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Abstract

It is widely hypothesized that removing cellular transfer RNAs (tRNAs) – making their cognate 

codons unreadable – might create a genetic firewall to viral infection and enable sense codon 

reassignment. However, it has been impossible to test these hypotheses. In this work, following 

synonymous codon compression and laboratory evolution in Escherichia coli, we deleted the 

tRNAs and release factor-1, which normally decode two sense codons and a stop codon; the 

resulting cells could not read the canonical genetic code and were completely resistant to a 

cocktail of viruses. We reassigned these codons to enable the efficient synthesis of proteins 

containing three distinct noncanonical amino acids. Notably, we demonstrate the facile 

reprogramming of our cells for the encoded translation of diverse noncanonical heteropolymers 

and macrocycles.

Nature uses 64 triplet codons to encode the synthesis of proteins composed of the 20 

canonical amino acids, and most amino acids are encoded by more than one synonymous 

codon (1). It is widely hypothesized that removing sense codons and the tRNAs that read 

them from the genome may enable the creation of cells with several properties not found in 

natural biology – including new modes of viral resistance (2) and the ability to encode the 

biosynthesis of noncanonical heteropolymers (3–6). However, these hypotheses have not 

been experimentally tested. Removing release factor-1 (RF1) (and therefore the ability to 

efficiently terminate translation on the TAG stop codon) from Escherichia coli, provides 

some resistance to a limited subset of phage (7, 8). However, this resistance is not general 

and phage are often propagated in the absence of RF1 (8) because the TAG stop codon is 

rarely used for the termination of translation (9), and – even when viral genes do terminate 
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in an amber codon – the inability to read a stop codon does not limit the synthesis of full-

length viral proteins. In contrast, sense codons are commonly at least 10 times more 

abundant than amber codons in viral genomes, and occur over the length of viral genes; thus 

we predicted that a cell that does not read sense codons would not make full-length viral 

proteins and would therefore be completely resistant to viruses.

Current strategies for encoding new monomers in cells are limited to encoding a single type 

of monomer (commonly in response to the amber stop codon) (3, 10, 11), directing the 

inefficient incorporation of monomers or potentially incompatible with encoding sequential 

monomers (12–17); these limitations preclude the synthesis of noncanonical heteropolymer 

sequences composed entirely of noncanonical monomers. We hypothesized that reassigning 

sense codons to noncanonical monomers may enable the efficient and sequential 

polymerization of distinct noncanonical monomers to produce noncanonical heteropolymers.

Recently, a strain of E. coli, Syn61, was created with a synthetic recoded genome in which 

all annotated occurrences of two sense codons (serine codons TCG and TCA) and a stop 

codon (TAG) were replaced with synonymous codons (18). In this study, we evolved Syn61 

and deleted the tRNAs and release factor that decode TCG, TCA and TAG codons. We show 

that the resulting strain provides complete resistance to a cocktail of viruses. Moreover, we 

demonstrate the encoded incorporation of noncanonical amino acids (ncAAs) in response to 

all three codons and the encoded, programmable cellular synthesis of entirely noncanonical 

heteropolymers and macrocycles.

Creating Syn61Δ3

We predicted that replacing the annotated TCA, TCG and TAG codons in the genome would 

enable deletion of serT and serU (encoding tRNASer UGA and tRNASer CGA, respectively) 

and prfA (encoding RF1), which decode these codons, in a single strain (Fig. 1A). We 

previously showed that serT, serU, and prfA could be deleted in separate strains derived 

from Syn61 (18); however, this does not capture the potential epistasis between these genes. 

We sought to determine whether serT, serU, and prfA could be deleted in a single strain 

derived from Syn61.

Syn61 grows 1.6 fold slower than the strain from which it was derived (18). To increase the 

growth rate of the strain prior to serT, serU and prfA deletion, we applied a previously 

described random parallel mutagenesis and automated dynamic parallel selection strategy 

(19); this approach uses feedback control to dynamically dilute mutated cultures on the basis 

of growth rate, and thereby selects fast growing strains from within mutated populations (fig. 

S1A). Through two consecutive rounds of mutagenesis and selection we created a strain, 

Syn61(ev2), which grew 1.3-fold faster (Fig. 1B, fig. S1B to E, and data S1 and S2).

Next, we removed serU, serT and prfA from Syn61(ev2) to create Syn61Δ3 (Fig. 1A, fig. 

S1C, and data S1 and S2). This demonstrated that removing the target codons in Syn61 was 

sufficient to enable the deletion of all decoders of the target codons in the same strain. 

However, Syn61Δ3 grew 1.7- fold slower than Syn61(ev2) (Fig. 1B). This growth decrease 

may result from the presence of target codons in the genome of Syn61 that were not 
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annotated and targeted (20, 21), and it may also result from the other noncanonical roles that 

tRNAs may play (22, 23).

We performed three sequential rounds of random parallel mutagenesis and automated 

dynamic parallel selection to evolve Syn61Δ3 to Syn61Δ3(ev5), which grew 1.6-fold faster 

than Syn61Δ3 (Fig. 1A and B, fig. S1, B, C, and F to H, and data S1). When grown in 

lysogeny broth (LB) media in shake flasks the doubling time of Syn61Δ3(ev5) was 38.72 +/- 

1.02 min (fig. S1I). Syn61Δ3(ev5) contains 482 additional mutations with respect to Syn61 – 

420 substitutions and 62 indels – of which 72 are in intergenic regions (data S1 and S3, and 

fig. S2). No target codons were reverted, further demonstrating the stability of our recoding 

scheme. Sixteen sense codons in non-essential genes were converted to target codons 

(5xTCG, 3xTCA, 8xTAG); these frequencies are comparable to those observed for other 

codons (data S1). Subsequent experiments used Syn61Δ3 or (once available) its evolved 

derivatives to investigate the new properties of these strains.

tRNA deletion ablates virus production in Syn61Δ3

We investigated the effects of deleting the genes encoding tRNASer CGA, tRNASer UGA, and 

RF1 on phage propagation by Syn61Δ3 (Fig. 2A), in a modified one-step growth experiment 

(24).

For Syn61(ev2) the total titer of phage T6 [a representative of the lytic, T-even family (Fig. 

2B)] briefly dropped (as phage infected cells) before rising to 2-logs10 above the input titer, 

as infected cells produced new phage particles (Fig. 2C, and fig. S3A). As expected, the 

optical density at 600-nm wavelength (OD600) of Syn61(ev2) was decreased by infection 

with T6 phage, which is lytic (Fig. 2D). Syn61ΔRF1 (data S1) and Syn61(ev2) produced a 

comparable level of phage on a comparable time scale and showed similar changes in OD600 

upon infection. We conclude that deletion of RF1 alone has little, if any, effect on T6 phage 

production or cell lysis.

Infection of Syn61Δ3 with T6 phage led to a steady decrease in total phage titer. Notably, 

this decrease was comparable to that observed when protein synthesis – and therefore phage 

production in cells – was completely inhibited by addition of gentamicin (Fig. 2C, and fig. 

S3B). Moreover, T6 infection had a minimal effect on the growth of Syn61Δ3 (Fig. 2D). We 

conclude that Syn61Δ3 does not produce new phage particles upon infection with T6 phage 

and that T6 phage does not lyse these cells. Similar results were obtained with T7 phage, 

which has 57 TCG codons, 114 TCA codons and 6 TAG codons in its 40 kb genome (fig. 

S3, A, C and D). We treated cells with a cocktail of phage containing lambda, P1vir, T4, T6 

and T7, which have TCA or TCG sense codons that are 10– to 58–times more abundant than 

the amber stop codon in their genomes (Fig. 2E and fig. S3E), and found that the treatment 

with this phage cocktail led to lysis of Syn61(ev2) and Syn61ΔRF1, but had little effect on 

the growth of Syn61Δ3 (Fig. 2, F and G), suggesting that the deletion of tRNAs in Syn61Δ3 

provides resistance to a broad range of phage.
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Reassigning target codons for ncAA incorporation

We expressed Ub11XXX genes (ubiquitin-His6 bearing TCG, TCA or TAG at position 11), 

and genes encoding the cognate orthogonal MmPylRS/MmtRNAPyl YYY pair (25) (in which 

the anticodon is complementary to the codon at position 11 in the Ub gene) in Syn61Δ3(ev5) 

(Fig. 3A and data S2).

In the absence of added ncAA, little to no ubiquitin was detected from Ub genes bearing a 

target codon at position 11, while control experiments demonstrated that ubiquitin is 

produced from a ‘wildtype’ gene that does not contain any target codons (Fig. 3B). Thus, 

none of the target codons are read by the endogenous translational machinery in Syn61Δ3. 

This further demonstrates that all of the target codons are orthogonal in this strain.

Upon addition of a ncAA substrate for the MmPylRS / MmtRNAPyl pair (Nε-((tert-
butoxy)carbonyl)-L-lysine (BocK)) (25), ubiquitin was produced at levels comparable to 

wildtype controls (Fig. 3B and data S4). ESI-MS and MS/MS demonstrated the genetically 

directed incorporation of BocK at position 11 of Ub in response to each target codon using 

the complementary MmPylRS / MmtRNAPyl YYY pair (Fig. 3C and fig. S4A). Additional 

experiments demonstrated efficient incorporation of ncAAs in response to sense and stop 

codons in GST-MBP (fig. S5 and data S4). We demonstrated good yields of Ub-His6 

incorporating 2, 3, or 4 ncAAs into a single polypeptide in response to each of the target 

codons (data S4; Fig. 3, D to I; and fig. S4, B to G), and we further demonstrated the 

incorporation of 9 ncAAs in response to 9 TCG codons in a single repeat protein (fig. S6). 

Together, these results demonstrated that the sense codons TCG and TCA, and the stop 

codon TAG, can be efficiently reassigned to ncAAs in Syn61Δ3 derivatives.

Encoding distinct ncAAs in response to distinct target codons

Next, we assigned TCG, TCA and TAG codons to distinct ncAAs in Syn61Δ3(ev4) using 

engineered mutually orthogonal aminoacyl-tRNA synthetase (aaRS)/tRNA pairs that 

recognize distinct ncAAs and decode distinct codons (Fig. 4A and fig. S7). We incorporated 

two distinct ncAAs into ubiquitin in response to TCG and TAG codons (Fig. 4B and fig. S8, 

A and B), and demonstrated the incorporation of two distinct ncAAs at four sites in 

ubiquitin, with each ncAA incorporated at two different sites in the protein (Fig. 4, B and C; 

and fig. S8, C to E; and data S4). We incorporated three distinct ncAAs into ubiquitin, in 

response to TCG, TCA and TAG codons (Fig. 4, D and E, and fig. S8F). We demonstrated 

the generality of our approach by synthesizing seven distinct versions of ubiquitin, each of 

which incorporated three distinct ncAAs (fig. S9, fig. S10, and data S4).

Encoded noncanonical polymers and macrocycles

For a linear polymer composed of two distinct monomers (A and B) there are four 

elementary polymerization steps (A+B -> AB, B+A -> BA, A+A -> AA, B+B -> BB) from 

which any sequence can be composed (Fig. 5A). For ribosome-mediated polymerization 

these four elementary steps correspond to each monomer acting as an aminoacyl-site (A-

site) or peptidyl-site (P-site) substrate to form a bond with another copy of the same 

monomer or with a distinct monomer (Fig. 5A). We encoded each elementary step by 
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inserting TCG-TCG (encoding AA; we arbitrarily assign monomer A to the TCG codon in 

this nomenclature), TAG-TAG (encoding BB; we assign monomer B to the TAG codon), 

TCG-TAG (encoding AB) and TAG-TCG (encoding BA) at codon 3 of a superfolder green 

fluorescent protein (sfGFP) gene. We demonstrated the elementary steps for three pairs of 

monomers: A = BocK, B = (S)-2-Amino-3-(4-iodophenyl)propanoic acid (p-I-Phe); A = Nε-

(carbobenzyloxy)-L-lysine (CbzK), B = p-I-Phe; A = Nε-allyloxycarbonyl-L-lysine 

(AllocK), B = CbzK (Fig. 5B and fig. S11). We genetically encoded six entirely non-natural 

tetrameric sequences and a hexameric sequence for each pair of monomers, as well as an 

octameric sequence for the AllocK, CbzK pair (22 synthetic polymer sequences in total) 

(figs. S11 and S13 and Fig. 5, C to E). All encoded polymerizations were ncAA dependent 

(figs. S11 and S12B and Fig. 5, C to E) and ESI-MS confirmed that we had synthesized the 

noncanonical hexamers and octamers as sfGFP fusions (Fig. 5F and fig. S12C). We encoded 

tetramer and hexamer sequences composed of AllocK and CbzK between SUMO (small 

ubiquitin-like modifier) and GyrA-CBD (DNA gyrase subunit A-chitin-binding domain) and 

purified the free polymers (Fig. 5, G to I, and fig. S13). Finally, we encoded the synthesis of 

a non-natural macrocycle reminiscent of the products of non-ribosomal peptide synthetases 

(Fig. 5, G and J).

Discussion

We have synthetically uncoupled our strain from the ability to read the canonical code, and 

this advance provides a potential basis for bioproduction without the catastrophic risks 

associated with viral contamination and lysis (26, 27). We note that the synthetic codon 

compression and codon reassignment strategy we have implemented is analogous to models 

proposed for codon capture in the course of natural evolution (28).

Future work will expand the principles we have exemplified herein to further compress and 

reassign the genetic code. We anticipate that, in combination with ongoing advances in 

engineering the translational machinery of cells (4), this work will enable the programmable 

and encoded cellular synthesis of an expanded set of noncanonical heteropolymers with 

emergent, and potentially useful, properties.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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One Sentence Summary

The genetic code of a synthetic E. coli strain is reprogrammed to confer viral resistance 

and enable the encoded, programmable synthesis of noncanonical polymers.
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Fig. 1. Strain evolution and creation of Syn61Δ3.
(A) Schematic of strain evolution. Black lines connect the codons that encode serine and 

protein termination to the anticodons of the tRNAs or release factors predicted to decode 

them. The genes encoding the corresponding tRNAs and release factors are indicated in the 

black boxes. Cells with the decoding rules of Syn61 are denoted with a pink box throughout. 

Two rounds of parallel mutagenesis and dynamic selection created Syn61(ev2). serT, serU, 

and prfA were then deleted to create Syn61Δ3. Finally, three rounds of parallel mutagenesis 

and dynamic selection were applied to create Syn61Δ3(ev5); Syn61Δ3 and Syn61Δ3(ev5) 

are represented by the light-teal box throughout.

(B) Growth rates of Syn61 and all intermediate strains in the development of Syn61Δ3(ev5). 

Growth rates were calculated on the basis of growth curves measured for n = 8 replicate 

cultures for each strain. For statistics see methods in the supplementary materials.
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Fig. 2. Lytic phage propagation and cell lysis is obstructed in Syn61Δ3.
(A) Schematic of viral infection of Syn61Δ3. Deletion of serU (encoding tRNASer CGA), 

serT (encoding tRNASer UGA), and prfA (encoding RF1) makes the UCG, UCA, and UAG 

codons unreadable and the ribosome will stall at these codons within an mRNA that contains 

them, as shown here for a viral mRNA.

(B) Schematic of the number of TCG, TCA, and TAG codons and their positions in the 

genome of T6 phage.
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(C) Cultures were infected with T6 phage at a multiplicity of infection (MOI) of 5 x 10-2, 

and the total titer (intracellular phage plus free phage) was monitored over 4 hours. PFU, 

plaque-forming units. Treatment with gentamicin was used to ablate protein synthesis, 

providing a control for cells that cannot synthesize viral proteins or produce new viral 

particles.

(D) T6 efficiently lyses Syn61 variants but not Syn61Δ3. Cultures were infected as in panel 

(C) and OD600 was measured after 4 hours.

(E) Number of the indicated codons per kilobase in each indicated phage.

(F and G) Syn61Δ3 survives simultaneous infection of multiple phage: (F) photos of the 

culture at the indicated time points after infection (+) or in the absence of infection (-). 

Cultures were infected with phage λ, P1, T4, T6, and T7, each with an MOI = 1 x 10-2. (G) 

OD600 of the cultures was measured after 4 hours. All experiments were performed in three 

independent replicates, the dots represent the independent replicates and the line (panel (C)) 

or bar [panels (D) and (G)] represents the mean. The photo (F) is a representative of data 

from three independent replicates.
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Fig. 3. Reassigning two sense codons and a stop codon to noncanonical amino acid in Syn61Δ3.
(A) Schematic of each codon reassignment. Introduction of an orthogonal aaRS/tRNAYYY 

pair – where YYY is the sequence of the anticodon of the orthogonal tRNA (encoded by O-
tRNA) – to Syn61Δ3 (light teal box, as described in Fig. 1A) enables decoding of the 

cognate codon (XXX) introduced into a gene of interest. The orthogonal pair directs the 

incorporation of a noncanonical amino acid (ncAA) in response to the XXX codon. These 

codon reassignments are indicated in the dark gray box.
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(B) TCG, TCA and TAG codons are not read by the translational machinery in Syn61Δ3, 

and codon reassignment enables ncAA incorporation into Ub11XXX. Plasmids encoding the 

orthogonal MmPylRS/MmtRNAPyl YYY pair and a C-terminally His6-tagged ubiquitin, with 

a single TCG, TCA, or TAG codon at position 11 (Ub11XXX), or no target codons (wild type, 

wt) were introduced into Syn61Δ3. “XXX” denotes a target codon and “YYY” denotes a 

cognate anticodon. Expression of ubiquitin-His6 was performed in the absence (-) or 

presence (+) of a ncAA substrate for MmPylRS, BocK. Full-length ubiquitin-His6 was 

detected in cell lysate from an equal number of cells with an anti-His6 antibody.

(C) Production of ubiquitin-His6 incorporating BocK, Ub-(11BocK)-His6, from a Ub11XXX 

gene bearing the indicated target codon was confirmed by ESI-MS. MW, molecular weight. 

Theoretical mass: 9487.7 Da; measured mass: 9487.8 Da (TCG), 9487.8 Da (TCA), and 

9488.0 Da (TAG). The smaller peak of -100 Da results from the loss of tert-butoxycarbonyl 

from BocK.

(D) As in (B), but using Ub11XXX,65XXX, which contains target codons at positions 11 and 

65 of the Ub gene.

(E) Production of ubiquitin-His6 incorporating BocK at positions 11 and 65, from a 

Ub11XXX65XXX gene bearing the indicated target codons was confirmed by ESI-MS. 

Theoretical mass: 9629.0 Da; measured mass: 9629.2 Da (TCG), 9629.0 Da (TCA), and 

9629.0 Da (TAG). The smaller peak of -100 Da corresponds to loss of tert-butoxycarbonyl 

from BocK.

(F) As in (B), but using Ub11XXX,14XXX,65XXX, which contains target codons at positions 

11, 14, and 65 of the Ub gene.

(G) Production of ubiquitin-His6 incorporating BocK at positions 11, 14 and 65, from 

Ub11XXX,14XXX,65XXX bearing the indicated target codons was confirmed by ESI-MS. 

Theoretical mass: 9756.1 Da; measured mass: 9756.2 Da (TCG), 9756.0 Da (TCA), and 

9756.0 Da (TAG). The smaller peaks of -100 or -200 Da correspond to loss of tert-
butoxycarbonyl from one or two BocK residues, respectively.

(H) As in (B), but using Ub9XXX,11XXX,14XXX,65XXX, which contains target codons at 

positions 9, 11, 14 and 65 of the Ub gene.

(I) Production of ubiquitin-His6 incorporating BocK at positions 9, 11, 14 and 65, from 

Ub9XXX,11XXX,14XXX,65XXX bearing the indicated target codons was confirmed by ESI-MS. 

Theoretical mass: 9883.3 Da; measured mass: 9883.2 Da (TCG), 9883.2 Da (TCA), and 

9883.2 Da (TAG). The smaller peaks of -100 or -200 Da correspond to loss of tert-
butoxycarbonyl from one or two BocK residues, respectively. All experiments were 

performed in biological replicates three times with similar results.
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Fig. 4. Double and triple incorporation of distinct noncanonical amino acids into TCG, TCA, and 
TAG codons in Syn61Δ3 cells.
(A) Reassignment of TCG (blue box), TCA (gold box) and TAG (green box) codons to 

distinct ncAAs in Syn61Δ3. Reassigning all three codons to distinct ncAAs in a single cell 

requires three engineered triply orthogonal aaRS/tRNA pairs. Each pair must recognize a 

distinct ncAA and decode a distinct codon. The tRNAs from these triply orthogonal pairs are 

labelled O-tRNA1-3.

(C) ESI-MS analyses of purified Ub-(11CbzK, 65p-I-Phe) (black trace) and Ub-(11CbzK, 

14CbzK, 57p-I-Phe, 65p-I-Phe) (gray trace), expressed in the presence of CbzK and p-I-Phe, 

as described in (E) and purified by nickel-nitrilotriacetic acid chromatography. These data 

confirm the quantitative incorporation of CbzK and p-I-Phe in response to TCG and TAG 

codons, respectively. Ub-(11CbzK, 65p-I-Phe), theoretical mass: 9707.81 Da; measured 

mass: 9707.40 Da. Ub-(11CbzK, 14CbzK, 57p-I-Phe, 65p-I-Phe), theoretical mass: 

10,055.00 Da; measured mass: 10,054.60 Da.

(D) The incorporation of three distinct noncanonical amino acids into TCG, TCA, and TAG 

codons in a single gene. Syn61Δ3(ev4) – containing the 1R26PylRS(CbzK)/

AlvtRNAΔNPyl(8) CGA pair, the MmPylRS/MmtRNAPyl UGA pair and the AfTyrRS(p-I-Phe)/

AftRNATyr(A01) CUA pair – were provided with CbzK, BocK and p-I-Phe. Cells also 
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contained Ub9TAG,11TCG,14TCA (TCG/TCA/TAG). Expression of this gene was performed in 

the absence (-) or presence (+) of the ncAAs. Full-length Ub-(9p-I-Phe, 11CbzK, 14BocK)-

His6 was detected in cell lysate from an equal number of cells with an anti-His6 antibody.

(E) ESI-MS of purified Ub-(9p-I-Phe, 11CbzK, 14BocK), theoretical mass: 9820.97 Da; 

measured mass: 9820.80 Da. Western blot experiments [(B) and (D)] were performed in five 

biological replicates with similar results. The ESI-MS data [(C) and (E)] were collected 

once.
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Fig. 5. Programmable, encoded synthesis of noncanonical heteropolymers and macrocycles
(A) Elementary steps in the ribosomal polymerization of two distinct ncAA monomers 

[labelled A (dark blue) and B (green)]. All linear heteropolymer sequences composed of A 

and B can be encoded from these four elementary steps.

(B) Encoding heteropolymer sequences (noncanonical monomers are shown as stars). The 

sequence of monomers in the heteropolymer is programmed by the sequence of codons 

written by the user. The identity of monomers (A and B) is defined by the aaRS/tRNA pairs 

added to the cell. Cells can be reprogrammed to encode different heteropolymer sequences 
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from a single DNA sequence. Sequences were encoded as insertions at position 3 of sfGFP-
His6. Reassignment scheme 1 (r.s.1) uses the MmPylRS/MmtRNAPyl CGA pair to assign 

AllocK as monomer A and the 1R26PylRS(CbzK)/AlvtRNAΔNPyl(8) cua pair to assign 

CbzK as monomer B (Fig. S7, D to E). r.s.2 uses the MmPylRS/MmtRNAPyl CGA pair to 

assign BocK as monomer A and an AfTyrRS(p-I-Phe)/AftRNATyr(A01) CUA pair to assign p-

I-Phe as monomer B. r.s.3 uses the 1R26PylRS(CbzK)/AlvtRNAΔNPyl(8) CGA pair to assign 

CbzK as monomer A and the AfTyrRS(p-I-Phe)/AftRNATyr(A01) CUA pair to assign p-I-Phe 

as monomer B.

(C-E) Polymerization of the encoded sequence composed of the indicated ncAAs, and the 

resulting sfGFP-His6 expression in Syn61Δ3(ev5) were dependent on the addition of both 

ncAAs to the medium. a.u., arbitrary units.

(F) ESI-MS of purified sfGFP-His6 variants containing the indicated ncAA hexamers. 

BocK/p-I-Phe (expected mass after loss of N-terminal methionine: 29,172.07 Da; observed: 

29,171.8 Da), CbzK/p-I-Phe (expected mass after loss of N-terminal methionine: 29,274.13 

Da; observed: 29,274.0 Da) and AllocK/CbzK (expected mass after loss of N-terminal 

methionine: 29,091.64 Da; observed: 29,092.2 Da). The ESI-MS data was collected once.

(G) Encoded synthesis of free noncanonical polymers. DNA sequences encoding a tetramer 

and a hexamer were inserted between SUMO and a GyrA intein coupled to a CBD, in 

Syn61Δ3(ev5) cells containing the same pairs as in r.s.1 (B). Expression of the constructs, 

followed by ubiquitin-like-specific protease 1 (Ulp1) cleavage and GyrA trans-

thioesterification cleavage, results in the isolation of free noncanonical tetramer and hexamer 

polymers. Adding an additional cysteine immediately upstream of the polymer sequence 

results in self-cleavage and release of a macrocyclic noncanonical polymer.

(H-J) Chemical structures and ESI-MS spectra of the purified linear and cyclic AllocK/

CbzK heteropolymers. The raw ESI-MS spectra show the relative intensity and observed 

mass/charge ratios for the different noncanonical peptides. The observed masses 

corresponding to the expected [M + H]+ or [M + 2H]2+ ions are highlighted in bold. Other 

adducts and fragment ions are labeled relative to these.
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