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Abstract

Background—The potential of multi-shell diffusion imaging to produce accurate brain 

connectivity metrics able to unravel key pathophysiological processes in multiple sclerosis (MS) 

has scarcely been investigated.

Objective—To test, in patients with a clinically isolated syndrome (CIS), whether multi-shell 

imaging-derived connectivity metrics can differentiate patients from controls, correlate with 

clinical measures, and perform better than metrics obtained with conventional single-shell 

protocols.

Methods—Nineteen patients within 3 months from the CIS and 12 healthy controls underwent 

anatomical and 53-direction multi-shell diffusion-weighted 3T images. Patients were cognitively 
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assessed. Voxelwise fibre orientation distribution functions were estimated and used to obtain 

network metrics. These were also calculated using a conventional single-shell diffusion protocol. 

Through linear regression, we obtained effect sizes and standardised regression coefficients.

Results—Patients had lower mean nodal strength (p=0.003) and greater network modularity than 

controls (p=0.045). Greater modularity was associated with worse cognitive performance in 

patients, even after accounting for lesion load (p=0.002). Multi-shell-derived metrics outperformed 

single-shell-derived ones.

Conclusion—Connectivity-based nodal strength and network modularity are abnormal in the 

CIS. Furthermore, the increased network modularity observed in patients, indicating 

microstructural damage, is clinically relevant. Connectivity analyses based on multi-shell imaging 

can detect potentially relevant network changes in early MS.

Keywords

Diffusion-weighted imaging; multi-shell acquisitions; multi-shell multi-tissue constrained 
spherical deconvolution; tractography; multiple sclerosis; clinically isolated syndrome

Introduction

Performing high-quality tractography is crucial for understanding key pathophysiological 

aspects of neurological conditions. Early fibre tracking methods were based on the diffusion 

tensor (DT) model of the diffusion-weighted (DW) signal.1 Such approaches have well-

described limitations especially in regions containing multiple fibre populations, such as the 

corona radiata, where a single tensor cannot adequately describe complex fibre orientation 

distribution functions (fODFs). In these areas, drops in tissue DT-derived fractional 

anisotropy (FA)2 may be erroneously interpreted as termination of the underlying white 

matter (WM) tract. Several strategies have been proposed to overcome the limitations of the 

single tensor model and recover more complex fibre configurations that could be used to 

inform probabilistic tractography. One of these is to perform tractography based on fODFs 

obtained using constrained spherical deconvolution (CSD).3,4 CSD recovers the fODF by 

performing a single-kernel deconvolution of the measured DW signals with non-negativity 

constraints.

The CSD algorithm was originally designed for single-shell DW imaging acquisitions.5,6 

However, as multi-shell acquisitions are becoming more common,7 a refined approach 

known as multi-shell multi-tissue (MSMT)–CSD has been proposed to optimally deal with 

multi-shell data sets.8–10 This method accounts for partial volume effects, thus enabling the 

estimation of fODF in multiple tissues within the same voxel.11 This leads to a better 

estimation of the fODFs and tract reconstruction, especially in voxels containing a mixture 

of different tissue types, such as WM, grey matter (GM) and/or cerebrospinal fluid (CSF).8

In neurological diseases, WM pathology may contribute to adverse partial volume effects, 

which can further confound the tissue segmentation within voxels. In multiple sclerosis 

(MS), for example, WM voxels may include demyelinating lesions, the diffusion properties 

of which differ from those of the WM outside the lesions.12,13 Tractography has been 

extensively applied to MS to understand the pathogenic mechanisms of the disease.14 
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However, the application of multi-shell acquisition schemes for brain tractography aiming at 

the study brain connectivity in patients with MS has been scarcely explored.15 In addition, 

no studies have used multi-shell diffusion data for brain tractography in patients with a first 

demyelinating attack, for whom the discovery of novel disease biomarkers is of the utmost 

importance.

In this study, we used a multi-shell acquisition and, in particular, the MSMT-CSD algorithm 

to study brain connectivity in patients with a first demyelinating attack suggestive of MS or 

clinically isolated syndrome (CIS). We aimed to (1) investigate the ability of connectivity 

metrics obtained with a MSMT approach to differentiate between patients and controls; (2) 

assess, in patients, which MSMT connectivity metric best correlated with clinical measures. 

To complete the analysis, we (3) indirectly compared the multi-shell findings to the results 

obtained with a single-shell data set, that is, a simpler acquisition scheme that has been 

extensively used in the past by several groups.16

Materials and methods

Subjects

We included patients consecutively attending an MS clinic within 3 months of their CIS (i.e. 

within 3 months of symptom onset). We also included a group of age-matched healthy 

controls (HCs). All participants underwent a magnetic resonance imaging (MRI) scan at 

study baseline. Patients were assessed on two cognitive measures, the Paced Auditory Serial 

Addition Test (PASAT) and the Symbol Digit Modalities test (SDMT). Of note, all our 

participants had been recruited for a different project,17 and this is a retrospective analysis of 

prospectively acquired data. The study was approved by the local Ethics Committee. All 

participants provided informed written consent.

MRI acquisition and pre-processing

The scans used in this study were part of a previous multi-parameter clinical study.17 All 

scans were performed using a 3T Achieva system (Philips Medical Systems, Best, the 

Netherlands) with a 32-channel head coil, with a maximum gradient strength of 65 mT m−1.

The following MRIs were acquired for all subjects:

• Anatomical inversion-prepared three-dimensional (3D) T1-weighted turbo field 

echo (resolution = 1 × 1 × 1 mm3, TE/TR: 3.2/7.0 ms, TI: 836.46 ms);

• Axial proton density (PD)-/T2-weighted turbo spin echo (resolution = 1 × 1 × 3 

mm3; TE1/ TE2/TR = 15/85/35CC ms);

• Clinically feasible multi-shell DW (resolution = 2.5 × 2.5 × 2.5 mm3; TE/TR = 

82 ms/12 s; 53 directions: b = 300 s/mm2 (eight directions), b = 711 s/mm2 (15 

directions), b = 2000 s/mm2 (30 directions); seven b = 0 s/mm2 images; number 

of slices = 60; SENSE factor = 2; duration=25 minutes).

In patients, an experienced rater (S.C.) used the PD-/T2-weighted images to manually 

outline T2-hyperintense WM lesions using a semi-automated edge-dissection tool (JIM v6.0, 

Xinapse systems, Aldwincle, UK, http://www.xinapse.com). A pseudo-T1-weighted image 
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was computed from the subtraction of the PD and T2 images. Then, the pseudo-T1-weighted 

images were used to compute the transformation with the 3D T1-weighted images 

implementing a symmetric registration approach using NiftyReg software package (http://

niftyreg.sf.net). Therefore, the obtained transformations were applied to the T2-weighted 

lesion masks to move them from native space to 3D T1-weighted space. The 3D T1-

weighted images were filled using a non-local patch-match lesion-filling algorithm18 and 

parcellated using the Geodesic Information Flows (GIF) method v2.0,19 freely available at 

NiftyWeb platform (http://cmictig.cs.ucl.ac.uk/niftyweb/).20

For co-registering 3D T1-weighted and DW images, we first performed eddy current 

correction using FSL21 to the DW images. Subsequently, a geometric distortion correction 

of the DW images was carried out, using BrainSuite v.15b. For this step, the original (non-

lesion-filled) 3D T1-weighted images were initially co-registered to the mean b = 0 images 

using a constrained non-rigid registration algorithm based on mutual-information; 

afterwards, the actual correction took place. All undistorted DW data and their final 

alignment with anatomical 3D T1-weighted data were visually inspected for quality control 

checking.

Finally, the lesions identified in the PD/T2-weighted space were warped to each subject’s 

DWI space, as this allowed the individual characterisation of microstructural properties at 

the level of normal-appearing white matter (NAWM) and lesional WM by appropriately 

defined masks.

Voxel-wise fODFs and signal fractions

Using the original multi-shell data set, a MSMT CSD was used to recover the fODF within 

each voxel.8 In addition, in order to assess the benefits of multi-shell approaches as 

compared to more conventional, singleshell, acquisition schemes, the DW images obtained 

with the highest b value (i.e. b=2000 s/mm2, 30 directions) were extracted. With this single-

shell data set, we also obtained the fODFs, but here, we used a CSD algorithm able to solv

+65e the problem of crossing fibres but unable to identify multiple tissues within the voxel 

(i.e. ‘single-shell single-tissue’ algorithm).5,6

For the multi-shell data set only, we calculated the within-voxel ‘signal fractions’ of the 

three tissues identified by the multi-tissue CSD algorithm, that is, anisotropic tissue, 

isotropic tissue 1 and isotropic tissue 2. More specifically, we followed these steps:

1. We estimated, within the same voxel, as many fODFs as tissues were identified 

(three);

2. Then, since the volume under the function fODF is known to be proportional to 

the actual volume of the tissue to which the fODF belongs, we estimated the 

signal fractions for each one of the tissues within the same voxel, for each 

subject, as a proxy for volume fractions.

3. Finally, in order to have, for each voxel, a sum of fractions that added to 1, the 

signal fractions estimated in the previous step were normalised.
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After the initial quality control checking (through visual inspection) of all the original DW 

data and their alignment with the anatomical 3D T1 data, all the data were considered to be 

of good quality. Also by visual inspection, the MSMT algorithm showed a reduced number 

of fODF spurious peaks compared to the single-tissue algorithm in WM areas that are 

characterised by a bundle of fibres with a similar orientation (e.g. corpus callosum) (Figure 

1). In addition, the signal fraction maps showed that the MSMT algorithm successfully 

differentiated the different types of brain tissue (Figure 2(a)), including within-lesion tissue 

heterogeneity (Figure 2(b)).

Whole-brain connectomes

All steps (CSD; tractography; voxel-wise metrics calculation) were performed using 

MRtrix3 (v.10/2016).22 Using the previously computed fODFs, we performed a whole-brain 

streamlines tractography with an anatomically constrained probabilistic algorithm (iFOD2).
23 We propagated 108 streamlines (default option), using as seeds the GM areas parcellated 

with the GIF pipeline,19 which were then considered as the network nodes, and using known 

criteria for streamline termination (default option).24 Afterwards, for each pair of nodes, the 

number of streamlines successfully connecting them was re-computed with the SIFT2 

algorithm.25 This is a dynamic seeding mechanism that ensures that the final number of 

streamlines connecting each pair of nodes is re-weighted according to the cross-sectional 

area of the WM tract, estimated from the fODF obtained in the previous steps. Afterwards, 

we built structural connectomes considering, as network nodes, the GM parcels defined 

according to the GIF segmentation.19 The re-weighted numbers of streamlines were 

considered as the network edges.

Network metrics

We used the Matlab Brain Connectivity Toolbox (https://sites.google.com/site/bctnet/) to 

estimate the following network metrics for weighted graphs26 for each subject, which were 

then standardised:

Nodal connectivity metrics—They reflect the strength with which the network nodes, 

which here represent the cortical GM areas, are connected. They include the mean nodal 
strength, which is the average, across all nodes, of the sum of the strength of each node (i.e. 

the total number of streamlines emerging from that node) of a network, and the mean 
clustering coefficient, which reflects the connectivity among the neighbours of a given node. 

In MS, a decrease in nodal connectivity metrics may be seen in the context of WM tract 

damage due to inflammatory demyelinating lesions.

Metrics of nodal distance—The metrics of nodal distance reflect how well any two 

nodes in the network are connected. They include mean shortest path, which reflects the 

number of intermediate connections between any two pairs of nodes of the network, and 

global and local efficiency, which are mathematically related to the mean shortest path. 

Smaller values of mean shortest path imply more efficient information transfer between 

nodes, while global and local efficiency reflect the ability of the network to integrate 

information globally and locally, respectively. In the MS brain, longer mean shortest paths 

and, therefore, worse global and/or local efficiencies may be seen when there is damage in 
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WM tracts that are crucial to keep the number of intermediate connections between any two 

GM areas to the minimum.

Metric of network structure—This includes the modularity coefficient, which describes 

how well a network can be subdivided into ‘modules’ or groups of nodes highly correlated 

among each other. In MS, abnormally high modularity coefficients may indicate the 

presence of lesions or WM atrophy that causes an artificial partition of the network into a 

number of relatively isolated communities containing highly inter-connected GM regions.

Statistical analysis

Linear regression models were built to assess the differences between groups in network 

metrics. In these models, the network metric was considered as the dependent variable and 

the binary variable ‘group’ (patient or control) was considered as the main independent 

variable. In order to (indirectly) compare the ability of the multi-shell metrics to differentiate 

between patients and controls with that of the singleshell metrics (reference), we obtained 

the effect size for each network metric from these regression models. The greater the effect 

size in absolute value, the higher the ability of the metric to differentiate between groups. A 

positive effect size for a given metric indicated higher values of that metric in patients than 

in controls, whereas a negative effect size indicated the opposite. All models were adjusted 

for age, gender and lesion load. Controls were assigned a lesion load equal to zero, as 

previously done.27 Statistical significance was considered when p < 0.05.

To assess the relationship between the multi-shell network metrics that were abnormal in 

MS patients and clinical measures, we built linear regression models where the clinical 

measure (one at a time) was the dependent variable and the network metric (one at a time) 

was the main explanatory variable. For all these analyses, we used the number of correct 

answers in the relevant cognitive test as the clinical variable. Similar models were built with 

network metrics obtained with single-shell data. All models were adjusted for age, gender 

and lesion load. In order to (indirectly) compare regression coefficients from models with 

multi-shell versus single-shell data, standardised regression coefficients were computed. 

Therefore, a greater (in absolute value) standardised regression coefficient indicates a 

stronger association between the network metric and the clinical metric.

All the analyses were performed with Stata 14.2 (Copyright 1985-2015 StataCorp LLC).

Results

Descriptive statistics

Nineteen patients and 12 HCs were included. Table 1 shows full details on demographical, 

clinical and MRI data. All patients were assessed within 3 months of their first 

demyelinating attack, which consisted of optic neuritis in 17 of them and of acute myelitis in 

the remaining two. The MRI scan showed WM lesions in 13 of the 19 patients and did not 

show any pathological lesions in any of the HCs. In patients, the mean lesion load among 

those who had lesions was 4.13 mL (range: 0.026-14.69 mL).
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Differences between patients and controls in network metrics

Patients had significantly lower mean nodal strength than HCs, even after adjusting for age, 

gender and lesion load (60.46 × 103 (SD: 4.97 × 103) streamlines vs 66.68 × 103 (SD: 4.33 × 

103) streamlines, p = 0.003). Modularity coefficient was higher in patients than controls (p = 

0.045), but statistical significance was lost after adjusting for lesion load. For the only metric 

that showed differences between patients and controls after adjusting for confounders, that 

is, the mean nodal strength, the effect size was greater (in absolute value) when computed 

with the multi-shell approach than when computed with the single-shell approach (Table 2).

Association between network metrics and cognitive measures

Among the network metrics that showed significant differences between patients and 

controls, the modularity coefficient was significantly associated with cognitive performance 

and, in particular, with the SDMT: greater modularity coefficient values were associated 

with worse SDMT performance (p = 0.002), even after adjusting for age, gender and lesion 

load. Of note, the association between modularity coefficient and the SDMT score was 

observed for both multi-shell and single-shell connectivity metrics, although the 

standardised regression coefficient was greater (in absolute value) for the multi-shell metric 

(Table 3).

Discussion

In this study, we explored for the first time the potential of a clinically feasible multi-shell 

acquisition to study brain connectivity in patients with CIS, which is the first demyelinating 

attack suggestive of MS. After adjusting for age, gender and lesion load, patients with CIS 

had significantly lower mean nodal strength than controls at the time of the CIS. This 

suggests an overall reduction of WM connections between GM regions at a global level, that 

is, a decreased number of WM tracts in the context of neurodegeneration. Whereas lower 

mean nodal strength in patients with MS and after a CIS than in controls has already been 

reported in the literature,28 our study is the first one that uses a multi-shell acquisition 

scheme, which has the potential to provide invaluable information on tissue microstructure. 

The fact that these results are obtained after adjusting for lesion load implies that the 

information that connectivity metrics provide is largely independent of the extent of the most 

visible form of brain damage. We observed that the ability of the mean nodal strength to 

differentiate patients from controls was superior to WM or GM fractions. Therefore, 

connectivity metrics would seem more sensitive to tissue damage than more conventional 

imaging measures. Previous studies focusing on the role of connectivity metrics in patients 

with relapsingremitting MS and secondary progressive MS have also reported lower nodal 

connectivity in these MS phenotypes than controls.29–31 Importantly, these studies have also 

reported other network abnormalities, such as decreased global efficiency, reflecting the 

greater WM damage in more advanced stages of the disease.29–31

We also found that greater values of modularity coefficient were associated with worse 

cognitive function. Notably, such association could be observed even after adjusting for 

lesion load, although patients had only shown greater modularity coefficient values in 

unadjusted models, which did not take into account lesion volume. We speculate that the 
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presence of macroscopic and microscopic areas of inflammation and demyelination may 

cause a partition of the brain into different sets of nodes highly connected among themselves 

but isolated from the other nodes of the network, supporting the idea that the long-distance 

connections are those that are lost first.32 Then, differences in modularity coefficient would 

be mainly explained by differences in visible, macroscopic lesions, whereas the WM 

damage secondary to lesions, possibly exceeding the original lesional area through trans-

synaptic degeneration,27,33 would be responsible for clinical dysfunction. This would 

explain the relative independence of modularity coefficient from lesion volume when 

predicting cognitive performance.

In our study, a number of metrics were not affected by the disease. Network metrics are 

mathematically related and, in MS, their abnormalities appear as a consequence of 

pathologic processes that are also highly related, for example, inflammation and 

demyelination, and WM atrophy. Therefore, it may be surprising that we only observed 

abnormalities in some metrics but not all of them. On the contrary, each network metric 

reflects a different aspect of the network organisation and their sensitivity to brain structural 

changes is not the same for all of them. Whereas we found in patients a significant decrease 

in nodal strength and a (weak) increase in modularity coefficient, no differences were 

observed in distance metrics, indicating a quite preserved network efficiency despite the 

presence of lesions. This would be in line with a recent study carried in patients with 

established MS, which has shown evidence of the robustness of the brain network against 

the WM damage derived from visible inflammation.30 In addition, the small spatial extent of 

lesion load of our CIS patients may have played a role in the preservation of network 

efficiency, as hinted in our synthetic example (Figure 3).

Finally, the metrics obtained with a multi-shell acquisition scheme appeared superior to 

those obtained with a single-shell scheme in terms of sensitivity to subtle disease. The effect 

size of mean nodal strength obtained with a multi-shell scheme was greater (in absolute size) 

than that obtained with a single-shell data set. In addition, the standardised regression 

coefficient describing the relationship between greater modularity coefficient and worse 

cognitive function was greater (in absolute value) when the modularity coefficient was 

obtained with a multi-shell scheme. This is probably explained by the ability of the 

multishell protocol to detect the different signal/volume fractions within the voxel, as 

opposed to single-shell protocols. Interestingly, such fractions showed partial volume 

contrasts even within lesions, bringing to light the unique potential of multi-shell schemes to 

allow a deep phenotyping of the microstructural changes occurring in MS. However, the 

differences between single-shell and multi-shell results might have also been explained by 

the fact that the singleshell connectivity analyses were carried out with a sub-set of the 

original multi-shell DW data. This implies that the two schemes had not been matched for 

acquisition time and that the b value for the singleshell data set had not been optimised for 

connectivity studies. On the contrary, the single-shell scheme used only DW data with 

relatively high angular resolution (b = 2000 s/mm2), unlike the multi-shell scheme, which 

contained data with high (b = 2000 s/mm2) and low (b = 711 s/mm2 and b=300 s/mm2) 

angular resolution. Therefore, while the presence of multiple b values enables the detection 

of partial volume effects within a voxel, the low angular resolution of b = 711 s/mm2 and b = 

300 s/mm2 may have reduced the precision of the fibre orientation estimation in the MSMT 
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approach. Ultimately, this may have led to a lower-than-expected performance of the multi-

tissue algorithm. Of note, our study did not intend to perform an exhaustive comparative 

analysis of the metrics obtained with the two schemes, and the reported comparisons thus 

need to be taken with caution. Future studies with larger cohorts and focusing on the 

comparison between multi-shell and single-shell schemes with the same acquisition time and 

with optimised b values for the single-shell acquisition, generally below 2000 s/mm2, are 

therefore warranted.

Among the potential limitations of this study, we should mention that the acquisition 

protocol was originally designed to support fitting of multi-compartment models, such as 

neurite orientation dispersion and density imaging (NODDI).34,35 However, it is important 

to notice that acquisitions that support NODDI-like analyses are being increasingly adopted 

in clinical studies36 and phase 2 trials,37 and it is therefore relevant to assess the potential of 

similar acquisition protocols for connectivity analysis. Second, our sample size was quite 

small. Further investigations exploiting rich acquisition set-ups such as the ‘MASSIVE’ data 

set (http://www.massive-data.org)38 are mandatory to generalise current results and confirm 

the benefits of multi-shell acquisitions with respect to single-shell ones in early MS. Finally, 

our patient population was a cohort of people who had suffered a first demyelinating attack 

of the central nervous system, which means the presence of WM inflammatory lesions was 

still relatively mild. Thus, it is possible that in patients with established MS, with higher 

lesion loads and therefore higher numbers of WM voxels affected by partial volume, more 

evident differences between multi-shell and single-shell schemes can be observed.

In conclusion, we provide definite evidence of the potential of multi-shell acquisitions to 

study brain connectivity in patients with a first demyelinating attack suggestive of MS. 

Multi-shell acquisitions can effectively produce metrics that differentiate patients at very 

early stages of MS from HCs and metrics that correlate with cognitive function beyond the 

presence of macroscopic inflammatory damage. Our results encourage the use of multi-shell 

DW data sets, if possible, to produce connectivity metrics in early MS, even if the original 

purpose of the multi-shell acquisition was not the study of brain connectivity. Connectivity 

metrics derived from multi-shell acquisitions appear as potential biomarkers in early MS 

and, because of their high sensitivity to pathology, can help understand the complex 

processes underlying clinical progression in this devastating condition.
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Figure 1. 
Estimated fODF in the corpus callosum in a patient. As part of the initial qualitative 

assessment, we looked at the number of peaks at a WM lesion at the boundaries of the 

corpus callosum, where it is known there are fibres with a similar orientation. Panel (a) 

shows a coronal view of a T1-weighted image of a patient with a (T1-hypointense) lesion in 

the confluence of the corpus callosum and the corticospinal tract; (b) and (c): voxel-wise 

fODF mapping inside the lesion (lesion mask overlaid), obtained with the single-shell 

single-tissue (b) and multi-shell multi-tissue (c) algorithms; (d) and (e): fODF within a 

lesional voxel belonging to WM tissue known to have only one fibre population, for each 

algorithm; whereas (e) (multi-shell multi-tissue algorithm) shows no spurious peaks, these 

are observed in (d) (single-shell singletissue). The reduced size of the fODF in (e) reflects 

the partial volume effects within the lesion. fODF: fibre orientation distribution function; 

WM: white matter.
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Figure 2. 
Maps of the voxel-wise diffusion-defined volume fractions obtained with the multi-shell 

multi-tissue algorithm. This figure shows the maps of voxel-wise volume fractions of the 

tissues defined based on their diffusion properties. As can be seen in panel (a), the multi-

shell multi-tissue algorithm successfully differentiated the different types of brain tissue: 

normal-appearing WM (i.e. anisotropic tissue), CSF (i.e. isotropic tissue 1) and GM 

(isotropic tissue 2). WM lesions (panel (b)) were mainly captured by the isotropic tissue 2 

and partly by the anisotropic tissue.

WM: white matter.
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Figure 3. 
Illustration of possible hypothetical scenarios of network disruption due to MS lesions. This 

figure illustrates, with synthetic examples, how network metrics can change in the context of 

inflammatory demyelinating lesions, represented as pink ovoidal shapes drawn over mock 

brain networks. Patient examples aim to show two opposite scenarios. In the first patient 

example, there is a large lesion severely affecting an important WM tract, which connects 

two of the most relevant nodes of the network. In the second patient example, there are 

multiple lesions affecting several WM tracts. The lesion burden and the total damage in the 
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WM aim to be the same in the two examples. For all three scenarios, connectivity matrices 

have been obtained and network metrics have been computed using the freely available 

Brain Connectivity Toolbox in MATLAB. Both patient examples show the same decrease in 

MNS. In the first patient example, network efficiency is quite preserved despite the severe 

damage to an important WM tract. Instead, MC is increased with respect to the healthy 

control example. In the second patient example, network efficiency is much lower than that 

in the control example but instead the MC is preserved.

MS: multiple sclerosis; WM: white matter; GE: global efficiency; MC: modularity 

coefficient; MCC: mean clustering coefficient; MLE: mean local efficiency; MNS: mean 

nodal strength; MSP: mean shortest path.
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Table 1
Clinical, demographical and MRI data.

Patients (N= 19) HCs (N= 12) Patients vs HCs, p value

Age in years, mean (SD) 36 (8.86) 34.67 (7.58) 0.670

Gender, no. of females 9 8 0.293

PASAT,
a
 mean (SD)

47.53 (9.21) - -

SDMT,
a
 mean (SD)

59.53 (8.14) - -

No. of patients with WM lesions 13 - -

Lesion load in mL, mean (range) 4.13 (0-14.69) - -

WM fraction (SD) 0.29 (0.02) 0.29 (0.02)
0.943

b

Grey matter fraction (SD) 0.50 (0.04) 0.49 (0.02)
0.957

b

Mean nodal strength in streamlines, mean (SD) 60.46 × 103 (4.97 × 103) 66.68 × 103 (4.33 × 103) 0.003
b

Mean clustering coefficient,
c
 mean (SD) 2.53 × 10−3 (0.63 × 10−3) 2.87 × 10−3 (0.75 × 10−3) 0.385

b

Mean shortest path,
c
 mean (SD) 0.93 × 10−3 (0.51 × 10−3) 2.83 × 10−3 (5.41 × 10−3) 0.216

b

Global efficiency,
c
 mean (SD) 41.62 × 10−3 (8.01 × 10−3) 46.20 × 10−3 (10.22 × 10−3) 0.329

b

Mean local efficiency,
c
 mean (SD) 5.43 × 10−3 (1.28 × 10−3) 6.17 × 10−3 (1.56 × 10−3) 0.348

b

Modularity coefficient,
c
 mean (SD) 521.12 × 10−3 (22.01 × 10−3) 501.08 × 10−3 (31.46 × 10−3) 0.146

b

MRI: magnetic resonance imaging; HCs: healthy controls; PASAT: paced auditory serial addition test; SDMT: symbol digit modalities test; WM: 
white matter.

a
Metric values expressed in number of correct answers.

b
Models adjusted for age, gender and lesion load. All connectivity metrics shown were obtained using the multi-shell data set.

c
Metric values expressed in dimensionless units.

Mult Scler. Author manuscript; available in PMC 2021 July 24.



 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Tur et al. Page 19

Table 2
Effect sizes (95% CI) for all network metrics, adjusted for age, gender and T2 lesion load.

Multi-tissue DW protocol ES (95% CI) Single-tissue DW sub-protocol ES (95% CI)

Mean nodal strength −1.146 (−1.917 to −0.357), p = 0.004 −0.980 (−1.738 to −0.207), p = 0.013

Mean clustering coefficient −0.315 (−1.040 to 0.415), p = 0.400 −0.729 (−1.470 to 0.023), p = 0.058

Mean shortest path −0.456 (−1.201 to 0.297), p = 0.237 −0.060 (−0.790 to 0.672), p = 0.874

Global efficiency −0.355 (−1.080 to 0.377), p = 0.344 −0.484 (−1.213 to 0.253), p = 0.200

Mean local efficiency −0.341 (−1.066 to 0.390), p = 0.363 −0.698 (−1.437 to 0.052), p = 0.068

Modularity coefficient 0.533 (−0.207 to 1.264), p = 0.159 0.534 (−0.206 to 1.265), p = 0.159

95% CI: 95% confidence interval; DW: diffusion-weighted; ES: effect size (expressed in dimensionless units). Significant results are marked in 
bold.
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Table 3
Association between connectivity metrics and cognitive measures, adjusted for age, 
gender and T2 lesion load.

Multi-tissue DW protocol RC (95% CI), p value (sRC) Single-tissue DW sub-protocol RC (95% CI), p value 
(sRC)

PASAT
a

SDMT
a

PASAT
a

SDMT
a

Mean nodal 
strength in 
streamlines

2.518 (−3.099 to 8.135), p 
= 0.353
(sRC = 0.243)

1.969 (−3.014 to 6.952), p 
= 0.411
(sRC = 0.215)

2.757 (−2.717 to 8.230), p 
= 0.298
(sRC = 0.278)

−1.120 (−6.097 to 3.856), 
p = 0.637
(sRC = -0.128)

Mean clustering 

coefficient
b

3.519 (−1.990 to 9.027), p 
= 0.192
(sRC = 0.350)

1.466 (−3.632 to 6.565), p 
= 0.547
(sRC = 0.165)

2.082 (−3.290 to 7.455), p 
= 0.420
(sRC = 0.209)

1.145 (−3.658 to 5.948), p 
= 0.617
(sRC = 0.130)

Mean shortest 

path
b

−0.090 (−43.912 to 
43.733), p = 0.997
(sRC = -0.001)

−24.788 (−51.245 to 
1.669), p = 0.064
(sRC = -0.502)

−0.147 (−7.144 to 6.850), p 
= 0.964
(sRC = -0.019)

−3.024 (−8.391 to 2.342), 
p = 0.245
(sRC = -0.463)

Global 

efficiency
b

2.869 (−2.637 to 8.375), p 
= 0.283
(sRC = 0.276)

1.041 (−3.985 to 6.067), p 
= 0.664
(sRC = 0.113)

1.536 (−3.561 to 6.633), p 
= 0.528
(sRC = 0.162)

0.836 (−3.695 to 5.367), p 
= 0.698
(sRC = 0.099)

Mean local 

efficiency
b

3.604 (−1.941 to 9.148), p 
= 0.185
(sRC = 0.352)

1.286 (−3.873 to 6.446), p 
= 0.601
(sRC = 0.142)

2.055 (−3.262 to 7.372), p 
= 0.421
(sRC = 0.207)

0.951 (−3.815 to 5.717), p 
= 0.675
(sRC = 0.108)

Modularity 

coefficient
b

2.729 (−3.376 to 8.833), p 
= 0.354
(sRC = 0.238)

−6.823 (−10.762 to 
−2.884), p = 0.002
(sRC = -0.673)

−0.772 (−5.688 to 4.145), p 
= 0.741
(sRC = -0.084)

−4.631 (−8.075 to −1.188), 
p = 0.012
(sRC = -0.570)

DW: diffusion-weighted; 95% CI: 95% confidence interval; RC: regression coefficient, expressed in ‘number of correct answers/network unit’; 
sRC: standardised regression coefficient, expressed in dimensionless units; PASAT: paced auditory serial addition test; SDMT: symbol digit 
modalities test. The figures within each cell represent, in order, regression coefficient, 95% CI, p value and sRC. Significant results are marked in 
bold.

a
Number of correct answers.

b
Dimensionless units.
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