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Abstract

Quantitative proton density (PD) maps measure the amount of free water, which is important for 

non-invasive tissue characterization in pathology and across lifespan. PD mapping requires the 

estimation and subsequent removal of factors influencing the signal intensity other than PD. These 

factors include the T1, T2* relaxation effects, transmit field inhomogeneities, receiver coil 

sensitivity profile (RP) and the spatially invariant factor that is required to scale the data. While the 

transmit field can be reliably measured, the RP estimation is usually based on image post-

processing techniques due to limitations of its measurement at magnetic fields higher than 1.5 T. 

The post-processing methods are based on unified bias-field/tissue segmentation, fitting the 

sensitivity profile from images obtained with different coils, or on the linear relationship between 

T1 and PD. The scaling factor is derived from the signal within a specific tissue compartment or 

reference object. However, these approaches for calculating the RP and scaling factor have 

limitations particularly in severe pathology or over a wide age range, restricting their application.

We propose a new approach for PD mapping based on a multi-contrast variable flip angle 

acquisition protocol and a data-driven estimation method for the RP correction and map scaling. 

By combining all the multi-contrast data acquired at different echo times, we are able to fully 

correct the MRI signal for T2* relaxation effects and to decrease the variance and the entropy of 

PD values within tissue class of the final map. The RP is determined from the corrected data 

applying a non-parametric bias estimation, and the scaling factor is based on the median intensity 

of an external calibration object. Finally, we compare the signal intensity and homogeneity of the 

multicontrast PD map with the well-established effective PD (PD*) mapping, for which the RP is 

based on concurrent bias field estimation and tissue classification, and the scaling factor is 
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estimated from the mean white matter signal. The multi-contrast PD values homogeneity and 

accuracy within the cerebrospinal fluid (CSF) and deep brain structures are increased beyond that 

obtained using PD* maps. We demonstrate that the multi-contrast RP approach is insensitive to 

anatomical or a priori tissue information by applying it in a patient with extensive brain 

abnormalities and for whole body PD mapping in post-mortem foetal imaging.

Keywords

Quantitative MRI; Proton density; Biophysical tissue properties; Anatomical malformation; Post-
mortem MRI

1 Introduction

MR proton density (PD) mapping quantifies the amount of free water protons (Cercignani et 

al., 2018, chapter 4; Neeb et al., 2008), which is crucial for measuring water volume fraction 

employed in tissue composition models (Edwards et al., 2018; Mezer et al., 2013; Weiskopf 

et al., 2015). Although lipid, protein and nucleic acids in cellular structures contain a large 

pool of non-aqueous protons (30% of protons in white matter), those are MRI-invisible due 

to the short T2 (Cercignani et al., 2018, chapter 4). Currently there is an increasing interest 

in using quantitative PD mapping to accurately determine the tissue (patho-) physiological 

composition (Mezer et al., 2013). In fact, recent studies demonstrated that PD maps improve 

lesion detection in multiple sclerosis (Gracien et al., 2016), hepatic encephalopathy (Shah et 

al., 2008) and peritumoral oedema (Blystad et al., 2017).

Despite many clinical studies use fast spin-echo sequences to acquire high resolution PD-

weighted images (Chong et al., 2016; Fuchs et al., 2014; Jones et al., 1992; Oikawa et al., 

2002), in this work we will focus on quantitative PD, which is typically estimated from 

gradient-echo images. Quantitative PD mapping requires knowledge of relaxation effects 

(T1, T2*), inhomogeneities in the transmitted radio-frequency field (B1+), receiver 

sensitivity profile (RP) and a spatially invariant scaling factor that yields PD values between 

0 and 100 p.u.(Cercignani et al., 2018, chapter 4). However, the approaches currently used 

for the estimation of both the RP and scaling factor can be inaccurate in case of severe 

pathology or anatomical changes (Volz et al., 2012a, 2012b). Here we propose to perform 

PD mapping based on a data-driven method for the estimation of RP inhomogeneity and 

map scaling. This approach can be applied on ex-vivo samples and in case of pronounced 

brain pathologies because it is independent from anatomical nor tissue information.

At high field strengths (≥3 T) the measurement of the RP is problematic due to the fact that 

the magnetic field measured in receive mode is not equal to the one measured in transmit 

mode, since the simple reciprocity of both fields cannot be assumed at field strengths higher 

than 1.5 T (Watanabe et al., 2011; Volz et al., 2012b). The RP estimation can be performed 

using different image processing techniques. Weiskopf and colleagues (Weiskopf et al., 

2013) used the bias correction approach embedded in the SPM unified image segmentation 

(Ashburner and Friston, 2005; Weiskopf et al., 2011), which has been shown to provide 

reliable RP correction for the PD estimates in the brain (Volz et al., 2012a). However, where 

anatomical priors employed for tissue segmentation are either inaccurate (e.g. in case of 
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severe anatomical abnormalities) or do not exist (PD mapping in the body), the RP 

estimation will be inaccurate or unavailable with this approach. Similarly Wang and 

colleagues computed the PD and RP sensitivity map (Wang et al., 2018) assuming that 

cortical grey and white matter have specific T1 values, and used the iso-intense images for 

each tissue class to fit the RP with a quadratic function. The method was successfully tested 

on healthy subjects and stroke patients, but it might fail for diseases such as tumours or 

lesions affecting the WM (Wang et al., 2018).

Another approach for determining the RP is by using the well-known linear relationship 

between T1 and PD values (Fatouros et al., 1991; Fatouros and Marmarou, 1999; Gelman et 

al., 1999; MacDonald et al., 1986), as proposed by Volz and colleagues (Volz et al., 2012b). 

This procedure has been shown to provide reliable PD values in healthy brains (Volz et al., 

2012b; Abbas et al., 2014), but any areas with pathological changes to be masked, 

precluding the accurate estimation of RP sensitivity in the presence of undetected brain 

abnormalities or lesions (Volz et al., 2012b). Mezer and colleagues (Mezer et al., 2013) 

estimated the RP sensitivity by combining the multi-channel coil information, and applying 

the linear relationship between T1 and PD values over many small, overlapping volumes to 

regularise the fitting procedure (Volz et al., 2012b; Baudrexel et al., 2016). However his 

approach might be inaccurate when tumours or other diseases lead to major changes in local 

tissue properties (Baudrexel et al., 2016).

To avoid any dependency on the anatomy, the RP can be calculated using methods such as 

the nonparametric non-uniform intensity normalization (N3) algorithm (Sled et al., 1998). 

This method iteratively derives a slow varying multiplicative field that maximizes the 

frequency content of the tissue intensity distribution by using a B-spline approximation. 

Recently a variation of N3, called N4ITK, has been proposed in order to improve the 

robustness and speed of the B-spline interpolation (Tustison et al., 2010). Both N4ITK and 

N3 can be applied to any organ or pathological data since they do not require anatomical 

information, although the use of a binary mask can improve the accuracy of RP estimation 

over the volume of interest (Sled et al., 1998; Tustison et al., 2010). To the best of our 

knowledge those methods have not been used for the RP estimation in PD mapping studies.

The scaling factor is usually derived from the mean intensity of a specific tissue class such 

as the white matter (WM) (Weiskopf et al., 2011) or the cerebrospinal fluid (CSF) (Mezer et 

al., 2013, 2016; Volz et al., 2012b). If the scaling is based on the WM, the mean intensity is 

assumed to be equal to 69 p.u. (Weiskopf et al., 2013), in the case that the CSF is used for 

the scaling, the mean signal is set to 100 p.u. (Volz et al., 2012b). These values are a 

reasonable approximation in healthy brains, but they are likely to introduce error when WM 

or CSF signal means are hard to estimate or altered by pathological or developmental 

processes, limiting the applicability of these PD mapping methods. Moreover using the CSF 

as a scaling factor might be difficult with short TR acquisitions due to the low signal 

amplitudes.

Here we propose a PD mapping approach based on a well-established multi-echo FLASH 

(fast low angle shot) dataset acquired with a multi-contrast variable flip angle (VFA) 

protocol for multi-parameter mapping (MPM) (Weiskopf et al., 2013). Aiming to utilise all 
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available data, we employed all the contrasts for the PD map estimation including the 

magnetization transfer (MT) weighted scan in the MPM protocol. After correcting the multi-

echo images for relaxation effects, we determined the RP using a non-parametric algorithm 

based on N4ITK (Tustison et al., 2010). The effectiveness of this approach was evaluated 

using data with different receiver coils and comparing the PD values obtained. To derive a 

scaling factor independent from any tissue model, we used the signal of an external 

calibration object, i.e., a plastic tube filled with water doped with Gadolinium. The new PD 

mapping approach was applied both on healthy brain data where it could be evaluated 

against existing methods and on a post-mortem foetal dataset to demonstrate its wide 

applicability. Finally, we assessed the maps values and homogeneity by analysing the 

different factors that contribute to the PD values distribution comparing the multi-contrast 

PD approach with the well-established PD mapping (Weiskopf et al., 2013). This was 

performed within brain tissue classes, using voxel-wise comparison and computing signal 

entropy and variance as measures for the map homogeneity.

2 Method

2.1 Data acquisition

10 healthy subjects (32 ±5years) were scanned using a 3 T Prisma (Siemens, Erlangen, 

Germany) with a 64 channel radio-frequency (RF) receiver coil and a two channel transmit 

body coil. Written informed consent was obtained prior to study according to the approval 

requirements of the local Ethics committee.

A plastic tube (size 10 cm × 1.5 cm) filled with a solution of 0.09 mg/ml Gadolinium was 

placed on the right temple of the subjects’ head for calibration purposes (Sasaki et al., 2005). 

The Gadolinium employed in this study was the Dotarem® (gadoterate meglumine) 

manufactured by Guerbet’s and was introduced to reduce the water T1, increasing signal 

levels in the T1w images while keeping almost unaltered T2* values, the solution 

concentration was chosen based on Sasaki and colleagues (Sasaki et al., 2005).

Three 3D multi-echo FLASH datasets with predominant PD-, T1-and MT-weighting 

(respectively PDw, T1w, MTw) (Weiskopf et al., 2013) were acquired with spatial resolution 

of 1 mm3, using the following repetition time (TR) and flip angle (α) (PDw: TR/α = 24.5 

ms/6°; T1w: TR/α = 24.5 ms/21°). PDw and T1w images were acquired at eight equidistant 

echo times (TE) between 2.3 and 18.7 ms, while MTw was acquired at six equidistant TE 

between 2.3 and 14.04 ms. The field of view (FOV) was 256 x 240 x 176 mm and the matrix 

size 256 x 240 x 176. To correct for non-linearity in the RF transmit chain, RF spoiling was 

performed during the acquisition. RF spoiling was performed by transmitting pulses with 

different phases in order to linearly increase the phase differences between subsequent 

pulses by a phase increment of 137°, as previously optimised by Lutti and Weiskopf to 

obtain stable T1 values in grey and white matter (Lutti and Weiskopf, 2013). Parallel 

imaging (Roemer and Edelstein, 1989) was used along the phase-encoding (PE) direction 

(acceleration factor 2 GRAPPA reconstruction (Griswold et al., 2002)), 6/8 partial Fourier 

was used in the partition direction. The acquisition time for each weighted set was 

approximately 5.2 min.
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3D echo-planar imaging (EPI) spin-echo (SE) and stimulated echo (STE) images were used 

to calculate maps of the transmit field B1+ (Lutti et al., 2012, 2010) and correct for the effect 

of RF transmit inhomogeneities on the quantitative maps (Helms and Dechent, 2009; 

Weiskopf et al., 2013). The image resolution was 4 mm isotropic, matrix size 64 × 48 × 48 

and FOV = 256 × 192 × 192 mm along readout × PE × partition direction, parallel imaging 

using GRAPPA factor 2 × 2 in PE and partition direction, TR = 250 ms, acquisition time 1.3 

min. The flip angles of the SE/STE refocusing pulses were decreased from 230°/

115°-130°/65° and in steps of 10°/5°.

To correct the RF transmit field maps for geometric distortion and off-resonance effects, a 

B0 map was acquired using a two-dimensional double-echo FLASH sequence (Lutti et al., 

2012, 2010). The acquisition parameters were: 64 axial slices, slice thickness = 2 mm, inter-

slice gap = 1mm, matrix = 64 x 64, FOV = 192 x 192 mm, α = 90°, TR = 1020 ms, 

TE1/TE2 = 10/12.46 ms, acquisition time ~2 min.

2.2 Estimation of R1 and MT maps

Quantitative R1 and MT maps were calculated as described in (Weiskopf et al., 2013) using 

an in-house code running under SPM12 (http://www.fil.ion.ucl.ac.uk/spm) and Matlab2015b 

(Mathworks, Sherborn, MA, USA). In brief, the magnitude images of each weighted set 

were first co-registered to remove potential motion effects, and then averaged across echoes 

to increase the signal-to-noise ratio (SNR) (Helms and Dechent, 2009). The three mean 

images were employed to estimate the apparent R1 and the semi-quantitative MT saturation 

using an approximation of the Ernst equations for dual flip angle measurements using the 

FLASH signal (Helms et al., 2008b, 2008a; Helms and Dechent, 2009; Weiskopf et al., 

2013). The quantitative R1 maps were computed from the apparent R1 by correcting the flip 

angle for inhomogeneities in the local RF transmit field using B1+ maps and imperfect RF 

spoiling (Helms et al., 2008a, 2008b; Preibisch and Deichmann, 2009). The semi-

quantitative MT saturation was corrected for R1 dependency and for residual RF 

inhomogeneities using a semi-empirical approach described by Weiskopf and colleagues 

(Weiskopf et al., 2013).

2.3 Estimation of PD* and standard PD maps

The PD* maps were calculated as described in (Helms et al., 2008a; Weiskopf et al., 2013) 

using the T1w data averaged over all echoes, the R1 and B1+ maps. The RP correction was 

based on the UNICORT method which determines the RP using the bias correction approach 

implemented in the segmentation step of SPM12 (Ashburner and Friston, 2005; Weiskopf et 

al., 2011). Finally the maps were scaled by setting the mean WM signal equal to 69 p.u. 

(Weiskopf et al., 2013). As the data were not corrected for R2* signal decay, the final 

parameter map was called PD*.

Additionally, we removed the R2* dependency by extracting the TE = 0 signal for the T1w 

data (as described below for the multi-contrast approach) and using that instead of the T1w 

data averaged over all echoes in the aforementioned approach. The final map was called 

standard PD.
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2.4 Estimation of multi-contrast PD maps

Fig. 1 shows the workflow for the estimation of the multi-contrast PD maps.

The estimation of the multi-contrast PD was based on the signal equation of the FLASH 

sequence used to acquire the data (Brown et al., 2014; Volz et al., 2012b):

S = STE0 exp −TE R2
∗ = PD C RP ST exp −TE R2

∗ (1)

Where PD is the proton density to be estimated, RP is the receiver profile sensitivity, C is a 

spatially invariant scaling constant and TE is the echo time of the acquired signal. ST is the 

steady state term dependent on T1 (=1/R1) relaxation and nominal flip angle (α) corrected 

for transmit inhomogeneities (B1+). Under the approximation for small α and TR R1≪1, ST 

can be written as follows (Helms et al., 2008a):

ST ≅ αB1
+ TR R1

αB1
+ 2

/2 + TR R1 (2)

In case a magnetisation saturation pulse is present during the signal acquisition, the STMT 

term is given by (Helms et al., 2008b):

STMT ≅ αB1
+ TR R1

αB1
+ 2

/2 + MT + TR R1 (3)

where MT is the magnetisation transfer saturation.

To remove the R2* relaxation component we computed voxel-wise the linear dependence of 

the log of the signal intensities for each echo time, using the model described in Eq (4):

ln S = ln STE0 − TE R2
∗ + ε = Xβ + ε

S =

SMT TE1 vx1 ⋯ SMT TE1 vxn
⋮ ⋱ ⋮

SMT TE6 vx1 ⋯ SMT TE6 vxn
SPD TE1 vx1 ⋯ SPD TE1 vxn

⋮ ⋱ ⋮
SPD TE8 vx1 ⋯ SPD TE8 vxn
ST1 TE1 vx1 ⋯ ST1 TE1 vxn

⋮ ⋱ ⋮
ST1 TE8 vx1 ⋯ ST1 TE8 vxn

X =

1 0 0 −TE1
⋮ ⋮ ⋮ ⋮
1 0 0 −TE6
0 1 0 −TE1
⋮ ⋮ ⋮ ⋮
0 0 ⋮ −TE8
0 0 1 −TE1
⋮ ⋮ ⋮ ⋮
0 0 1 −TW 8

β

=

ln SMT TE0 vx1 … ln SMT TE0 vxn

ln SPD TE0 vx1 … ln SPD TE0 vxn

ln ST1 TE0 vx1 … ln ST1 TE0 vxn

R2
∗ vx1 … R2

∗ vxn

(4)
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Where S is the matrix concatenating the signal of the co-registered MTw, PDw and T1w 

dataset acquired at different echo times for every voxel (vx1, vx2 …, vxn), X is the design 

matrix whose elements are the contrast-specific regressors and the echo time dependency, β 
contains the contrast-specific estimates of the log of the signal intensities at TE = 0 (STE0) 

and the R2* estimate, and ε represents the model residual. This model assumed a mono-

exponential signal decay with TE and that R2* was common between the different image 

contrasts. The fitting procedure was performed in Matlab2015 as a robust fit with a bisquare 

weighting function (robustfit.m), using a similar approach to that employed by Weiskopf and 

colleagues (Weiskopf et al., 2014a,b).

Then, the STE0 image of the T1w and PDw contrasts was divided voxel-wise by the ST term 

calculated according to Eq. (2), using the R1 and B1+ maps, while the STE0 image of the 

MTw contrast was divided by the STMT term computed according to Eq. (3) using the R1, 

MT and B1+ maps. The R1 and MT maps were estimated as described previously in section.

2.5 Estimation of R1 and MT maps

After this step we obtained three images, one for each contrast, corresponding to the product 

of PD, RP and C terms (see Eq. (1) and Fig. 1) and therefore differing only in stochastic 

noise in case of an accurate fit to the data. Since the C and RP terms are common to the 

three images derived from each contrast set, we averaged those ones to increase the stability 

of the final PD values.

The RP was determined from the mean image applying the non-parametric bias estimation 

provided by the N4ITK approach available in the advanced normalisation tools (ANTs, 

http://stnava.github.io/ANTs/) (Tustison et al., 2010). N4ITK was applied with default 

settings on the skull-stripped images iteratively eight times. The number of N4ITK iterations 

was optimised using a root mean square (RMS) analysis described in section Assessment 

and optimisation of RP correction using N4ITK. Skull removal was performed to improve 

the RP estimation accuracy by applying the Brain Extraction Tool (Smith, 2002) from 

FMRIB Software Library v5.0 (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/) on the MT images using 

default settings.

In order to obtain PD values between 0 and 100 p.u., the RP corrected map was divided by 

the median intensity of the plastic tube filled with Gd solution and multiplied by 100, under 

the assumption that the solution had PD values of 100 p.u. The reproducibility of the map 

scaling with respect to the position of external calibration was tested in a separate 

experiment reported in Appendix A.

2.6 Assessment and optimisation of RP correction using N4ITK

Aiming at optimising the number of iterations required for the RP removal, and the 

robustness of this process across different experimental set-ups, we scanned three healthy 

controls using a 64 and 20 channel head receiver coil. Owing to the higher density of the 64 

channel coil this has an RP with a higher spatial frequency and therefore is more challenging 

for bias field correction methods. We applied a different number, from one to ten, of N4ITK 

iterations to estimate the RP correction and then generated multi-contrast PD maps. Firstly, 
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we assessed the stability of the RP removal for each coil by estimating voxel-wise the 

difference between PD maps computed with n and n+1 iterations of N4ITK (where n = 1,2, 

…9) for the RP correction for each subject. Secondly, we calculated the root mean square 

(RMS) value within voxels belonging to the brain mask for each difference map. Finally, we 

quantified the voxel-wise PD value changes across the two receiver coils for each number of 

N4ITK iterations and we estimated the RMS map within voxels belonging to the brain mask.

For the following analyses we used the data acquired with the 64channel receiver coil and n 

= 8 iterations.

2.7 Estimation of one-contrast PD map

In order to test the applicability of our method in the absence of MTw contrast, we computed 

the PD map for one subject using only the PDw images, the R1 and B1+ maps. We applied 

the model described by Eq. (1), estimating the STE0 for the PDw dataset, and we removed 

the ST term computed using Eq. (2). The final image was skull-stripped, corrected for the 

RP by applying N4ITK iteratively eight times with default settings and scaled using the 

same procedure described in the section Estimation of multi-contrast PD maps.

2.8 Homogeneity of PD maps

Then we assessed the intensity homogeneity of the multi-contrast PD, PD* and standard PD 

maps by using the Shannon’s entropy as a measure of the intensity distribution scattering, 

and the variance as an estimator of the distribution spread (Mangin, 2000). Entropy and 

variance were estimated within cerebrospinal fluid (CSF), white matter (WM) and grey 

matter (GM) separately. Subject-specific tissue masks were derived from tissue probability 

maps (voxel with GM or WM probability >0.9) estimated from the MT maps using the 

SPM12 segmentation approach (Ashburner and Friston, 2005). The Wilcoxon test was 

applied to compare entropy and variance across PD estimation methods within tissue class, 

statistical significance was set to p < 0.05.

To evaluate the effect of using three contrasts on the signal variability, we computed the 

variance and entropy within each tissue class for the PD*, multi-contrast and one-contrast 

PD maps.

2.9 Voxel-wise statistical comparison of PD values

To identify systematic PD value differences and determine their spatial distribution we 

compared voxel-wise the multi-contrast PD with PD*, and the multi-contrast PD with the 

standard PD in the brain. The maps were spatially registered to standard MNI space using 

subject-specific diffeomorphic estimates (Ashburner, 2007), derived for the MT images, 

without scaling by the Jacobian determinants. A combined tissue probability weighting and 

Gaussian smoothing procedure (Draganski et al., 2011) was used with a 6 mm FWHM 

isotropic smoothing kernel. Statistical comparison was performed applying a paired t-test 

with threshold at p < 0.05 after family-wise error (FWE) correction.
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2.10 In vivo experiment: focal epilepsy and porencephalic ventricle dilation

To demonstrate the applicability of the new multi-contrast PD mapping approach, we 

scanned an 11-year old patient with focal epileptic seizures and a porencephalic dilation of 

the right ventricle. Written informed consent was obtained prior to study according to the 

approval requirements of the UK National Research Ethics Service.

The MRI acquisition protocol and the estimation of PD* and multi-contrast PD maps were 

identical to the experiment performed on the healthy controls.

2.11 Post-mortem experiment: post-mortem foetus

Post-mortem MRI (PM-MRI) as part of minimally invasive autopsy is an increasingly 

important clinical application of MRI (Arthurs et al., 2015a, 2015b; Griffiths et al., 2005; 

Norman et al., 2016; Papadopoulou et al., 2016; Shelmerdine et al., 2017) where quantitative 

mapping could be useful e.g. in the determination of autolysis. To demonstrate the general 

applicability of the new multi-contrast PD mapping approach, we scanned a 24 week 

gestation foetus who underwent PM-MRI at our centre. Written informed consent was 

obtained for clinical pre-autopsy PM-MRI as part of our institution’s clinical post-mortem 

assessment. The foetus was stored in a mortuary at 4 °C, for PM-MR it was positioned in the 

64 channel head coil in the supine position, and wrapped in insulating material to aid 

temperature stability.

The entire foetus was scanned with similar settings and acquisition protocol described above 

for the healthy subjects, except for the use of Hanning filter set to medium and no partial 

Fourier sampling. These two protocol changes were introduced for decreasing Gibbs ringing 

artefacts due to high intensity changes in neighbouring tissues.

The PD map estimation was performed over the whole foetus body applying the previously 

described processing steps with the exception of the skull-stripping for the RP correction. 

The RP estimation was based on the N4ITK algorithm applied only on voxel belonging to 

the head, body and plastic tube.

We could not compute the PD* map due to the absence of either brain or whole body 

anatomical information about tissue distribution required by the SPM RP estimation.

3 Results

On visual inspection the multi-contrast approach provided homogeneous PD maps over the 

whole brain of the healthy volunteers and focal epilepsy patient, and over the whole body of 

the post-mortem foetus, as shown in Fig. 2.

3.1 Effects of receiver coil and number of N4ITK iterations

To evaluate the stability of the PD maps estimated with RP correction obtained using 

different numbers of N4ITK iterations, we quantified the RMS PD value changes with 

successive iterations. This was performed for the datasets acquired with the 20 and 64 

channel receiver coils. We observed that after the eight N4ITK iteration the PD changes 

between successive number of iterations were smaller than 2% (see Fig. 3b), and there was 

Lorio et al. Page 9

Neuroimage. Author manuscript; available in PMC 2021 July 28.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



minimal RMS variation for the multi-contrast maps estimated with the 20 channel coil data 

(see Fig. 3f). For the multi-contrast maps obtained with the 64 channel coil data, we found 

PD variations smaller than 2% between iteration and negligible RMS change after the eight 

iteration (see Fig. 3d,g).

Aiming at assessing the effectiveness of RP removal by comparing data acquired with 

different bias fields, we calculated voxel-wise the difference between the multi-contrast PD 

maps obtained with the 20 channel coil and the 64 channel coil for each N4ITK iteration. 

We found that the differences between maps were greatest in the occipital and frontal 

regions (see Fig. 3e), but were stable after the forth iteration as measured by the RMS 

displayed on Fig. 3h and by visual inspection of the spatial data in Fig. 3e.

The results of the following analyses were based on data acquired with the 64channel 

receiver coil and n = 8 iterations.

3.2 Homogeneity of PD maps

The signal entropy and variance estimated for each tissue class (WM, GM, and CSF) were 

used as summary measures of the PD map histograms. To disentangle the effects of R2* 

signal decay, RP correction method and number of contrasts employed in the PD map 

estimation on the homogeneity of the intensity distribution, we performed comparison of 

variance and entropy between the PD* and multi-contrast PD maps, multi-contrast PD and 

standard PD maps, multi-contrast PD and one-contrast PD ones.

3.3 Comparison of multi-contrast PD vs PD* maps

Significantly higher entropy was found in PD* compared to multi-contrast PD within the 

CSF, while similar values were observed across the two methods in WM and GM, as 

reported on Table 1 and Fig. 4a. Significantly higher variance was found in multi-contrast 

PD compared to PD* maps in WM and GM, while significant lower values were observed in 

CSF for the multi-contrast PD maps, as reported on Table 1 and Fig. 4b.

3.4 Comparison of multi-contrast PD vs standard PD maps

To remove the R2* effect on the intensity homogeneity, we compared the entropy and 

variance of the multi-contrast PD with the ones computed for standard PD maps. Significant 

lower entropy and variance were observed in the multi-contrast PD when compared to the 

standard PD within the CSF, as reported on Table 2 and Fig. 4c and d. Significant lower 

entropy and variance were found for the standard PD compared to the multi-contrast PD 

within the WM, as reported on Table 2 and Fig. 4c and d.

3.5 Effect of the number of weighted contrast datasets used to calculate PD

To assess the effect on the map homogeneity of the number of contrasts employed in the PD 

estimation, we estimated the tissue class specific variance and entropy for the PD*, one-

contrast, and multi-contrast PD maps. We found lower entropy and variance for the multi-

contrast PD with respect to the one-contrast map for all tissue classes in a single subject 

analysis, as shown on Table 3 and Fig. 6b in the supplementary material. Moreover we 
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observed lower entropy for all tissue classes and lower variance within the CSF for the 

multi-contrast PD with respect to the PD* maps.

3.6 Voxel-wise statistical comparison of PD values

The voxel-wise comparison, performed on GM and WM separately, showed regional 

intensity differences between the multi-contrast PD and PD* maps, and between the multi-

contrast PD and standard PD ones.

3.7 Multi-contrast PD vs PD* maps

Significantly higher PD values were found in the insula and along visual and sensory-motor 

tracks for PD* compared to multi-contrast PD maps (see Fig. 5a and b and Table 4). Higher 

values were found in pallidum, brain stem and corpus callosum for multi-contrast PD maps 

compared to PD* (see Fig. 5c and d and Table 4).

3.8 Multi-contrast PD vs standard PD maps

Significantly higher PD values were found in the corpus callosum and in the posterior region 

of the brain stem for the multi-contrast maps with respect to standard ones (see Fig. 5f and 

Table 4). Moreover significantly higher PD values were observed in the right nucleus 

lateroponderalis of the thalamus and right caudate for the multi-contrast maps compared to 

the standard ones, as reported on Fig. 5e and Table 4.

3.9 In vivo experiment: focal epilepsy and porencephalic ventricle dilation

Fig. 2b shows a coronal slice from the dataset acquired on the patient with focal epilepsy 

and porencephalic ventricle dilation. The right hemisphere porencephalic cyst is enclosed by 

a thin cortical layer (in the lateral and frontal neighbouring regions) and by white matter (in 

the posterior and inferior neighbouring regions). Those grey and white matter regions are 

accurately delineated on the multi-contrast PD map, while the PD* fails to provide correct 

tissue contrast. This is due to the different behaviour of the RP estimation methods in the 

presence of a severe anatomical abnormality. While N4ITK employed by the multi-contrast 

PD map, does not make any assumption on the voxel distribution across tissue classes, the 

bias estimation used for PD* calculation is hampered by the inaccurate tissue segmentation.

3.10 Post-mortem experiment: post-mortem foetus

Fig. 2c illustrates a single slice for the multi-contrast PD map estimated on the post-mortem 

foetus. Although strong susceptibility artefacts are visible around the heart due to the 

presence of air, the map shows homogeneous PD values over the whole body illustrating that 

the method described allows PD mapping in various applications. The potential to produce 

PD maps in the absence of anatomical information regarding tissue distribution was 

demonstrated by the PM foetus MRI dataset, for which the PD* maps are not available due 

to their requirement for the a-priori information.

4 Discussion

In this study, we propose a framework for PD estimation based on minimal anatomical 

information, suitable for multiple applications including healthy and diseased brains with 
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widespread pathology. To achieve this, the RP determination was based on a non-parametric 

algorithm for the correction of the intensity non-uniformity, while the scaling factor was 

based on an external calibration object. Additional experiments were carried out to test the 

PD values reproducibility with respect to the position of the calibration object, the receiver 

coil employed for acquiring the data and the number of iterations of the N4ITK bias field 

correction. Aiming to fully correct the PD map for transverse relaxation effects and decrease 

the PD value variability, we employed all the acquired data points using a well-established 

multicontrast VFA protocol. Nonetheless we also tested the applicability of our method in 

the absence of MTw contrast.

We evaluated the PD values and homogeneity separating the main effects of R2* signal 

decay, RP correction method and number of contrasts. Finally, we demonstrated the wide 

applicability of the new multi-contrast PD mapping on a severely damaged brain and on a 

post-mortem foetus.

4.1 RP estimation with N4ITK

The RP sensitivity for the multi-contrast PD was estimated using information about the 

volume of interest and a B-spline interpolation of the intensity distribution. In the following 

section the different factors affecting the RP estimation are discussed along with their impact 

on the resulting homogeneity of the PD maps.

4.2 Motion effects

The presence of motion during the scan acquisition could induce the variation of RP 

sensitivity between the different image contrasts. This has been corrected previously using 

repeated RP measurements (Papp et al., 2015) although these are limited by the assumption 

of B1+/B1- reciprocity. To address this case the N4ITK bias correction could be applied to 

each contrast after the removal of the ST or STMT term and any differences, due to 

movement between each weighted image acquisition, could be corrected.

4.3 Effects of receiver coil and number of N4ITK iterations

The spatial variability of the RP for a particular RF coil could impact the accuracy of the PD 

maps. To account for those effects we acquired data with different receiver coils and we 

compared the resulting multicontrast PD maps.

To evaluate the effectiveness of RP correction, data were obtained using 20 and 64 channel 

receiver head coils. We estimated the multi-contrast PD maps using data acquired with the 

20 and 64 channel coils, and tested the effect of different numbers of N4ITK iterations. PD 

map differences estimated within the same coil showed that low density coils required less 

N4ITK iterations to remove the bulk of RP sensitivity profile with respect to the maps 

obtained from higher number of channels. This is expected due to the fact that higher density 

RF coils have more localised sensitivity profiles leading to an RP with increased spatial 

variation. However the same number of iterations was required for both the 20 and 64 

channel multi-contrast PD maps in order to obtain negligible RP changes. Effective RP 

correction should reduce changes in PD maps estimated with different RF coils. The 

systematic PD value differences between receiver coils suggest that N4ITK provides a less 
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robust RP correction when a larger number of receiver channels or more highly localised 

coils are used.

4.4 Comparison between multi-contrast PD and an established PD mapping method

In the following sections we discuss the factors contributing to the homogeneity and PD 

value differences between methods. The homogeneity was assessed using tissue class 

specific entropy and variance, while PD value comparison was performed using voxel-wise 

statistical analysis.

4.5 Effects of R2*: comparison of multi-contrast PD vs PD* maps

The presence of R2* dependency could modify the PD values distribution, affecting the 

homogeneity assessment across different RP estimation methods. To analyse the main effect 

of R2* on the PD maps estimation we compared variance and entropy between the PD* and 

multi-contrast PD maps. The increased variance observed in GM for the multi-contrast PD 

maps was mainly driven by voxels in brain regions where high susceptibility-related static 

magnetic field gradients are present (e.g. temporal poles and orbitofrontal regions) leading to 

the rapid local R2* decay and poor model fit. This could be improved by increasing image 

spatial resolution or improved fit regularisation.

The main effects of R2* dependency on voxel-wise comparison were the reduced PD values 

in the deep brain structures and the increased values along the visual and motor tracks when 

comparing the PD* maps to the multi-contrast PD ones. The results in the deep GM regions 

can be explained by the presence of high iron content (Aquino et al., 2009; Langkammer et 

al., 2010; Ordidge et al., 1994), that decreases the intensity of the PD* maps. While the 

results along the visual and motor tracks could be ascribed to the presence of tightly packed 

and heavily myelinated tracts leading to a form of anisotropy and residual R2* contrast 

dependency related to the fibre orientation with respect to the main magnetic field (Bender 

and Klose, 2010; Cherubini et al., 2009; Denk et al., 2011).

4.6 Effects of RP correction and scaling method: comparison multi-contrast vs standard 
PD maps

Aiming to assess the effect of the RP estimation method, we compared entropy and variance 

across the multi-contrast PD and standard PD (PD* corrected for R2* effects) maps. The PD 

values homogeneity and accuracy, measured through the entropy and variance, for the multi-

contrast technique within CSF were increased beyond that obtained using state-of-the-art 

SPM12. As PD mapping can be used for the estimation of the water volume fraction in 

tissue property models and g-ratio ( Berman et al., 2018; Mezer et al., 2013), obtaining CSF 

values around 100 p.u. indicates reliable measurements are provided by the PD map to 

characterise the percentage of observed water protons (Mezer et al., 2016). Moreover the 

correct delineation of CSF from PD map could benefit advanced diffusion approaches where 

accounting for the presence of water compartmentalisation and free water volume fraction is 

important for accurately modelling diffusion in different micro-structural compartments 

(Kaden et al., 2016; Zhang et al., 2012).
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As expected, in healthy controls the WM homogeneity for the standard PD was increased 

compared to the multi-contrast PD. This is due to the RP estimation for PD* maps being 

based on SPM unified bias-field/tissue segmentation, that explicitly minimises the signal 

variability in those tissue classes, although strict regularization and boundary conditions are 

used to preserve structural variability (Ashburner and Friston, 2005; Weiskopf et al., 2011). 

Additionally, the scaling factor used in the PD* maps was based on the mean WM signal, 

which further decreases the intensity variability in this tissue class between subjects. 

However, the standard PD approach for the RP calculation and the map scaling excludes the 

possibility of biological signal variability within WM that can occur in brain development 

and in pathology (Gracien et al., 2016; Mezer et al., 2013; Shah et al., 2008) leading to 

scaling errors that could potentially result in erroneous GM PD differences.

The main effects of the RP correction method and scaling factor on the PD values were the 

increased intensity of the multi-contrast PD with respect to both standard PD and PD* maps 

in the corpus callosum and pons nuclei. This might be mainly driven by different methods 

applied to estimate the RP. While SPM bias correction minimises the intensity variation over 

each tissue class, N4ITK reduces the intensity distribution over the whole volume of interest 

leading to potential inaccurate RP estimation in regions where RP inhomogeneities are 

stronger.

4.7 Effect of the number of weighted contrast datasets used to calculate PD

Finally, the use of a different number of contrasts could alter the variability of PD values 

with the expectation that PD variability should be reduced by using a greater amount of data 

for its calculation. To assess the effect of the number of contrasts employed in the PD 

estimation on the map homogeneity, we estimated the tissue specific variance and entropy 

for the one-contrast, and multi-contrast PD maps. The observed lower entropy and variance 

for the multi-contrast PD for all tissue classes indicates that using more images with 

differing tissue contrast decreases the signal variability, and increases the accuracy of the PD 

estimates. This decrease in variance also indicates that the model used is sufficient to remove 

contrast effects.

4.8 PD estimation in pathology

While correcting the PD* map for R2* signal decay provides a suitable approach for 

estimating free water content in healthy brains, it could be inaccurate in case of abnormal 

tissue property changes happening in brain development or pathological conditions. We 

demonstrated that our multi-contrast PD maps improved tissue delineation in the presence of 

abnormal anatomical structures, such as ventricle dilation due to a porencephalic cist. This 

improvement was mainly due to the approach used for the RC profile estimation and the 

external probe employed for scaling. However, it is noted that the cist CSF delineation 

provided by both the multi-contrast PD and PD* map was hampered by the presence of 

Gibbs artefacts.

The multi-contrast approach enabled the PD map estimation for the whole body of a post-

mortem foetus. Although our primary interest was in PD mapping within the brain, this 

example was used to highlight how this method can be more generally applied. There is an 
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increased role of post-mortem MRI for autopsy which can provide information regarding 

cause of death or major pathology, but can also be used to advance medical research and 

knowledge in answering specific ante mortem questions (Thayyil et al., 2013). In this regard, 

quantitative imaging such as PD measurements may have an important role to play.

4.9 Limitations and outlook

The majority of the existing techniques (Abbas et al., 2014; Mezer et al., 2016; Volz et al., 

2012b; Wang et al., 2018) employ two main contrasts to estimate PD and the voxel-wise R1 

required for the PD mapping. As we showed with the one-contrast PD map, the PD mapping 

approach described in this work can be applied both where multiple contrasts are available 

and where only T1w and PDw images are present. For the multi-echo VFA images obtained 

for multi-parameter mapping, utilising all datasets improves the PD maps by reducing their 

variance within tissue class. This is important both for robustness against motion artefacts 

(Weiskopf et al., 2014a,b) and for fast data acquisition methods using partial k-space 

sampling, such as partial Fourier, parallel acquisition or compressed sensing, that can reduce 

SNR in the raw images (Bilgic et al., 2011; Griswold et al., 2002; Johnson, 2017; Lustig et 

al., 2007; Vasanawala et al., 2010).

Despite the neurobiological and anatomical plausibility of our findings, there are certain 

methodological limitations of note. Most importantly, the assumption of a mono-exponential 

signal decay described by R2* may be violated in some brain areas, particularly those 

suffering from susceptibility artefacts (Neeb et al., 2006). In those regions the mono-

exponential fit is potentially unstable and can significantly increase the noise level (Neeb et 

al., 2006). However, high spatial resolution (here 1 mm3 was used) reduces the effects of 

susceptibility artefacts on the signal decay due to a reduced within voxel spin phase 

coherence loss (Weiskopf et al., 2007). Despite possible limitations related to the R2* 

estimation in regions with susceptibility artefacts, we observe that our method provides PD 

values in deep brain structures unaffected by the R2* relaxation effects.

The RP correction method employed in this study allows the PD mapping estimation 

pipeline to be more generally applied across different applications, albeit the robustness of 

the bias correction is influenced by the number of channels present in the receiver coil. In 

the brain, a relatively small effect of channel count was found on the PD values when 

comparing a 20 and 64 channel head/neck receiver array. The use of receiver coils with very 

strong spatial variations or comparisons made between PD maps acquired with different RF 

coils could therefore be biased by inaccurate RP estimation.

PD is an important parameter for mapping water volume fraction during lifespan and in 

different pathologies. The procedure presented here allows the delineation of both local and 

global changes making PD suitable for characterising brain maturation, aging and pathology 

both in the brain and beyond (Ayata and Ropper, 2002; Baierl et al., 1988; Blystad et al., 

2017; Hagiwara et al., 2017; Jurcoane et al., 2013; McAllister et al., 2017; Mezer et al., 

2013). Our results are particularly relevant for studies focusing on PD mapping in the 

presence of pronounced pathologies that cause the failure of tissue segmentation algorithms 

or hamper the correct fit between PD and T1. Notably, the RP correction and the scaling 
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method used in this study are independent from the subject’s anatomy and can be used for 

any organs.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Workflow and signal equation for multi-contrast PD estimation. The signal (S) of FLASH 

multi-echo PDw, T1w, and MTw images was combined and corrected for R2* relaxation. 

The resulting PDw and T1w images were corrected for R1 and inhomogeneity in the 

transmit magnetic field (B1+) by computing voxel-wise the steady state (ST) term. MTw 

images were corrected for STMT computed using the magnetisation saturation (MT) term. 

This led to three maps representing the signal amplitude common to the three FLASH 

datasets. The mean of the three images was corrected for the receiver profile (RP) using 

N4ITK, and scaled using the median signal of the external calibration object (C).
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Fig. 2. Examples of effective proton density (PD*) map, and multi-contrast PD map.
(a) Maps computed for a healthy subject. (b) Maps computed for a paediatric patient with a 

porencephalic dilation of right frontal lateral ventricle. The magnification shows the grey 

and white matter regions where the PD* map fails to provide homogenous RP correction 

resulting in blurred tissue contrast, while the same regions are correctly delineated on the 

multi-contrast PD. (c) Whole body example of multi-contrast PD map obtained from a post-

mortem unfixed foetus.
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Fig. 3. Multi-contrast PD maps estimated using data acquired with the 20 and 64 channel (ch) 
receiver coils using different numbers of N4ITK iterations for RP removal.
(a) Example of multi-contrast PD map estimated using data acquired with 20 channel coil. 

Each row displays the PD map corrected for RP sensitivity using a different number of 

N4ITK consecutive iterations (one to ten). (b) PD changes between different numbers of 

N4ITK iterations for the 20 channel dataset. Each row displays the spatial changes between 

consecutive numbers of iterations. (c) Example of multi-contrast PD map estimated using 

data acquired with 64 channel coil and different number of N4ITK iterations. (d) PD 

changes between different numbers of consecutive N4ITK iterations for the 64 channel 
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dataset. (e) Difference between the multi-contrast PD maps acquired with the 20 and 64 

channel coils for each number of N4ITK iterations used for the RP removal. (f) Root mean 

square (RMS) of the PD changes between different numbers of consecutive N4ITK 

iterations for the 20 channel coil data in three healthy subjects. (g) RMS of the PD changes 

between different numbers of consecutive N4ITK iterations for the 64 channel coil data of 

three healthy subjects. (h) RMS of the PD changes between the 20 channel coil dataset and 

the 64 channel coil one for each iteration of N4ITK in three healthy subjects.
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Fig. 4. Assessment of intensity uniformity for the effective proton density (PD*), multi-contrast 
PD and standard PD (PDst) maps within grey matter (GM), white matter (WM), and 
cerebrospinal fluid (CSF) for in-vivo data.
(a) Entropy estimated within GM, WM and CSF for the multi-contrast and PD and PD* 

maps. Significantly (*) higher entropy was found in PD* compared to multi-contrast PD 

over CSF. (b) Multi-contrast and PD and PD* median and variance estimated within GM, 

WM and CSF. Significantly (*) higher variance was found in multi-contrast PD compared to 

PD* over GM, WM and CSF. (c) Entropy estimated within GM, WM and CSF for the multi-

contrast PD and standard PD maps. Significantly (*) higher entropy was found in standard 

PD compared to multi-contrast PD over CSF, and in the multi-contrast PD over WM. (d) 

Multi-contrast and PD and standard PD median and variance estimated within GM, WM and 

CSF. Significantly (*) higher variance was found in multicontrast PD compared to standard 

PD over WM and CSF.
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Fig. 5. 
Voxel-wise comparison of effective in-vivo proton density (PD*) with multicontrast PD 

maps, and between standard PD and multi-contrast PD maps in grey matter (GM) and white 

matter (WM). The statistical maps of paired t-test at statistical threshold of pFWE < 0.05 are 

displayed on T1w image in standard MNI space. (a) Higher PD* values compared to 

multicontrast PD in GM. (b) Higher PD* values compared to multi-contrast PD in WM. (c) 

Higher multi-contrast PD values compared to PD* in GM. (d) Higher multi-contrast PD 

values compared to PD* in WM. (e) Higher multi-contrast PD values compared to standard 

PD in GM. (f) Higher multi-contrast PD values compared to standard PD in WM.
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Table 1

Tissue-specific entropy and variance estimated for the PD* maps and multi-contrast PD in subjects native 

space within the cerebrospinal fluid (CSF), grey matter (GM) and white matter (WM). The measures were 

statistically compared using the Wilcoxon ranked test.

Tissue class Entropy Variance

PD* Multi-contrast PD Wilcoxon test p-
value

PD* Multi-contrast PD Wilcoxon test p-
value

Entropy± SD Entropy± SD Variance ±SD Variance ±SD

CSF 6.45 ± 0.13 5.70 ± 0.90 0.007 385 ± 151 209.72 ± 77.5 0.009

GM 5.45 ± 0.14 5.46 ± 0.18 0.367 18.2 ± 1.94 38.68 ± 8.64 0.008

WM 6.01 ± 0.4 5.96 ± 0.49 0.242 4.28 ± 0.25 11.24 ± 1.20 0.008

Neuroimage. Author manuscript; available in PMC 2021 July 28.



 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Lorio et al. Page 28

Table 2

Tissue-specific entropy and variance estimated for the standard PD (PDst) and multi-contrast PD maps in 

subjects’ native space within the cerebrospinal fluid (CSF), grey matter (GM) and white matter (WM). The 

measures were statistically compared using the Wilcoxon ranked test.

Tissue class Entropy Variance

PDst Multi-contrast PD Wilcoxon test p-
value

PDst Multi-contrast PD Wilcoxon test p-
value

Entropy± SD Entropy± SD Variance ±SD Variance ±SD

CSF 6.53 ± 0.19 5.70 ± 0.90 0.007 309 ± 113 209.72 ± 77.5 0.009

GM 5.35 ± 0.22 5.46 ± 0.18 0.1 39.1 ± 11.7 38.68 ± 8.64 0.2

WM 5.37 ± 0.43 5.96 ± 0.49 0.004 4.59 ± 3.1 11.24 ± 1.20 0.007
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Table 3

Tissue-specific entropy and variance estimated for the PD* maps, and one-contrast and multi-contrast PD 

within the cerebrospinal fluid (CSF), grey matter (GM) and white matter (WM) for a single healthy control.

Tissue class Entropy Variance

PD* One-contrast PD Multi-contrast PD PD* One-contrast PD Multi-contrast PD

CSF 6.47 6.22 6.17 440 320 300

GM 5.57 5.68 5.37 20 70 50

WM 6.28 6.16 6.1 4 14 10
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Table 4

Summary of the main differences relative to the whole brain voxel-wise comparison between the multi-

contrast PD and PD* maps, and between Multi-contrast PD and standard PD. Coordinates are reported in MNI 

standard space.

Analysis Region Coordinates (mm) T-value

x y z

PD* > Multi-contrast PD GM Left motor cortex –33 –18 42 23

Right motor cortex –32 –18 –5 22

Left insula –38 –2 8 21

Right insula 44 18 –3 18

WM Left motor track –25 –34 46 19

Right motor track 30 –35 41 13

Left visual track –36 –56 14 13

Right visual track 41 –53 17 12

Multi-contrast PD > PD* GM Left globus pallidus –15 –3 0 14

Right globus pallidus 23 –6 –3 23

Left orbitofrontal cortex –17 42 –30 20

Right orbitofrontal cortex 9 27 –24 15

Left substantia nigra –10 –17 –12 10

Right substantia nigra 8 –18 –17 12

Left inferior temporal pole –59 –23 –27 17

Right inferior temporal pole 44 –30 –27 12

WM Corpus callosum 2 6 23 27

Pons nuclei 2 –32 –26 13

Multi-contrast PD > standard PD GM Right nucleus lateroponderalis 12 –6 14 15

Right caudate 6 13 –3 22

WM Corpus callosum 5 8 24 30

Pons nuclei 2 –30 –17 20
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