline
b

0.5 0.007 ± 0.002 0.06 ± 0.003   0.01 ± 0.008 0.5 ± 0.07

1  0.03 ± 0.028  0.05 ± 0.037   0.1 ± 0.02 0.6 ± 0.11

1.5  0.06 ± 0.054 0.07 ± 0.05 0.231 ± 0.035 1.03 ± 0.13

2  0.09 ± 0.082    0.1 ± 0.077   0.37 ± 0.045 1.25 ± 0.25

2.5 0.11 ± 0.11 0.12 ± 0.09 0.58 ± 0.05 1.6 ± 0.39

3 0.16 ± 0.15 0.15 ± 0.11   0.78 ± 0.053 1.26 ± 0.38

3.5 0.18 ± 0.16   0.2 ± 0.13    1.1 ± 0.056 1.2 ± 0.33

4 0.21 ± 0.19 0.22 ± 0.14    1.4 ± 0.058 1.01 ± 0.34

4.5 0.22 ± 0.21 0.23 ± 0.15    1.6 ± 0.059 0.8 ± 0.26

5 0.23 ± 0.26 0.24 ± 0.17   1.9 ± 0.06 0.7 ± 0.23

All values are in mL/g/min.

a
The absolute error is high with Fermi model at perfusion rates greater than 1.5 mL/g/min; however, it is more robust to noise (low STD).

b
B-spline method is more sensitive to noise level as the difference between the absolute errors at high and low CNR is significant at all perfusion 

rates (high STD).
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Table 3
Perfusion Estimates Relative Error (e prl) for Different Levels of Spatial Averaging at 

MBFGS = 5 ml/g/min (Comparison between Voxel-Wise and Segmental Analysis on 

Perfusion Phantom Data)

Level of spatial averaging ARMA Exponential Fermi B-spline

Voxel-wise (610 ROI) 15.4% 15.6% 18% 43%

Segment (one ROI) 6%  6.3%
13%

a 12%

a
Note that this value shows the eprl at MBFGS equal to 5 mL/g/ min (high perfusion rate).We expect that the Fermi model to be as accurate as 

ARMA and exponential at low perfusion values.
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Table 4
The Respective P-Value Comparison of Mean Estimated MBF between Normal Regions 
and Ischemic Regions Using the Four Methods

ARMA EXP BSPLINE FERMI

Patient 1 0.000118423 6.64E-05 0.000112 0.025928

Patient 2 0.000500101 0.001971 0.011765 0.008551

Patient 3 0.00103014 0.005226 0.012634 0.02299

Patient 4 0.004675219 0.003722 0.001875 0.001999
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Table 5
The Respective P-value Comparison of Mean Estimated MBF within Different Regions of 
Myocardium in Healthy Volunteers Using Different Methods

ARMA EXP BSPLINE FERMI

Volunteer 1 0.703168828 0.819582 0.5072 0.654329

Volunteer 2 0.782779685 0.897111 0.915155 0.89487

P value for each volunteer is averaged over three p values which compare LCX segments with RCA segments and LAD segments.
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