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Abstract

The muscular dystrophies are a heterogeneous group of inherited myopathies characterised by the 

progressive wasting of skeletal muscle tissue. Pericytes have been shown to make muscle in vitro 

and to contribute to skeletal muscle regeneration in several animal models, although recent data 

has shown this to be controversial. In fact, some pericyte subpopulations have been shown to 

contribute to fibrosis and adipose deposition in muscle. In this chapter we explore the identity and 

the multifaceted role of pericytes in dystrophic muscle, potential therapeutic applications and the 

current need to overcome the hurdles of characterisation (both to identify pericyte subpopulations 

and track cell fate), to prevent deleterious differentiation towards myogenic-inhibiting 

subpopulations, and to improve cell proliferation and engraftment efficacy.
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1 Skeletal Muscle and Muscular dystrophies

Skeletal muscle is the most abundant tissue in humans and its main roles are to generate 

movement, support soft tissues, maintain posture, and contribute to energy metabolism and 

temperature control (Frontera and Ochala, 2015). It is characterised by a well-defined 

structure of connective tissues and muscle fibres (or myofibres), which are multinucleated, 

post-mitotic syncytial cells containing contractile units named sarcomeres. During skeletal 

muscle histogenesis, muscle fibres are generated by the fusion of paired-box transcription 

factor 3- (Pax3) and Pax7-expressing mesodermal progenitors (Bentzinger et al., 2012; 

Buckingham, 2006; Comai and Tajbakhsh, 2014). After birth, they grow in size thanks to the 

fusion of satellite cells (Yablonka-Reuveni, 2011; Yin et al., 2013), a population of muscle 

stem cells located between the plasma membrane of myofibres (sarcolemma) and the basal 

lamina, that are responsible for growth, repair, and regeneration of adult skeletal muscle 
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(Mauro, 1961; Relaix and Zammit, 2012). Satellite cells are quiescent in physiological 

conditions but can be activated after muscle injury or by specific signalling pathways 

(Dumont et al., 2015; Relaix and Zammit, 2012; Verdijk et al., 2014; Yin et al., 2013). Once 

activated, they proliferate and the majority of them differentiate along the myogenic 

programme in order to replace damaged muscle fibres. Alternatively, they undergo self-

renewal to replenish the stem cell pool (Rocheteau et al., 2012; Zammit et al., 2004). 

Satellite cells are characterised by the expression of Pax7, which is SC-specific marker in 

skeletal muscle. Many also express caveolin-1, integrin-α7, M-cadherin, CD56/NCAM, 

CD29/integrin-β1 and syndecans 3 and 4, although differences in expression patterns are 

observed between species, location and activation stage [reviewed in detail in (Boldrin et al., 

2010; Tedesco et al., 2010; Tedesco et al., 2017; Yin et al., 2013)]. Satellite cells and their 

derived myoblast progeny are considered the main muscle stem cells, required for complete 

myogenic regeneration [reviewed in (Relaix and Zammit, 2012; Zammit et al., 2006)]. In the 

last two decades, several muscle and non-muscle stem/progenitor cells with variable 

myogenic potencies have been isolated. For comprehensive reviews on the topic please refer 

to (Negroni et al., 2016; Tedesco et al., 2010; Tedesco et al., 2017).

Muscular dystrophies are a clinically and genetically heterogeneous group of rare 

neuromuscular genetic disorders sharing common pathological features (Mercuri and 

Muntoni, 2013). Despite their heterogeneity in muscle wasting distribution, disease severity, 

inheritance, age of onset and progression rate, they are characterised by repeated cycles of 

skeletal muscle degeneration/regeneration, changes in myofibre size and inflammation, 

which ultimately results in progressive muscle wasting. In the most severe forms, muscle 

weakness leads to early loss of ambulation and to a premature death by cardiorespiratory 

failure (Manzur and Muntoni, 2009; Mercuri and Muntoni, 2013). Many muscular 

dystrophies are caused by mutations in genes coding for proteins that belong to the 

dystrophin-associated glycoprotein complex (DAGC) (Ervasti and Campbell, 1991). The 

DAGC is a multiprotein complex located at the muscle fibre membrane (sarcolemma) and 

provides a strong mechanical link between intracellular cytoskeleton and the extracellular 

matrix; it plays a pivotal role in stabilising the sarcolemma and in maintaining myofiber 

integrity during muscle contraction (Emery, 2002; Straub and Campbell, 1997). As a 

consequence, mutations disrupting the DAGC result in increased sarcolemma fragility and 

contraction induced-fibre damage, which in turn lead to repeated cycles of myofibre 

degeneration/regeneration and ultimately to the replacement of the skeletal muscle tissue 

with fibrotic and adipose tissues (Matsumura and Campbell, 1994; Michalak and Opas, 

1997; Straub and Campbell, 1997; Worton, 1995). Other muscular dystrophies can be caused 

by mutations in ubiquitously expressed proteins that result in muscle pathologies, such as 

mutations of nuclear envelope components. Recently, nextgeneration sequencing is helping 

to identify new genes responsible for previously undefined muscular dystrophies (Carss et 

al., 2013; Hara et al., 2011; Mitsuhashi and Kang, 2012).

The most common are Duchenne (DMD), Becker (BMD) and limb-girdle (LGMD). DMD is 

caused by mutations in the X-linked gene that codifies for dystrophin, a rod-shaped 

cytoplasmic protein belonging to the DAGC (Ervasti and Campbell, 1991; Michalak and 

Opas, 1997; Straub et al., 1992). DMD has an early onset and a severe disease progression. 

Becker MD (BMD) is the milder allelic variant of DMD, which has a slower progression 
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and later onset. LGMDs represent one of the most heterogeneous groups, which are further 

subclassified according to the genetic defect responsible for the individual forms and 

inheritance (Emery, 2002; Mercuri and Muntoni, 2013).

Although muscular dystrophies are often fatal diseases for which no cure currently exists, 

many therapeutic strategies are being developed and tested in basic, pre-clinical and clinical 

studies [reviewed in (Benedetti et al., 2013; Bengtsson et al., 2016; Lin and Wang, 2018; 

Negroni et al., 2016; Pini et al., 2017; Scoto et al., 2018)].

2 Skeletal Muscle Pericytes

2a Pericyte ontogeny

Pericytes are an heterogeneous population of contractile mural cells that surround and 

support blood vessels in all vascularised tissues (Hirschi and D'Amore, 1996). They were 

thought to be exclusively associated with the microvasculature, but evidence supports their 

presence also on higher order vessels (Campagnolo et al., 2010), except the lymphatic 

vessels (Norrmen et al., 2011). Pericytes can be defined and distinguished from other 

perivascular cells, such as smooth muscle cells, by a combination of criteria including 

anatomical location, morphology and gene/protein expression pattern (Armulik et al., 2011). 

Notably, pericytes can be distinguished from other endothelial-associated perivascular cells 

by their location embedded within the vascular basement membrane (Sims, 1986).

Despite pericytes being observed and described for the first time more than a century ago 

(Eberth, 1871; Rouget, 1873; Zimmermann, 1923), fundamental questions about their origin 

and functions remain partially unanswered. This is mainly due to the struggle in identifying 

a common pericyte ancestor. Numerous lineage-tracing experiments have shown that during 

embryogenesis, pericytes from different tissues originate from diverse sources, so that as a 

result a single vessel may be composed by pericytes of diverse developmental origins 

(Majesky, 2007; Majesky et al., 2011). Recently, lineage-tracing studies have shown even 

more diversity, with subsets of pericytes with hematopoietic (Yamazaki et al., 2017) and 

macrophage (Prazeres et al., 2018) origin.

Interestingly, pericytes in the aorta appear to have multiple developmental sources (Majesky, 

2007; Majesky et al., 2011), adding an additional layer of complexity to the pericyte's 

ontogeny debate (Birbrair et al., 2017; Dias Moura Prazeres et al., 2017). This hints towards 

the idea that instead of having a common ancestor, pericytes share a mural precursor with 

the vascular smooth muscle cells (VSMCs) of the tissue in which they reside (Armulik et al., 

2011; Majesky et al., 2011). This might explain the relative heterogeneity of pericytes 

derived from different tissues. Although undetermined in most organs, there is some 

evidence of this phenomenon in brain pericyte lineage tracing (Etchevers et al., 2001). In 

vitro studies using pluripotent stem cells (PSCs) have also alluded to a common mural 

progenitor (Kumar et al., 2017). While the source of pericytes within many organs has been 

established, the developmental origin of pericytes in skeletal muscle remains elusive.
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2b Pericyte plasticity

Pericytes have several common functions regardless their tissue of origin, namely blood 

vessel stabilisation and permeability, vascular development/maturation and regulation of 

blood flow (Armulik et al., 2011; Enge et al., 2002; Hall et al., 2014; Hellstrom et al., 2001; 

Leveen et al., 1994; Lindahl et al., 1997; Pallone and Silldorff, 2001; Pallone et al., 1998; 

Peppiatt et al., 2006; Soriano, 1994). In addition, in the last decade many studies have 

identified pericytes as tissue-resident progenitors able to form multiple human tissues 

(Dellavalle et al., 2011; Sacchetti et al., 2016). A recent study by Evans and colleagues 

challenged this view, showing that Tbx18+ mouse pericytes maintain their mural identity 

and do not generate other cell types in injured and aging tissues, including brain, heart, fat 

and skeletal muscle (Guimaraes-Camboa et al., 2017). This suggests that plasticity seen in 

vitro or after transplantation could be an artefact of ex vivo cell culture. The discrepancy 

between this data and previous studies suggests that mural cells can behave as progenitors 

but that this behaviour is dependent on the organ and on the developmental stage. 

Alternatively, it may be that a small population of pericytes with progenitor capabilities do 

not express Tbx18, and hence were not labelled in the Tbx18-cre strain. This could be 

possibly due to the heterogeneous nature of pericytes. The model of endogenous pericytes as 

tissueresident progenitors might therefore need further investigation, perhaps using 

additional or alternative pericyte lineage-tracing tools (Cano et al., 2017).

Beside their role in supporting the microvasculature and their putative role as tissue 

progenitors, pericytes can also display tissue-dependent functions [reviewed in (Holm et al., 

2018)]. For example, brain pericytes support the blood-brain barrier integrity (Al Ahmad et 

al., 2011; Armulik et al., 2010; Daneman et al., 2010; Dohgu et al., 2005; Nakagawa et al., 

2007) while in the immune system they contribute to the regulation of lymphocyte activation 

(Balabanov et al., 1999; Fabry et al., 1993; Tu et al., 2011; Verbeek et al., 1995). In skeletal 

muscle, pericytes contribute to muscle regeneration, fibrosis, fat deposition and ossification 

[reviewed in (Birbrair et al., 2015; Murray et al., 2017)]. We shall detail later in this chapter 

the role of pericytes in these processes in the specific context of muscular dystrophies. 

Generally, pericytes and their associated blood vessels run parallel to muscle fibres, where 

cross talk is thought to regulate nutrient uptake and postnatal myogenesis. Early studies 

suggest that pericyte location in capillary vessels of skeletal muscle is fibre type-specific 

(Gaudio et al., 1985; Levy et al., 2001) and that specific subset of pericytes within skeletal 

muscle do have distinct roles (Birbrair et al., 2013b). Interestingly, in contrast to the widely 

excepted view, there is no clear evidence that pericytes can actively alter blood flow in 

skeletal muscles [reviewed in (Murray et al., 2017; Sims, 1986)].

2c Molecular signature and skeletal muscle-specific pericyte subpopulations

As mentioned above, despite their fundamental roles in health and disease and their 

ubiquitous presence in all body's tissues and organs, pericytes' identification is made difficult 

by their heterogeneity, which not only concerns origin and distribution but also the pattern 

and dynamic of molecular markers they do express (Armulik et al., 2011). In general it can 

be said that i) none of the pericyte markers are specific; ii) not all pericytes do express all the 

markers at once; iii) pericytes from different tissues express different markers; iv) marker 

expression is determined by the developmental and activation stage (Armulik et al., 2011). 
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Although efforts are being made to characterise skeletal muscle pericytes, many putative 

markers overlap with other muscle cells and there is no single all-encompassing pericyte-

specific marker in skeletal muscle. For this reason and as for other tissues, skeletal muscle 

pericytes are often identified as much by their anatomical location as by the expression of a 

pool of molecular markers/proteins [reviewed in (Tedesco et al., 2017)]. However, it is worth 

mentioning that in sites of active angiogenesis or disorganised tissue, such as dystrophic 

muscle, it can be difficult to determine which cells are located within the vascular basement 

membrane and therefore to define the exact location of cells expressing pericyte markers. In 

addition, the mechanisms regulating pericyte quiescence, activation and their transition 

between these two states are still unknown, as most studies have focussed on homing factors 

or determining final fate.

Some of the most common markers used for pericytes are neural-glia antigen 2 (NG2), 

platelet derived growth factor receptor β (PDGFRβ), smooth muscle α-actin (α-SMA), 

desmin, CD13, regulator of G protein signalling 5 (RGS5), CD146 and Nestin (Armulik et 

al., 2011; Birbrair et al., 2011; Tedesco et al., 2017). None of these markers are unique for 

pericytes. In the skeletal muscle for example, most proteins are expressed in both satellite 

cells and a subset of muscle pericytes, including Pax3 (Dellavalle et al., 2007; Sacchetti et 

al., 2016), which may be due to a shared developmental origin (Esner et al., 2006), and 

Nestin (Birbrair et al., 2011; Day et al., 2007). A subpopulation of non-myogenic muscle 

pericytes also share the expression of PDGFRα with fibro/adipogenic progenitors (FAPs), a 

PDGFRα+/CD34+and stem cell antigen-1 (Sca1)+ muscle interstitial cell population able to 

differentiate into myofibroblasts and/or adipose cells (Joe et al., 2010; Uezumi et al., 2010).

Fate-tracing experiments in mice have revealed that a subpopulation of muscle pericytes can 

have myogenic fate. This includes a subpopulation expressing the alkaline phosphatase 

(AP), which is able to fuse with developing muscle fibres and enter the satellite cell 

compartment, both during postnatal development and following acute/chronic muscle injury 

(Dellavalle et al., 2011). Whether they become bona fide, functional satellite cells, however, 

still needs to be elucidated. In addition, Birbrair et al. used Nestin-GFP/NG2-DsRed double 

transgenic mice to demonstrate the existence of type-2 (Nestin+/NG2+) and type-1 

(Nestin-/NG2+) pericytes. Both populations express the typical pericyte markers PDGFRβ 
and CD146 and are associated to capillaries. However, type 2 pericytes are able to form 

myotubes in vitro and in vivo and enter the satellite cell compartment (Birbrair et al., 2013c) 

while type 1 are PDGFRα+ and contribute to fat accumulation and fibrosis (Birbrair et al., 

2013b; Birbrair et al., 2013c). A comparison of the AP+ and Nestin+ populations has not 

been made.

In humans, a subpopulation of AP+ interstitial muscle cells associated to small vessels has 

also been observed (Dellavalle et al., 2007). These human interstitial cells (presumed to be 

of pericyte origin but obtained from un-purified biopsies) were initially characterised as 

expressing the pericyte markers AP, desmin, PDGFRβ, vimentin, Annexin V and Integrin 

b1/CD29, whilst being negative for myogenic genes Pax7 and MyoD, CD31, CD34, NCAM/

CD56 and CD45. However, these interstitial cells did not express all pericyte markers; 

expression of M-cadherin/CD146, NG2 and α-SMA was variable among different 

preparations (Dellavalle et al., 2007). Moreover, variable expression of NCAM/CD56 and 
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myogenic regulatory factors in this population has been observed in a subsequent 

publication (Meng et al., 2011), further contributing to the evidence that this is a variable 

population in human muscles. In addition, other studies showed that CD146+ subendothelial 

cells isolated from the postnatal human skeletal muscle microvasculature have high 

spontaneous myogenic potential in vitro and they generate myotubes and myofibre in vivo 

(Sacchetti et al., 2016).

Further studies will be needed to address the relationships existing between these different 

subpopulations of skeletal muscle pericytes from both murine and human origin.

2d Pericytes and satellite cells

Within skeletal muscles, satellite cells are located beneath the basement membranes of 

muscle fibres and are closely connected with capillary endothelial cells. As a result, a close 

interaction also occurs between pericytes and satellite cells.

This has led to speculation that there is cross talk between these two cell types (Christov et 

al., 2007; Dellavalle et al., 2011). This relationship is multi-faceted. For example, the juxta-

vascular position of satellite cells is thought to enable co-ordinated angio-myogenesis 

(Christov et al., 2007), whilst Kostallari et al. found that pericytes directly form a niche for 

satellite cells, regulating their quiescence and contributing to myogenesis, through 

Angiopotein 1 and insulin-like growth factor 1 (IGF-1), respectively (Kostallari et al., 2015). 

Whilst the authors proposed that only Nestin+ type-2 pericytes were involved in these 

processes, future lineage-tracing experiments and selective ablation of type-1 or type-2 

subtypes are required to give us a clear answer on this matter.

The relationship between pericytes and satellite cells/myoblasts might even be more 

complex that the one just described above. Several years ago, Cossu and Bianco proposed 

that during development, cells associated to the growing vessels might be recruited to adopt 

the local fate of the specific tissue they were invading. In the case of the skeletal muscle, 

cells associated to the blood vessels that enter the muscle anlagen might be recruited to 

adopt a myogenic fate and contribute to its histogenesis (Bianco and Cossu, 1999). This 

concept found a first and partial confirmation in the finding that the embryonic dorsal aorta 

contains skeletal myogenic cells, named mesoangioblasts, that co-express endothelial and 

myogenic markers and can contribute to muscle regeneration (De Angelis et al., 1999; 

Minasi et al., 2002). In vitro co-cultures of embryonic dorsal aortas and murine myotubes 

demonstrated that Noggin secreted from newly formed muscle fibres recruits NG2+ dorsal 

aorta progenitors and promotes their conversion to a myogenic fate. Conversely, myogenesis 

is inhibited by bone morphogenetic factor 2 (BMP2) expressed by the aorta (Ugarte et al., 

2012). This data indicates that skeletal muscle and blood vessels compete to recruit 

mesodermal progenitor cells to a myogenic or to a perivascular fate during foetal muscle 

development and that the final decision of which cell fate to adopt might be due to the 

balance existing between Noggin and BMP2 expression. These data also suggest that a fate 

switch might happen also in the other direction, with skeletal myoblasts being recruited to a 

pericyte fate. In this direction, Cappellari et al. showed that exposure of both embryonic and 

foetal skeletal myoblasts to Notch Delta ligand 4 (Dll4), expressed by the developing 

endothelium (Kume, 2012), and PDGF-BB, which recruits pericytes from the surrounding 
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mesenchyme (Hellstrom et al., 1999), downregulate myogenic genes, upregulate pericyte 

markers and bring myoblasts to assume a perivascular position when co-cultured with 

endothelial cells. Moreover, they showed that myoblasts occasionally adopt a perivascular 

position also in vivo, ruling out that the direct conversion of skeletal myoblasts into pericytes 

is simply an artefact of ex vivo cell manipulations (Cappellari et al., 2013). Altogether, this 

data suggests that the endothelium, via Dll4 and PDGF-BB expression, might induce a fate 

switch in adjacent skeletal myoblasts. Cossu and Cappellari postulated that the reason for 

this lineage promiscuity between muscle cells and perivascular cells might be explained by 

developmental timing and the specific need of the skeletal muscle tissue during histogenesis: 

for the muscle to grow, it recruits not only myoblasts but also unorthodox mesodermal cells 

that once exposed to muscle-specification molecules undergo myogenesis; once the muscle 

is grown, hypoxia is triggered with consequent vascular endothelial growth factor release 

and activation of angiogenesis, with developing blood vessels in the muscles recruiting 

supporting perivascular cells from the surrounding mesoderm (Figure 1) (Cappellari et al., 

2013; Cappellari and Cossu, 2013). Recent work in our laboratory has demonstrated that this 

mechanism is also conserved in adult murine and human satellite cell-derived myoblasts, 

and that it can be exploited to enhance migration of myoblasts when transplanted (Gerli et 

al., 2019).

3 Pericytes contribution to muscle regeneration

3a Pericytes as stem/progenitor cells for muscular dystrophies

Stem cell transplantation therapies for muscular dystrophies have long been touted as a 

method to improve clinical features. Satellite cell-derived myoblasts were initially 

considered the ideal candidate cell population for the cell therapy of muscular dystrophies 

(Partridge et al., 1989). However, successive clinical studies have revealed that although 

some level of dystrophin was produced, no efficacy was achieved in patients with Duchenne 

Muscular dystrophy (DMD), one of the most severe and common form of muscular 

dystrophy [reviewed in (Negroni et al., 2016; Partridge, 2000; Tedesco et al., 2010)]. While 

researchers tried to identify the possible culprit(s) for this result (Fan et al., 1996; Guerette et 

al., 1997; Huard et al., 1992; Skuk and Tremblay, 2011) and find possible therapeutic 

solutions (Arpke et al., 2013; Boldrin et al., 2012; Cerletti et al., 2008; Collins et al., 2005; 

Gilbert et al., 2010; Montarras et al., 2005; Morales et al., 2013; Palmieri et al., 2010; 

Rocheteau et al., 2012; Sacco et al., 2008; Skuk et al., 2006; Skuk et al., 2007; Skuk et al., 

2004; Smythe et al., 2000; Tanaka et al., 2009), the search was started for alternative cell 

types that could be effective in cell therapy protocols for muscle. Whilst several candidate 

stem/progenitor populations have been identified as contributing to skeletal muscle 

regeneration [reviewed in (Loperfido et al., 2015; Negroni et al., 2016; Tedesco et al., 2010; 

Tedesco et al., 2017)], pericyte-derived cells seem to hold a preferential place.

Data obtained from different laboratories in the past years now support an important role for 

myogenic pericytes in skeletal muscle regeneration. As mentioned earlier in this chapter, 

fate-tracing of AP+ murine skeletal muscle pericytes reveals how this subset of pericytes 

contribute to the formation of new muscle fibres in a limb girdle muscular dystrophy 

(LGMD) 2D mouse model (Dellavalle et al., 2011). In human skeletal muscle, AP+ pericytes 
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are increased in muscle biopsies of some dystrophic patients compared to healthy controls 

and neuropathic patients (myopathic 9.4% vs and controls 4.7% vs neuropathic 5.7%) (Diaz-

Manera et al., 2012). These results are supported by another study showing an increase in 

the population of NG2+ pericytes in acute muscular injury (Valero et al., 2012). Conversely, 

we have reported a significant decrease (of approximately 55%) in the numbers and 

myogenic capacity of AP+ muscle pericytes both in mice and patients with LGMD2D 

(Tedesco et al., 2012). This apparently contrasting data could be explained by the different 

stage of disease progression of the biopsies/samples used in these two studies. We propose 

that in dystrophic muscles, during the first phase of muscle degeneration/regeneration AP+ 

skeletal muscle pericytes are transiently amplified to sustain the continuous need for new 

muscle fibres in cooperation with satellite cells and other muscle stem cells. Over time 

cycles of muscle degeneration/regeneration lead to an exhaustion of the pool of AP+ 

pericytes.

Myogenic pericyte transplantation has also been tested in pre-clinical models of muscular 

dystrophies, where they have the advantageous characteristic of being deliverable through 

the arterial circulation. These reports show active contribution of pericytes to muscle 

regeneration in dystrophic animal models, (Berry et al., 2007; Bonfanti et al., 2015; 

Dellavalle et al., 2007; Diaz-Manera et al., 2010; Domi et al., 2015; Galvez et al., 2006; Iyer 

et al., 2018; Minasi et al., 2002; Morosetti et al., 2011; Pessina et al., 2012; Quattrocelli et 

al., 2014; Sampaolesi et al., 2006; Sampaolesi et al., 2003; Sciorati et al., 2006; Tedesco et 

al., 2011).

As with other myogenic progenitor populations, one of the major hurdles to improve the 

feasibility of pericytes as a transplantation therapy for muscular dystrophy is the low level of 

engraftment. Recently, a first-in-human phase I/II clinical trial based upon intra-arterial 

transplantation of HLA-matched allogeneic pericyte-derived mesoangioblast in 5 DMD boys 

showed that whilst relatively safe, there was limited dystrophin production (1 of 5 biopsies), 

probably due to low level of cell engraftment (Cossu et al., 2015). Optimisation of this 

methodology is therefore required for future therapeutic use.

Lastly, Zazt and colleagues investigated the effect of repeated intra-peritoneal injections of 

adipose human pericytes on lifespan and motor function of a severe DMD mouse model. 

They reported that adipose tissue-derived pericytes led to an increased life-span of one 

month, possibly mediated by immune modulation rather than a regenerative ability 

(Valadares et al., 2014). In view of the unusual delivery route (intraperitoneal), the lack of 

histological evidence of engraftment or amelioration of tissue morphology and that none of 

the functional tests revealed differences between the groups, additional evidence would be 

required to assess the feasibility and clinical relevance of this strategy.

3b Limitations to cell therapy and possible solutions

Despite numerous pre-clinical and clinical cell therapy studies on cell transplantation, 

muscular dystrophies still remain incurable, and there are still several challenges to be 

addressed before becoming routinely used in a clinical setting, including engraftment 

efficacy, transplantation route and modulation of the immune response [reviewed in 

(Maffioletti et al., 2014; Negroni et al., 2016)]. The main challenge is due to the fact that 
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skeletal muscle is the most abundant human tissue, covering 30-38% of total body weight 

(Janssen et al., 2000). Transplanting stem cells has been shown to result in clinical 

improvement when specific muscles are affected, such as the recent trial for 

oculopharyngeal muscular dystrophy using intramuscular injections of autologous myoblasts 

(Perie et al., 2014). However, replacing large volumes of dystrophic muscle affected in 

widespread muscular dystrophies (such as DMD) would require the successful engraftment 

of billions of myogenic progenitors. Indeed, as with other myogenic progenitor populations, 

there are two major hurdles need to be overcome in order to improve the feasibility of 

pericytes and pericyte-derived cells as a transplantation therapy for muscular dystrophies: i) 

the low levels of cell engraftment to the dystrophic muscle and ii) the limited cell expansion 

potential in vitro.

In this direction, several strategies have been developed with the aim to improve homing and 

engraftment of pericyte-derived cells. These include making blood vessels more accessible 

for cell extravasation (Giannotta et al., 2014), treating them with homing factors 

(Quattrocelli et al., 2014) and modulating the immune response (Maffioletti et al., 2014; 

Noviello et al., 2014)., Exposure to cytokines and integrins can also improve pericyte-

derived mesoangioblast engraftment (Galvez et al., 2006; Palumbo et al., 2004; Tagliafico et 

al., 2004). However, it is important to assess possible side effects of transplanting engineered 

cells, as whilst they can promote extravasation and homing, the expression of different 

surface molecules could modulate the immune response following transplantation, including 

deleteriously increasing donor cell clearance. The interaction between muscle or pericytes 

and immune cells via adhesion molecules is well-documented [reviewed in (Maffioletti et 
al., 2014)(Noviello et al., 2014)]. Of interest, intracellular adhesion molecule 1 (ICAM-1/ 

CD54) expression is increased in inflamed endothelial cells and muscle fibres (Bartoccioni 

et al., 1994; Tews and Goebel, 1995). However, leukocyte function-associated antigen 1 

(LFA-1) expressed on T cells binds to ICAM-1, resulting in cytotoxic T cell infiltration 

(Bartoccioni et al., 1994). Also, expression of VCAM-1 and its ligand VLA-4 have been 

observed in muscle capillaries and infiltrating cells of patients with inflammatory 

myopathies (Tews and Goebel, 1995). Interestingly, VCAM-1 expression is associated with 

increased engraftment of CD133+ cells, another class of myogenic vessel-associated cells, 

which have been transplanted intra-arterially into dystrophic mice (Gavina et al., 2006). In 

this paper, Gavina and colleagues found that VCAM-1 expression in muscle capillaries 

increased after exercise and increased engraftment, whilst conversely, blocking VCAM-1 

expression significantly reduced engraftment (Gavina et al., 2006). In summary, careful 

assessment of the transplant population and donor muscle tissue should be performed to 

maximise engraftment.

Another important factor for optimal muscle cell therapy is the ability of myogenic cells to 

proliferate in vitro and produce large numbers of transplantable progenitors. This point is of 

particular importance as in muscular dystrophies the myogenic cells (including pericytes) 

are exhausted or defective (Blau et al., 1983; Cassano et al., 2011; Kudryashova et al., 2012; 

Sacco et al., 2010; Tedesco et al., 2012). To overcome the limitation of expansion potential 

from biopsy-derived cells, induced pluripotent stem cells (iPSCs) can be differentiated 

towards the myogenic lineage. One such protocol developed by our group is to produce iPS-

derived mesoangioblast-like cells, which have an unlimited proliferative potential, which 
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could then efficiently be induced to skeletal myogenesis with a short expression of the 

myogenesis regulator MyoD (Gerli et al., 2014; Maffioletti et al., 2015; Tedesco et al., 

2012).

Another strategy to extend the proliferative potential of pericyte-derived mesoangioblasts is 

to provide them with an indefinite lifespan via expression of immortalising genes. Our group 

has recently shown that reversibly immortalising lentiviral vectors expressing the catalytic 

subunit of human telomerase hTERT and the polycomb gene Bmi-1 is safe and efficacious at 

extending the proliferative capacity of human DMD pericyte-derived mesoangioblasts, 

enabling them to have a human artificial chromosome containing the whole dystrophin locus 

(DYS-HAC) transferred (Benedetti et al., 2018). After DYS-HAC transfer, genetically-

corrected DMD pericyte-derived clones were expanded to reach a number of cells 

potentially sufficient to treat a DMD paediatric patient [in the range of 109cells; (Benedetti 

et al., 2018; Cossu et al., 2015)].

In the quest for an ideal cell type for muscle cell therapy, our group also explored a different 

approach by taking advantage of the findings that embryonic and foetal myoblasts could be 

converted to the pericyte fate following activation of Notch and PDGF pathways via Dll4 

and PDGF-BB (Cappellari et al., 2013; Cappellari and Cossu, 2013). As mentioned earlier in 

this chapter, adult murine and human satellite cell-derived myoblasts exposed to Dll4 and 

PDGF-BB also acquired perivascular cell features, including transendothelial migration 

ability, whilst maintain myogenic capacity (Gerli et al., 2019). We propose that this strategy 

could generate a hybrid pericyte-myoblast cell retaining the two peculiar characteristics of 

both cell types: the ability to generate muscle with high efficacy (myoblast) alongside 

transendothelial migration capacity (pericyte-derived cells).

In conclusion, there are several promising strategies in development using pericyte-like cells 

for cell therapy of muscular dystrophies. Nevertheless, it is crucial that both the transplanted 

cell and the host environment are considered in order to improve engraftment efficacy. 

Therefore, it is likely that future clinical experimentation will focus on combined therapies, 

where stem cell transplantation is merged with another therapeutic intervention, such as 

administration of anti-fibrotic and pro-angiogenic drugs, which have been shown to improve 

pathology in mouse models of muscular dystrophy (Cordova et al., 2018; Gargioli et al., 

2008).

4 Non-myogenic role of skeletal muscle pericytes

4a Pericyte contribution to fat accumulation

Intramuscular deposition and accumulation of adipose tissue deposition is a typical hallmark 

of disease progression and severity in muscular dystrophies, especially in DMD 

(Lukjanenko et al., 2013; Mankodi et al., 2016; Wren et al., 2008). Pericytes from different 

tissues, including skeletal muscle, have shown adipogenic potential when cultured in vitro 

(Crisan et al., 2008a; Farrington-Rock et al., 2004; Minasi et al., 2002). In the skeletal 

muscle, a subset of quiescent cells expressing the adipogenic progenitor marker PDGFRα 
are closely associated to the vasculature and located in the interstitial space between muscle 

fibres. Following muscle injury, these cells, later called fibro/adipogenic progenitors (FAPs), 
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exit quiescence, start proliferating and contribute to ectopic fat accumulation in skeletal 

muscle (Joe et al., 2010; Rodeheffer, 2010; Uezumi et al., 2010). Other groups have 

demonstrated that PDGFRα+ type-1 but not PDGFRα- type-2 pericytes have adipogenic 

potential in vitro (Birbrair et al., 2013a; Gautam et al., 2017). Moreover, cultured type-1 

pericytes generated ectopic white fat when delivered intramuscularly in a mouse model of 

fatty degeneration (Birbrair et al., 2013a). Future lineage-tracing studies might clarify 

whether type-1 pericytes do indeed contribute to fat accumulation in skeletal muscle in situ. 

In addition, a recent lineage-tracing study by Strickland and colleagues demonstrated that 

PDGFRβ+ skeletal muscle pericytes were able to differentiate into perilipin+ adipocytes in a 

congenital muscular dystrophy model (Yao et al., 2016).

4b Pericyte contribution to chondrogenesis

In addition to committing to a myogenic fate, pericytes have been shown to undergo 

chondrogenic and osteogenic differentiation in vitro (Crisan et al., 2008b; Farrington-Rock 

et al., 2004; James et al., 2012; Levy et al., 2001; Zhang et al., 2011). Whether pericytes 

contribute to skeletal muscle ossification in vivo, however, remains undetermined. 

Interestingly, ectopic calcification has been reported in animal models of DMD including the 

mdx mouse (Geissinger et al., 1990) and dog (Nguyen et al., 2002). Additionally, it has 

recently been shown that AP+ pericytes are reduced in immune-deficient scgb/Rag2/gc-null 

mice (a model of LGMD2E), whilst calcification of skeletal muscles is increased 

(Giovannelli et al., 2018). Unsurprisingly, this has led to the implication that pericytes are 

involved in the ectopic calcification of blood vessels in skeletal muscle, especially in the 

context of ongoing angiogenesis [reviewed in (Collett and Canfield, 2005)]. Of note, AP+ 

mononuclear interstitial cells from adult human skeletal muscle have been shown to express 

the osteogenic marker osteocalcin when cultured in vitro (Levy et al., 2001), and in 

fibrodysplasia ossificans progressiva (FOP), progressive ossification of skeletal muscle has 

been shown to be caused by mesenchymal-like stromal cells expressing smooth muscle 

markers (Hegyi et al., 2003). Whilst the authors postulate that these cells are pericytes, more 

recent data suggests it may be due to the Tie2+ FAP population (Lees-Shepard et al., 2018). 

Again, this points to the requirement for the differentiation between subpopulations of FAPs 

and pericytes to be properly determined.

4c Pericytes and fibrosis

Increased fibrosis is a typical feature of aged and dystrophic muscles, which ultimately 

results in muscle weakness, atrophy and reduction of its regenerative potential (Kragstrup et 

al., 2011; Mann et al., 2011; Ryall et al., 2008; Thompson, 2009; Walston, 2012). A major 

contributor to fibrosis is the myofibroblast (Duffield et al., 2013; Humphreys et al., 2010; 

Lin et al., 2008; Quan et al., 2006; Willis et al., 2006; Wynn, 2008; Zeisberg et al., 2007). 

Myofibroblasts are responsible for the production and deposition of collagenous 

extracellular matrix, with consequent reduction of muscle fibre contractility, disruption of 

the muscle structure and eventually skeletal muscle dysfunction. Several putative 

myofibroblast progenitor populations have been associated to muscle fibrosis, including 

FAPs and cells expressing PDGFRα (Uezumi et al., 2010) and ADAM12 (Dulauroy et al., 

2012). As some of these markers are also expressed by pericytes, it has been hypothesized 

that pericytes may be a source of myofibroblasts during skeletal muscle fibrosis. Indeed, 
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Birbrair et al. showed that skeletal muscle PDGFRα+ pericytes are fibrogenic in vitro when 

cultured in presence of transforming growth factor β (TGFβ), while in vivo they produce 

collagen, responsible for increasing skeletal muscle fibrosis in old mice (Birbrair et al., 

2014; Birbrair et al., 2013c).

In parallel, using a complex triple transgenic mouse that expressed tetracycline under 

ADAM12 locus, Cre recombinase under control of the tetracycline transactivator and the 

conditional reporter Rosa26floxSTOP-YFP, Dulauroy et al. showed the existence of a 

transient subpopulation of ADAM12+ interstitial cells that become active after muscle 

injury. With this approach they revealed that the large majority of collagen-producing 

myofibroblasts were generated starting from ADAM12+ cells, which are located in a 

perivascular position and are positive for PDGFRβ. Moreover, ablation of ADAM12+ cells 

reduced the number of pro-fibrotic cells and collagen accumulation (Dulauroy et al., 2012). 

This data corroborates the hypothesis that in skeletal muscle ADAM12 identifies a 

myofibroblast progenitor with pericyte characteristics.

4d Pericyte role in the vascular compartment

Muscle ischemia has been observed in biopsies from patients with DMD for many decades 

(Engel, 1967) and clinical symptoms were once hypothesised to be caused by local 

infarctions. Whilst there have not been consistent reports in changes to blood flow or 

microvascular architecture observed in DMD patients [reviewed in (Thomas, 2013)], it has 

been shown that dystrophin-deficient muscle fibres are more susceptible to muscle ischemia 

though a neuronal nitric oxide synthase μ (nNOSμ)-specific mechanism. Localised muscle 

ischemia results in increased exercise-induced fatigue and micro-vessel constriction, 

elevating clinical symptoms (Kobayashi et al., 2008). This mechanism is not specific to 

DMD; changes to sarcolemmal nNOS expression have been observed in biopsies from other 

several muscular dystrophies including limb-girdle and congenital muscular dystrophy 

(Kobayashi et al., 2008). Whether or not pericytes actively contribute to the vascular 

pathology observed in muscular dystrophies, it has been shown that improving reduced 

blood flow improves clinical symptoms and cell therapy in pre-clinical models (Brunelli et 

al., 2007; Gargioli et al., 2008). Of note, treatment of dystrophic mice with nitric oxide 

releasing drugs improves the efficacy of mesoangioblast transplantation (Brunelli et al., 

2007).

5 Derivation of pericytes from pluripotent stem cells

Pluripotent Stem Cell (PSC)-derived cells are of great importance for studying development 

and organogenesis, whilst also being promising candidates for cell transplantation studies, 

due to their unlimited expansion potential. Differentiating PSCs into pericyte-like cells 

enables the possibility to study developmental relationships between mural cells of different 

developmental origins. For example, Kumar et al. found using clonal analyses that 

mesodermal-derived progenitors could make mesenchymal stromal cells, VSMCs and 

pericytes (Kumar et al., 2017). Additionally, this protocol was used to derive arteriolar and 

capillary subtypes of pericytes through the modulation of growth factors. Protocols to 

differentiate vascular cells from different embryonic lineages (neural crest, lateral plate 
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mesoderm and paraxial mesoderm) have also been developed in order to study different 

forms of vascular development (Cheung et al., 2012; Chin et al., 2018; Cochrane et al., 

2018; Orlova et al., 2014). In muscle pathology, PSC-derived pericyte-like cells have shown 

pathological improvement in pre-clinical models of muscular dystrophy (Tedesco et al., 

2012) and ischemia (Dar et al., 2012). Determining whether PSC-derived cells are truly 

functional pericytes when transplanted in vivo is difficult. However, using lineage 

determinants to produce a pericyte-like mesenchymal (or neural ectodermal) progenitor, 

which when transplanted differentiates into a regeneration-supporting cell, could be a more 

feasible option.

Concluding Remarks

Since their initial description there has been important progress in understanding pericyte 

biology and function; however, their exact role and involvement in the pathogenic process of 

muscle degeneration and regeneration is still in need of a definitive model. Nonetheless, the 

clinical relevance of pericyte is now more important than ever before, both as a target for 

possible therapeutic intervention (e.g. reduction of fibrosis) or as advanced therapy 

medicinal products. We foresee that in the upcoming decade the ontogeny and 

characteristics of this elusive cell type will become clearer, setting the foundation for their 

organotypic derivation from human pluripotent cells and use in next-generation experimental 

therapies for muscle diseases.
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Figure. 1. 
A schematic representation of the hypothetical model explaining lineage promiscuity 

between muscle pericytes and satellite-cell derived myoblasts during development. The 

figure has been generated using Servier Medical Art.
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