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Abstract

In brain tumor surgery, the quality and safety of the procedure can be impacted by intra-operative 

tissue deformation, called brain shift. Brain shift can move the surgical targets and other vital 

structures such as blood vessels, thus invalidating the pre-surgical plan. Intra-operative ultrasound 

(iUS) is a convenient and cost-effective imaging tool to track brain shift and tumor 

resection.Accurate image registration techniques that update pre-surgical MRI based on iUS are 

crucial but challenging. The MICCAI Challenge 2018 for Correction of Brain shift with Intra-

Operative UltraSound (CuRIOUS2018) provided a public platform to benchmark MRI-iUS 

registration algorithms on newly released clinical datasets. In this work, we present the data, setup, 

evaluation, and results of CuRIOUS 2018, which received 6 fully automated algorithms from 

leading academic and industrial research groups. All algorithms were first trained with the public 

RESECT database, and then ranked based on a test dataset of 10 additional cases with identical 

data curation and annotation protocols as the RESECT database. The article compares the results 

of all participating teams and discusses the insights gained from the challenge, as well as future 

work.

Index Terms

Registration; brain; ultrasound; MRI; brain shift; tumor

I Introduction

GLIOMAS are the most common brain tumors in adults, and are categorized into grade I-IV 

by the World Health Organization (WHO). Low-grade gliomas (LGG, grade I and II) are 

less aggressive and have slower progression than high-grade gliomas (HGG, grade III and 

IV), but will eventually undergo malignant transformation into high-grade tumors. 

Evidences [1], [2] have shown that early tumor resection can effectively improve the 

patient’s survival rate. Imageguidance can be a useful tool to assist the surgeon in obtaining 
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a maximal safe resection of the tumor. Image-guidance based on pre-operative MR images is 

in routine clinical use worldwide. These systems, however, do not account for the tissue shift 

and deformations that occur as the resection progresses. Due to brain shift, the surgical 

target and other vital structures (e.g., blood vessels and ventricles) will be displaced relative 

to the pre-surgical plan, resulting in inaccurate image-guidance. Multiple factors can 

contribute to brain shift, including but not limited to drug administration, intracranial 

pressure change, tissue resection. Often such tissue shift is not directly visible by the 

surgeon. Both intra-operative ultrasound (iUS) and intra-operative magnetic resonance 

imaging (iMRI) have been employed to track tissue deformation and surgical progress. Intra-

operative US has gained popularity thanks to its low cost, high portability and flexibility. 

However, limited field of view and challenging image interpretation remain obstacles for 

widespread use. Together with iUS, automatic image registration algorithms can be used to 

update the surgical plan based on pre-operative MRI by re-aligning the pre-operative images 

with intra-operative images and offer more intuitive assessments of the extent of resection.

Previously, a number of algorithms and strategies [3]–[8] have been developed to address 

iUS-MRI registration for brain shift correction. They range from new strategies to map 

image features to similar domains [3], [4] to novel cost function [6], [7], and from different 

deformation models [5], [6] to improved optimization procedures [8]. However, partially due 

to the lack of relevant clinical datasets, it has been difficult to directly compare different 

algorithms, thus potentially slowing the speed of knolwedge translation to benefit surgeons 

and patients. The MICCAI Challenge 2018 for Correction of Brain shift with Intra-

Operative UltraSound (CuRIOUS2018) was launched as the first public platform to 

benchmark the latest image registration algorithms for the task, and to bring the researchers 

together to discuss the technical and clinical challenges in iUS-guided brain tumor resection. 

For the first edition of the challenge, we focused on MRI-iUS registration to correct pre-

resection deformation after craniotomy, as it typically sets the tone of brain shift for the rest 

of the surgery.

The challenge was divided into the training and testing phases. While the publicly available 

REtroSpective Evaluation of Cerebral Tumors (RESECT) database [9] was used in the 

training phase for algorithm development, in the testing phase, a private testing database was 

distributed to assess the participating teams. The distances between homologous anatomical 

landmarks between iUS and MRI were used to assess and rank the registration quality. The 

CuRIOUS2018 challenge received 8 initial submissions [10]–[17]. Seven teams validated 

their methods on the testing data, and six participated in the final ranking. The submissions 

cover a wide variety of approaches, including the latest registration metrics [7], [13], 

optimization approaches [12], and deep learning techniques [17].

This paper describes the organization, submitted algorithms, and results for the challenge, 

and further discusses the current challenges and potential future directions of tissue shift 

correction in US-guided brain tumor surgery.
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II Materials

Two datasets were included for the training and testing phases of the CuRIOUS2018 

challenge. The RESECT database [9] was provided to the participants as the training dataset 

for development and fine-tuning of the algorithms. The database contains pre-operative MR 

and pre-resection iUS images from 22 patients who have received LGG resection surgeries 

at St. Olavs University Hospital, Trondheim, Norway. The testing dataset was comprised of 

imaging data from 10 additional patients with LGG obtained in the same setting as the 

RESECT database. The collection and distribution of both datasets were approved by the 

Regional Committee for Medical and Health Research Ethics of Central Norway, and all 

patients signed written informed consent.

For both training and testing databases, Gd-enhanced T1w MRI and T2w fluid-attenuated 

inversion recovery (FLAIR) MRI scans were acquired for each patient before surgery. Five 

fiducial markers were glued to the patient’s head prior to scanning. The T1w and T2w MRIs 

were rigidly coregistered, and aligned to the patient’s head position on the operating table 

via a fiducial-based image-to-patient registration. The position-tracked 3D iUS scans were 

acquired with the Sonowand Invite neuronavigation system (Sonowand AS, Trondheim, 

Norway), with either the 12FLA-L linear transducer or the 12FLA flat linear array 

transducer for smaller superficial tumors. 3D volumes were reconstructed from the raw iUS 

data using the built-in proprietary reconstruction method in the Sonowand Invite system, 

with a reconstruction resolution in the range of 0.14 × 0.14 × 0.14 mm3 to 0.24 × 0.24 × 

0.24 mm3 depending on the probe types and imaging depth. Both ultrasound transducers 

were factory calibrated and equipped with removable sterilizable reference frames for 

optical tracking. A Polaris camera (NDI, Waterloo, Canada) built in the Sonowand system 

was used to obtain the position and pose of the ultrasound probe. Therefore, the iUS 

volumes reveal tissue position and deformation in the patient’s head on the operating table.

Homologous anatomical landmarks manually labeled by two raters (authors YX and MF as 

Rater 1 and 2, respectively) were provided to assess registration quality, using the software 

‘register’ included in the MINC toolkit (http://bic-mni.github.io). Typical landmarks include 

the edge of the tumor, deep grooves of sulci, corners of sulci, convex points of gyri and the 

horns of the lateral ventricles. After Rater 1 defined the landmarks in the T2w FLAIR MRIs 

as the references, Rater 1 and Rater 2 then tagged the corresponding landmarks 

independently within the corresponding US volumes twice. A 1~2-week interval was 

ensured between the repetitions. The final landmarks in both training and testing database 

were provided as the averaged results of two trials of landmark tagging by both raters (four 

3D points for each landmark). The details of the landmarks are listed in Table I for the 

testing datasets. Similar details for the training dataset can be found in the original 

publication for the RESECT database [9]. For both sets, a wide range of brain shifts 

measured as mean initial distances between corresponding landmarks were included to 

properly examine the performance of registration algorithms.

We employed the mean Euclidean distance between two sets of corresponding landmark 

points for each patient to assess the intra- and inter-rater variability. For intra-rater 

variability, we calculated the metric between two trials of landmark picking for each rater; 
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for inter-rater variability, the average of two trials for each rater was first computed and used 

to obtain the value between two raters. The intra- and inter-rater variability evaluations are 

presented in Table II for both training and testing data.

III Challenge Setup

The CuRIOUS2018 challenge started on April 1st, 2018 when the challenge website went 

live on curious2018.grand-challenge.org. In the next few days, several groups who were 

active in the field of MRI-iUS registration were identified by literature search and were 

invited to participate. The challenge was also widely advertised on mailing lists and on 

bulletin board of medical imaging conferences held in the first half of 2018. Another factor 

that leads to a good participation was the incentive of generous support of challenge 

sponsors, which provided a total of 2100 € for the top winners. The challenge consisted of 

two phases (see Fig. 1).

In phase I, all the teams were required to submit a short paper that elaborated the technique 

and results on the 22 patients in the RESECT database. These papers were then peer-

reviewed and the final camera-ready conference papers were submitted in July 2018.

Phase II started in August 2018, when all the participants who had submitted reports and 

results on the training data were provided with MRI and iUS data from 10 additional 

patients (test data). These datasets had identical data curation and annotation protocols as the 

RESECT database. The locations of landmarks in the MRI were provided to the teams, and 

the teams had to return the locations of those landmarks after MRI-iUS registration within 

13 days of the data release. All teams presented their methods and results on the training 

data at the challenge event, which took place in conjunction to MICCAI 2018 in Granada, 

Spain.

The RESECT database remains public, and has been downloaded 267 times since its release 

in April 2017. The test datasets were only released to the participants, and the locations of 

the ground truth landmarks in these datasets remain private. The organizers will continue the 

challenge in 2019 by adding iUS test data collected during and after tumor resection.

IV Evaluation

The evaluation metric and ranking system are key criteria for the success of a challenge. The 

metric should reflect the overall quality of the methods and the ranking system should be as 

fair as possible. It is worth noting that our evaluation method was published on the official 

website before the challenge took place and was not modified afterwards. Although such 

transparency in the evaluation process may seem obvious, [18] reported that this 

transparency was not guaranteed in about 40% of biomedical challenges, which could lead 

to controversy.

The first component of the evaluation process is a metric to assess the quality of the 

registration methods. More than 80% of the tasks in biomedical challenges concern 

segmentation, with the Dice similarity coefficient as the most common evaluation metric 

[18]. However, challenges with image registration, especially from different modalities, are 
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rarer and we could not find any standard metrics from these competitions. We thus chose to 

rely solely on the expert-labeled anatomical landmark pairs, by computing the Euclidian 

distances between the transformed MRI landmarks, after registration, and the ground-truth 

landmarks defined in the iUS images.

The second component of the evaluation process concerns how the results for each test case 

are aggregated to rank the teams. The two main options are 1) aggregate the results on all 

test cases, then rank; or 2) rank by test case, then aggregate the ranks. In the first scenario, 

we would have ranked the teams based on the mean distance computed from all landmarks 

of all cases. Instead, we chose the second scenario because it is better fitted to handle 

missing cases. For each case, we also ranked fully-automatic methods over semi-automatic 

methods. To aggregate the case-by-case ranks, we simply computed the mean rank of each 

team.

The evaluation system was as follows:

1. For each test case and for each team, compute the Euclidian distances between 

landmark pairs after registration, i.e., between the transformed MRI landmarks 

and the ground truth iUS landmarks.

2. For each test case, rank teams according to their mean distance between 

landmark pairs. Exceptions include:

a. If one team could not provide results for a test case, or if these results 

could not be processed for any reason, then that team is ranked last for 

the test case.

b. If two mean distances differ by less than 0.5 mm, a team with a fully-

automatic method is ranked higher than a team with a semi-automatic 

method.

3. Compute the mean rank of every team, which gives the final ranks of the 

challenge.

V Challenge Entries

A Team cDRAMMS

Machado et al. [13] extended the Deformable Registration via Attribute Matching and 

Mutual-Saliency Weighting (DRAMMS) algorithm [19], a general-purpose algorithm [20], 

specifically for the US-MRI registration problem, which they termed as correlation-

similarity DRAMMS or cDRAMMS. They released it at https://www.nitrc.org/projects/

dramms/ (version 1.5.1). The original DRAMMS has two good properties for US-MRI 

registration. First, representing each voxel with multi-scale and multi-orientation Gabor 

attributes in DRAMMS offers richer information than purely image intensities. This helps to 

establish more reliable voxel correspondences despite the different image protocols and 

different intensity profiles between US and MRI images. Second, the mutual-saliency 

module in DRAMMS automatically assigns low confidence or weights to regions that 

cannot establish reliable or cannot find counterparts across images. This potentially reduces 
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the negative effects of the missing correspondences between US and MRI images. Different 

from the original DRAMMS, which uses the sum of square differences (SSD) between 

attributes for matching, the modified cDRAMMS uses correlation coefficient (CC) [21] and 

correlation ratio (CR) [22] on attributes for voxel matching. CC and CR on voxel attributes 

in cDRAMMS establish voxel correspondences at a higher accuracy and higher reliability 

than SSD in DRAMMS. Free-form deformation and discrete optimization are chosen as the 

deformation and optimization strategy, respectively.

B Team DeedsSSC

Heinrich et al. [14] used DeedsSSC, which comprises a linear and a non-rigid registration 

that are both based on discrete optimization and modality-invariant image features. 

Specifically, self-similarity context features (SSC) are extracted for both MRI and 

ultrasound scans that are matched based on a dense displacement sampling. First, the 

similarity maps for each considered control point are used to extract correspondences for 

fitting a linear transform using least trimmed squares, similar as done in blockmatching 

approaches. Second, new similarity maps are calculated for linearly aligned images and an 

efficient graphical model based discrete optimization (deeds) is used to estimate a nonlinear 

displacement field that avoids implausible warps and further improves the registration 

quality. All computations are performed for scans resampled to isotropic 0.5 mm resolution 

and using the default parameters (see https://github.com/mattiaspaul/deedsBCV) with an 

optimization over multiple grid-scales. Finally, the nonlinearly warped landmarks are again 

constrained to follow a rigid 6-parameter transform for improved robustness. The algorithm 

is executed within less than 10 seconds per scan pair on a multi-core CPU and ongoing work 

considers the huge potential for further speed-ups through parallelized GPU computations.

C Team FAX

Zhong et al. [17] proposed a learning-based approach to resolve intraoperative brain as an 

imitation game. This point-based approach predicts the deformation vectors of key points to 

compensate the non-rigid brain-shift. For each key point, they extract a local 3D patch in 

iUS and model the key point distribution as the encoding of the current observation. A 

demonstrator is constructed providing the optimal deformation vector based on the current 

key point location and the ground truth. An artificial neural network is trained to imitate the 

behavior of the demonstrator and to predict the optimal deformation vector given current 

observation. To increase robustness, the proposed technique uses a multi-tasking network 

with a rigid transformation as auxiliary output. In addition, we use non-rigid deformations to 

augment the 3D volume and 3D key points to facilitate the training.

D Team ImFusion

The method [16] is based on the multi-modal similarity metric LC2 [7] and has recently 

been used in a first live evaluation during surgery [23] (data NOT overlapping with 

challenge data). The similarity metric was maximized using a non-linear optimization 

algorithm with a parametric transformation model. In a pre-processing step specific to the 

challenge data set (cartesian 3D ultrasound volumes compounded by the SonoWand system), 

the volume sides facing the ultrasound probe is estimated and the outermost 4mm of content 

are cropped accordingly. The registration algorithm is implemented using GPU acceleration. 
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For registration, the US volume was employed as the fixed image, and was resampled to 

0.5mm, which is half of the MRI resolution. The final selected patch-size for computing 

similarity metric is 7×7×7 voxels, which was optimized in their prior work [23]. The 

algorithm employs a two-stage non-linear optimization strategy that successively operates on 

the transformation parameters. In the first stage, a global DIRECT (DIviding RECTangles) 

sub-division method [24] searches on translation only, and is followed by a local BOBYQA 

(Bound Optimization BY Quadratic Approximation) algorithm [25] on all six rigid 

transformation parameters. Afterwards, the local optimizer conducts another search on full 

affine parameters in order to accommodate shearing and non-uniform scaling of the data.

E Team MedCAL

Multimodal deformable registration between the MRI and intra-operative 3DUS was 

achieved with a weighted version of the locally linear correlation metric (LC2), correlating 

MRI intensities and gradients with ultrasound, while adapting both hyper-echoic and hypo-

echoic regions within the cortex. The method [15] was initialized with a global rotation of 

the US volume to match the orientation observed on the MRI. This was achieved using a 

PCA of the extracted inferior skull region, identifying the principal orientation vectors of the 

head, followed by a scaling and translation correction. This fusion step uses a patch-based 

approach of the US voxels, comparing intensity and gradient magnitudes extracted from the 

MRI with a linear relationship. The registration applies sequentially a rigid and non-rigid 

step, with the latter integrating a weighting term and controlled by a cubic 5×5×5 B-Spline 

interpolation grid, distributed uniformly in the fan-shaped US volume. The weighting term 

uses pre-annotated labels on the MRI, representing both the hypoechoic (fluid cavities) and 

the hyperechoic (ex. choroid plexus) areas observed on ultrasound. This term is added only 

at the non-rigid step as it is highly specific to the internal areas in US such as the lateral 

ventricles, requiring a rigid pre-alignment. Registration optimization was performed using 

BOBYQA, which avoids computing the metric’s derivatives.

F Team NiftyReg

Drobny et al. [12] suggest a method which uses a block-matching approach to automatically 

align the pre-operative MRI with the iUS image. The registration algorithm is part of the 

NiftyReg open-source software package [26]. Their block-matching registration technique 

iteratively establishes point correspondences between the fixed image and the warped 

floating image, and finally determines the transformation parameters through least trimmed 

squares (LTS) regression. A two-level pyramidal strategy was used for coarse-to-fine image 

registration. For block-matching, both fixed and floating images were divided into uniform 

blocks of 4 voxel edge length. The top 25% of blocks with the highest intensity variance in 

the fixed image were used while the rest were discarded. Each of these image blocks was 

then compared to all floating image blocks that have an overlap of at least one voxel. The 

best match between the blocks from the fixed and floating images was determined as the pair 

with maximum absolute normalized cross-correlation (NCC). After establishing the point-

wise correspondences, the second step was the update of transformation parameters via LTS 

regression. At every iteration, the composition of the block-matching correspondence and 

the transformation of the previous step determined the new transformation by LTS 

regression.
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VI Results

A Phase I: Distances on the Training Data

The results obtained on the training dataset were reported by each team in their respective 

contribution to the challenge proceedings [27]. Most authors reported their distances 

obtained after registration for each case, although some reported only averaged values. Table 

III summarizes the mean distance between landmark pairs after registration, over all 

landmarks of all cases, computed by each team. All teams but one improved from the initial 

distances, with three teams achieving a mean distance under 1.75 mm and two more under 

3.35 mm. Team cDRAMMS initially reported a mean distance between landmarks of 3.35 ± 

1.39mm. With an updated version of their method, this error was later reduced to 2.28 ± 

0.71mm. Sun and Zhang [11] provided partial results on 4 cases only, since the other 18 

cases were used to train their neural network. This team eventually did not participate in the 

second phase.

B Phase II: Distances on the Test Data

This section presents the results of the 6 teams that completed phase II of the challenge, on 

the test dataset. Figure 2 first shows the results per test case, aggregated across all teams. 

Test cases with the largest initial errors (cases 1, 5, and 3) were the most difficult to treat. 

Results for test cases with the smallest initial error (4 and 9) were improved on average, but 

several teams also obtained larger distances after registration. Finally, results were 

consistently improved for all other cases with an initial error in the 4-6 mm range.

Regarding team-by-team results, mean distances between landmark pairs after registration 

are summarized in Table III while the distribution of these distances is detailed in Figure 3. 

Team ImFusion and DeedsSSC obtained a mean distance between landmark pairs well 

below 2 mm, respectively of 1.57 and 1.87 mm. These excellent results are consistent across 

all test cases, with a standard deviation around 1 mm for both teams, which confirmed the 

results reported on the training data set. Team cDRAMMS also consistently obtained very 

good results, with a mean error of 2.18 mm and a single large residual error of 4.3 mm for 

case 5. Results of team NiftyReg are more varied. As can be seen on the lower panel of 

Figure 3, they obtained excellent results for all cases but two, cases 1 and 5, where the 

distance was reduced from 15.7 to 5.9 mm and 13.2 to 12.8 mm, respectively. Without these 

two outliers, the mean distance over all cases would be reduced from 3.21 ± 3.57 mm to 

1.70 ± 0.91 mm. Team FAX reported the best results on the training set, with a mean 

distance between landmark pairs of 1.21 ± 0.55 mm. However, this distance leaped to 5.70 ± 

0.55 mm on the test data, which potentially shows their deep learning method overfitted the 

data during the training phase. Finally, team MedICAL obtained few or no improvements 

from the initial distances between landmark pairs.

C Phase II: Complementary Criteria

All submitted methods were fully automatic. Although it was not a factor in the evaluation, 

the average computational time per case (excluding image preprocessing) for each team is 

reported in Table IV, and each team’s choice of software implementation and hardware set-

Xiao et al. Page 9

IEEE Trans Med Imaging. Author manuscript; available in PMC 2021 July 28.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



up vary. These values range from 1.8 sec for team FAX with a trained neural network to 

approximately 450 sec for team cDRAMMS using singe-thread CPU implementation.

D Qualitative Results

To demonstrate the data and the registration task, MR and iUS volumes of one patient was 

chosen from each of the training and test datasets, and are shown in Figures 4 and 5, 

respectively. The selected cases have a relatively large initial mTRE and a substantial 

variability between the teams. Also, note that these two cases do not necessarily directly 

reflect the overall ranking of the challenge, which was based on averaged rankings of all 

cases. As no quantitative measures of registration quality are available in a clinical setting, 

visual inspection of the images is important to obtain an impression of the registration 

quality. As shown in Figures 4 and 5, the registration accuracy can be evaluated by adapted 

visualization and identification of homologous features such as sulci, gyri and ventricles in 

the images.

E CuRIOUS2018 Challenge Ranks

Following the description in Section IV, all teams were ranked independently for each test 

case, based on the mean distances between landmark pairs. These case-by-case ranks are 

summarized in Figure 6, with the number of times each team was ranked at the i th place, 

with i from 1 to 6.

The winner and runner-up are teams ImFusion and DeedsSSC, which are perfectly 

consistent with their respective results reported in Figure 3. Note that ImFusion obtained the 

best registration for 6 of the 10 tests cases. Despite a larger mean registration error, team 

NiftyReg was ranked third before team cDRAMMS as it obtained a better case-by-case rank 

(3.1 vs 3.4). However, team cDRAMMS also had very good results, but more consistently 

handled all cases, including the extreme ones. This specific situation pointed out the fact that 

the challenge metric favors accuracy over precision, with a limited penalty when low quality 

results are obtained on a single case or two. To overcome this limit, since we consider 

precision as a crucial factor for the surgeons’ acceptance of a method, the challenge’s 

organizers decided to declare a tie for third place. Both NiftyReg and cDRAMMS thus 

received the same third place prize. Finally, both teams FAX and MedICAL obtained a mean 

case-by-case rank of 5.3, and were ranked tied at the 5th place in the challenge.

VII Discussion

In this challenge, the focus has been on MR-iUS registration in the context of brain tumor 

surgery. As both the training and test datasets exclusively contain data from LGG surgeries, 

there has been a special focus on this tumor type. The resection of LGGs is particularly 

challenging as the tumor tissue can be very similar to normal brain tissue. In LGG surgery, 

there are also fewer options for additional guidance as tools like 5-ALA fluorescence are not 

available. Intraoperative ultrasound is therefore an attractive solution in these cases. The 

optimization and benchmarking of available registration algorithms on data from these 

tumors is therefore particularly important for successful future clinical translation. Even 

though the emphasis has been on LGG, the results from the challenge will generalize well to 
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other tumor types such as HGGs and metastasis as these tumors are more distinct from 

normal brain tissue and depict clearer boundaries than LGGs in ultrasound images.

An important obstacle for the widespread use of iUS is the challenging and unfamiliar image 

interpretation. The integration of iUS into the navigation system and the visualization of 

corresponding slices in pre-operative MR and iUS makes this interpretation considerably 

more intuitive. With accurate MR-iUS registration, the surgeon can perform the resection 

based on the MR images even after brain shift, which makes the neuronavigation accurate 

and easy to interpret. MR-iUS registration also enables correction of other types of pre-

operative MR data such as fMRI and DTI [28].

Image registration techniques tailored for MRI-iUS registration in this challenge were 

landmark-, intensity- or learning-based. The performance of landmark-based methods in 

non-linear image registration depends on both finding enough landmarks that cover the 

entire volume, and correctly finding their corresponding landmarks in the second volume. 

The voxel-wise attribute-based method of Machado et al. [13] (team cDRAMMS) did 

relatively well despite the fact that iUS and MRI have drastically different salient features, 

and ranked third in a tie with Drobny et al. [12] (team NiftyReg). The top three algorithms in 

this challenge [12]–[14] were all intensity-based techniques, which calculated a dense 

transformation map by utilizing intensity values at all locations.

Deep learning has been successfully applied to image registration [29], [30], but in nonlinear 

image registration tasks with high accuracy requirement, such as brain shift correction, 

further exploration is still needed [31]. The two submissions that used DL in this challenge 

were from Sun and Zhang [11], who did not participate to the second phase, and Zhong et al. 
[17] (team FAX), who ranked first in the results reported on the training database. However, 

their method did not work well on the test database. A common culprit for such behavior is 

overfitting, where the model overfits the training data and therefore performs poorly on the 

unseen test data. As more training data becomes available, this type of method is expected to 

perform better in the future.

Symmetric image registration techniques provide unbiased estimates of the transformation 

field and are known to generally outperform their asymmetric counterparts [32]. Two of the 

top three methods in this challenge [12], [14] compared the performance of their techniques 

in symmetric and asymmetric settings. They both concluded that asymmetric 

transformations lead to a superior performance in this challenge. This is an interesting 

finding and is likely due to the vast differences in physics of US and MR imaging 

modalities.

It was also noticed by some of the challenge participants and discussed during the event that 

in some cases affine transformations outperformed non-linear elastic transformations. This 

might seem surprising as brain shift is often described as a non-uniform deformation. 

However, before resection a large component of the experienced mismatch between MRI 

and iUS is often due to inaccurate patient-MRI registration. This is a rigid registration most 

often based on anatomical landmarks, fiducials, surfaces or a combination of these. 

Consequently, an affine transformation might be sufficient to correct for most of the 

Xiao et al. Page 11

IEEE Trans Med Imaging. Author manuscript; available in PMC 2021 July 28.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



misalignment. After resection, the situation will be different with larger and highly non-

linear deformations and affine transformations will likely not be sufficient to register the 

images. Some teams initialize their nonlinear registration with affine alignments first. This 

approach can ensure the overall registration robustness when only focusing on relatively 

local tissue deformation. However, in cases of updating other intra-operative data, such as 

pre-operative tractography [28], direct estimation of nonlinear deformation may be 

preferred.

In both the training and test databases, we selected landmarks that cover a large part of the 

iUS volume with sufficient distance between neighboring landmarks. This strategy provides 

a good benchmark for comparing image registration techniques. However, the quality of the 

alignment closer to the tumor is more clinically important as it better helps the neurosurgeon 

to optimize the resection size and location. To further investigate the registration 

performance, registration errors per landmark for each case are analyzed for the testing 

dataset. More specifically, the registration errors per landmark across all teams for each case 

were plotted in Figure 7. As expected, a higher variance of registration errors was observed 

for Case 1 & 5 with large brain shift (>10mm). Case 12 (initial mTRE = 4.89mm) also 

exhibits a relatively high variance in registration errors. This is likely due to blurry sulci 

patterns in MRI in comparison to iUS. Furthermore, we also computed the medians, 

minimums, and variances of the registration errors per landmark across all teams for each 

clinical case from the testing dataset, and the results are show in Figure 8. With Tukey’s 

method, we identified outlier landmarks based on the computed statistical measures. In 

general, there are only very small amount of outlier landmarks (<10 out of 173). While the 

minimums and medians generally point to the same outlier landmarks, variances did not 

show any. Based on visual inspection, these landmarks are typically anatomical features, 

which are relatively close to the interface of tissue and transducer, and the border of the iUS 

volume, as well as sulcus patterns that are less distinguishable in MRI scans in comparison 

to the iUS due to differences in resolution.

The distance between corresponding landmarks in the two images before and after 

registration is a well-established metric for evaluation of registration results in the absence 

of a ground truth. Despite being widely used, this metric has some limitations. First, as there 

is only a limited number of landmarks associated with each image, the registration error is 

only evaluated at a limited number of locations and will therefore not capture local 

displacements and deformations in other locations. Thus, the number of landmarks and their 

distribution in the image volume are important. The landmarks in both the training and test 

sets have been carefully placed in order to capture the displacements and deformation as 

well as possible. However, we noticed that in Test Case 5, the registration results were not 

accurate by visual inspection even though the mTREs indicated successful alignment. This 

emphasizes the need for both quantitative and qualitative assessment of registration results. 

Another limitation of this metric is the localization error associated with manual placement 

of points. For the landmarks to be valid for evaluation of registration results, this localization 

error has to be significantly lower than the expected registration errors. We have measured 

the inter- and intra-rater variability in both the training and test data and shown that these are 

indeed significantly lower than the registration errors. Even though the landmarks do not 
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represent the absolute ground truth, they are valid for the evaluating the registration 

outcomes.

The use of landmarks as the only metric for the challenge also represent a limitation. For 

implementation in a clinical setting, for example, other characteristics would also be of 

critical importance, such as registration precision, accurate mapping of tumor boundaries, 

smoothness of deformation field (no vanishing tissues), and ease of use. However, some of 

the factors can be very complex and difficult to quantify, and in the challenge setting, the use 

of a single well-defined metric is advantageous. A single metric enables a straightforward, 

comprehensible ranking scheme and an open, fair competition. With the use of multiple 

metrics, there will always be a discussion on the weighting of the different criteria and how 

to aggregate them. The rules for aggregation of the ranks in this challenge were outlined 

before the challenge and were not changed at any point. Still, the system used favors 

accuracy over precision. As discussed during the challenge event, for the clinical users, high 

precision and high accuracy are equally important and precision can even be more important 

than accuracy. This point should be re-designed and improved in future editions of the 

challenge.

VIII Future Work

In the first edition, the registration task solely focused on MRI-iUS registration before dura-

opening and after craniotomy. However, with the progress of tumor resection, tissue 

deformation is an on-going process, and accurate tracking can ensure the complete removal 

of cancerous tissues, preventing any additional surgeries. Intended as a recurrent open 

challenge to further improve the registration algorithms, we expect to introduce multiple 

sub-challenges in future CuRIOUS challenges to target brain shift correction at different 

stages of the surgery, especially during and after resection.

For clinical practices, besides accuracy and robustness, processing speed is an imperative 

factor. In the inaugural edition of the challenge, performance speed was not emphasized in 

scoring the teams because it can be affected by multiple factors, including implementation 

platforms, for prototype algorithms. In future challenges, we aim to place discussions and 

emphasis on this topic, as well as optimization algorithms to direct the results of the 

challenge towards more realistic clinical implementations.

IX Conclusion

Holding great clinical values, MRI-iUS registration for correcting tissue shift in brain tumor 

resection is still a difficult task. As the first public image processing challenge to tackle this 

clinical problem, the CuRIOUS2018 Challenge provided a common platform to evaluate and 

discuss existing and emerging registration algorithms on this topic. The results of 

CuRIOUS2018 provided valuable insights for the current developments and challenges from 

both the technical and clinical perspectives. This is an important step forward to help 

translate research-grade automatic image processing into clinical practice to benefit the 

patients and clinicians.
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Fig. 1. Timeline for CuRIOUS 2018 challenge.
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Fig. 2. 
Results per test case: box plot distribution of the distances between landmark pairs. For each 

test case, the left box plot (blue) shows the initial distance before registration while the right 

box plot (orange) shows the distribution after registration, aggregated over all teams.
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Fig. 3. 
Distribution of the distances between landmark pairs obtained by each team after 

registration, on the test set. For comparison, the last column contains the initial distances 

before registration. The upper panel shows the global results computed over all landmarks of 

all test cases. in the lower panel, these results are split by test case.
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Fig. 4. 
Qualitative comparison of registration results for Training Case 25 across different teams. 

For each team, the ultrasound and deformed FLAIR MRI scan is overlaid together. The 

mTRE values for each team is listed at the right bottom corner of each image overlay. The 

arrows point to the sulcus patterns with varied registration quality among teams.
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Fig. 5. 
Qualitative comparison of registration results for Test Case 3 across different teams. For 

each team, the ultrasound and deformed FLAIR MRI scan is overlaid together. The mTRE 

values for each team is listed at the right bottom corner of each image overlay. The arrows 

point to the sulcus patterns with varied registration quality among teams.
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Fig. 6. 
Case-by-case ranks for each team. For example: over the ten test cases, team ImFusion was 

ranked first six times, second three times, and third one time.
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Fig. 7. 
Regisstration errors per landmark across all teams shown as boxplots for each case from the 

testing dataset. The error is measured as the Euclidean distance between the deformed 

landmark in MRI and the corresponding one in ultrasound, and the landmarks are ordered 

from the left to the right for each case according to their number provided.
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Fig. 8. The medians, minimums, and variances of registration errors for each landmark across 
all teams, and the results are plotted as boxplots for each case from the testing dataset.
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Table I
Details of Inter-Modality Landmarks for Each Patient in the Testing Dataset

Patient ID # of landmarks MRI vs. before US Mean initial distance (range) in mm MRI vs. before US

1 17 15.66 (14.19~16.74)

3 17 6.36 (3.57~10.23)

4 17 2.98 (1.17~5.28)

5 17 13.19 (9.86~17.25)

6 18 5.52 (4.07~7.24)

7 18 5.27 (4.28~6.14)

8 18 3.73 (2.66~5.04)

9 17 1.80 (0.41~4.15)

10 17 4.66 (3.76~5.74)

12 17 4.89 (3.58~6.21)

mean±sd 17.3+0.5 6.4l±4.46

The number of landmarks and mean initial Euclidean distances between landmark pairs are shown, and the range (min ~ max) of the distances is 
shown in parenthesis after the mean value.

IEEE Trans Med Imaging. Author manuscript; available in PMC 2021 July 28.



 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Xiao et al. Page 25

Table II
Inter- and Intra-Rater Evaluations With Mean Euclidean Distance Between Landmark 
Sets

Type Intra-rater Rater 1 Intra-rater Rater 2 Inter-rater R1 vs. R2

Training data 0.47±0.10 mm 0.33±0.06 mm 0.33±0.08 mm

Testing data 0.2l±0.l0 mm 0.48±0.22 mm 0.42±0.l7mm

The results are shown as mean±standard deviation.
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Table III
Summary of the Challenge Results

Team Distances between landmark pairs
after registration

Mean ± std, in mm
Training set / Test set

Mean
case-by-

case rank

Final
challenge

rank

cDRAMMS 3.35 ±1.39 2.18 ±1.23 3.4 3 =

DeedsSSC 1.67 ± 0.54 1.87 ± 0.93 2.4 2

FAX 1.21 ± 0.55 5.70 ± 2.93 5.3 5 =

ImFusion 1.75 ± 0.62 1.57 ± 0.96 1.5 1

MedICAL 4.60 ± 3.40 6.59 ± 2.89 5.3 5 =

NiftyReg 2.90 ± 3.59 3.21 ± 3.57 3.1 3 =

Hong et al. 5.60 ± 3.94 6.65 ± 4.55 - -

*Sun et al. 3.91 ± 0.53 - - -

Initial distances 5.37 ± 4.27 6.38 ± 4.36 - -

For each team, the first columns give the mean distances between landmark pairs after registration, computed over all landmark of all cases, for the 
training and test sets. The mean case-by-case rank, computed on the test set only, and the final challenge rank are then given. For comparison, the 
last line contains the mean initial distances, before registration. Teams cDRAMMS and NiftyReg were eventually ranked tied at third (=). Hong et 
al. sent results on the test data but did not attend the challenge event. Sun et al. sent only partial results (*) on the training set, but did not participate 
to the second phase of the challenge. These two teams were thus not ranked.
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Table IV
Summary of Average Computational Time Per Case for Each Team

Team Mean comutational time per case Implementation with GPU/CPU

cDRAMMS 450 sec CPU

DeedsSSC 25 sec CPU

FAX 1.8 sec CPU

ImFusion 20 sec GPU

MedICAL 103 sec CPU

NiftyReg 115 sec GPU
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