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Accurate medical image segmentation is essential for diagnosis and treatment planning of 

diseases. Convolutional Neural Networks (CNNs) have achieved state-of-the-art performance for 

automatic medical image segmentation. However, they are still challenged by complicated 

conditions where the segmentation target has large variations of position, shape and scale, and 

existing CNNs have a poor explainability that limits their application to clinical decisions. In this 

work, we make extensive use of multiple attentions in a CNN architecture and propose a 

comprehensive attention-based CNN (CA-Net) for more accurate and explainable medical image 

segmentation that is aware of the most important spatial positions, channels and scales at the same 

time. In particular, we first propose a joint spatial attention module to make the network focus 

more on the foreground region. Then, a novel channel attention module is proposed to adaptively 

recalibrate channel-wise feature responses and highlight the most relevant feature channels. Also, 

we propose a scale attention module implicitly emphasizing the most salient feature maps among 

multiple scales so that the CNN is adaptive to the size of an object. Extensive experiments on skin 

lesion segmentation from ISIC 2018 and multi-class segmentation of fetal MRI found that our 

proposed CA-Net significantly improved the average segmentation Dice score from 87.77% to 

92.08% for skin lesion, 84.79% to 87.08% for the placenta and 93.20% to 95.88% for the fetal 

brain respectively compared with U-Net. It reduced the model size to around 15 times smaller with 

close or even better accuracy compared with state-of-the-art DeepLabv3+. In addition, it has a 

much higher explainability than existing networks by visualizing the attention weight maps. Our 

code is available at https://github.com/HiLab-git/CA-Net.

Index Terms

Attention; convolutional neural network; medical image segmentation; explainability

I Introduction

AUTOMATIC medical image segmentation is important for facilitating quantitative 

pathology assessment, treatment planning and monitoring disease progression [1]. However, 

this is a challenging task due to several reasons. First, medical images can be acquired with a 

wide range of protocols and usually have low contrast and inhomogeneous appearances, 

leading to over-segmentation and undersegmentation [2]. Second, some structures have large 

variation of scales and shapes such as skin lesion in dermoscopic images [3], making it hard 

to construct a prior shape model. In addition, some structures may have large variation of 

position and orientation in a large image context, such as the placenta and fetal brain in 

Magnetic Resonance Imaging (MRI) [2], [4], [5]. To achieve good segmentation 

performance, it is highly desirable for automatic segmentation methods to be aware of the 

scale and position of the target.

With the development of deep Convolutional Neural Networks (CNNs), state-of-the-art 

performance has been achieved for many segmentation tasks [1]. Compared with traditional 

methods, CNNs have a higher representation ability and can learn the most useful features 

automatically from a large dataset. However, most existing CNNs are faced with the 

following problems: Firstly, by design of the convolutional layer, they use shared weights at 

different spatial positions, which may lead to a lack of spatial awareness and thus have 
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reduced performance when dealing with structures with flexible shapes and positions, 

especially for small targets. Secondly, they usually use a very large number of feature 

channels, while these channels may be redundant. Many networks such as the U-Net [6] use 

a concatenation of low-level and high-level features with different semantic information. 

They may have different importance for the segmentation task, and highlighting the relevant 

channels while suppressing some irrelevant channels would benefit the segmentation task 

[7]. Thirdly, CNNs usually extract multi-scale features to deal with objects at different scales 

but lack the awareness of the most suitable scale for a specific image to be segmented [8]. 

Last but not least, the decisions of most existing CNNs are hard to explain and employed in 

a black box manner due to their nested non-linear structure, which limits their application to 

clinical decisions.

To address these problems, attention mechanism is promising for improving CNNs’ 

segmentation performance as it mimics the human behavior of focusing on the most relevant 

information in the feature maps while suppressing irrelevant parts. Generally, there are 

different types of attentions that can be exploited for CNNs, such as paying attention to the 

relevant spatial regions, feature channels and scales. As an example of spatial attention, the 

Attention Gate (AG) [9] generates soft region proposals implicitly and highlights useful 

salient features for the segmentation of abdominal organs. The Squeeze and Excitation (SE) 

block [7] is one kind of channel attention and it recalibrates useful channel feature maps 

related to the target. Qin [10] used an attention to deal with multiple parallel branches with 

different receptive fields for brain tumor segmentation, and the same idea was used in 

prostate segmentation from ultrasound images [11]. However, these works have only 

demonstrated the effectiveness of using a single or two attention mechanisms for 

segmentation that may limit the performance and explainability of the network. We assume 

that taking a more comprehensive use of attentions would boost the segmentation 

performance and make it easier to understand how the network works.

For artificial intelligence systems, the explainability is highly desirable when applied to 

medical diagnosis [12]. The explainability of CNNs has a potiential for verification of the 

prediction, where the reliance of the networks on the correct features must be guaranteed 

[12]. It can also help human understand the model’s weaknesses and strengths in order to 

improve the performance and discover new knowledge distilled from a large dataset. In the 

segmentation task, explainability helps developers interpret and understand how the decision 

is obtained, and accordingly modify the network in order to gain better accuracy. Some early 

works tried to understand CNNs’ decisions by visualizing feature maps or convolution 

kernels in different layers [13]. Other methods such as Class Activation Map (CAM) [14] 

and Guided Back Propagation (GBP) [15] are mainly proposed for explaining decisions of 

CNNs in classification tasks. However, explainability of CNNs in the context of medical 

image segmentation has rarely been investigated [16], [17]. Schlemper et al. [16] proposed 

attention gate that implicitly learn to suppress irrelevant region while highlighting salient 

features. Furthermore, Roy et al. [17] introduced spatial and channel attention at the same 

time to boost meaningful features. In this work, we take advantages of spatial, channel and 

scale attentions to interpret and understand how the pixel-level predictions are obtained by 

our network. Visualizing the attention weights obtained by our network not only helps to 
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understand which image region is activated for the segmentation result, but also sheds light 

on the scale and channel that contribute most to the prediction.

To the best of our knowledge, this is the first work on using comprehensive attentions to 

improve the performance and explainability of CNNs for medical image segmentation. The 

contribution of this work is three-fold. First, we propose a novel Comprehensive Attention-

based Network (i.e., CA-Net) in order to make a complete use of attentions to spatial 

positions, channels and scales. Second, to implement each of these attentions, we propose 

novel building blocks including a dual-pathway multi-scale spatial attention module, a novel 

residual channel attention module and a scale attention module that adaptively selects 

features from the most suitable scales. Thirdly, we use the comprehensive attention to obtain 

good explainability of our network where the segmentation result can be attributed to the 

relevant spatial areas, feature channels and scales. Our proposed CA-Net was validated on 

two segmentation tasks: binary skin lesion segmentation from dermoscipic images and 

multi-class segmentation of fetal MRI (including the fetal brain and the placenta), where the 

objects vary largely in position, scale and shape. Extensive experiments show that CA-Net 

outperforms its counterparts that use no or only partial attentions. In addition, by visualizing 

the attention weight maps, we achieved a good explainability of how CA-Net works for the 

segmentation tasks.

II Related Works

A CNNs for Image Segmentation

Fully Convolutional Network (FCN) [18] frameworks such as DeepLab [8] are successful 

methods for natural semantic image segmentation. Subsequently, an encoder-decoder 

network SegNet [19] was proposed to produce dense feature maps. DeepLabv3+ [20] 

extended DeepLab by adding a decoder module and using depth-wise separable convolution 

for better performance and efficiency.

In medical image segmentation, FCNs also have been extensively exploited in a wide range 

of tasks. U-Net [6] is a widely used CNN for 2D biomedical image segmentation. The 3D 

U-Net [21] and V-Net [22] with similar structures were proposed for 3D medical image 

segmentation. In [23], a dilated residual and pyramid pooling network was proposed for 

automated segmentation of melanoma. Some other CNNs with good performance for 

medical image segmentation include High-Res3DNet [24], DeepMedic [25], and H-

DenseUNet [26], etc. However, these methods only use position-invariant kernels for 

learning, without focusing on the features and positions that are more relevant to the 

segmentation object. Meanwhile, they have a poor explainability as they provide little 

mechanism for interpreting the decision-making process.

B Attention Mechanism

In computer vision, there are attention mechanisms applied in different task scenarios [27]–

[29]. Spatial attention has been used for image classification [27] and image caption [29], 

etc. The learned attention vector highlights the salient spatial areas of the sequence 

conditioned on the current feature while suppressing the irrelevant counter-parts, making the 
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prediction more contextualized. The SE block using a channel-wise attention was originally 

proposed for image classification and has recently been used for semantic segmentation 

[26], [28]. These ideas of attention mechanisms work by generating a context vector which 

assigns weights on the input sequence. In [30], an attention mechanism is proposed to lean 

to softly weight feature maps at multiple scales. However, this method feeds multiple resized 

input images to a shared deep network, which requires human expertise to choose the proper 

sizes and is not self-adaptive to the target scale.

Recently, to leverage attention mechanism for medical image segmentation, Oktay et al. [9] 

combined spatial attention with U-Net for abdominal pancreas segmentation from CT 

images. Roy et al. [17] proposed concurrent spatial and channel wise ‘Squeeze and 

Excitation’ (scSE) frameworks for whole brain and abdominal multiple organs 

segmentation. Qin et al. [10] and Wang et al. [11] got feature maps of different sizes from 

middle layers and recalibrate these feature maps by assigning an attention weight. Despite 

the increasing number of works leveraging attention mechanisms for medical image 

segmentation, they seldom pay attention to feature maps at different scales. What’s more, 

most of them focus on only one or two attention mechanisms, and to the best of our 

knowledge, the attention mechanisms have not been comprehensively incorporated to 

increase the accuracy and explainability of segmentation tasks.

III Methods

A Comprehensive-Attention CNN

The proposed CA-Net making use of comprehensive attentions is shown in Fig. 1, where we 

add specialized convolutional blocks to achieve comprehensive attention guidance with 

respect to the space, channel and scale of the feature maps simultaneously. Without loss of 

generality, we choose the powerful structure of the U-Net [6] as the backbone. The U-Net 

backbone is an end-to-end-trainable network consisting of an encoder and a decoder with 

shortcut connection at each resolution level. The encoder is regarded as a feature extractor 

that obtains high-dimensional features across multiple scales sequentially, and the decoder 

utilizes these encoded features to recover the segmentation target.

Our CA-Net has four spatial attention modules (SA 1–4), four channel attention modules 

(CA 1–4) and one scale attention module (LA), as shown in Fig. 1. The spatial attention is 

utilized to strengthen the region of interest on the feature maps while suppressing the 

potential background or irrelevant parts. Hence, we propose a novel multi-scale spatial 

attention module that is a combination of non-local block [31] at the lowest resolution level 

(SA 1) and dual-pathway AG [9] at the other resolution levels (SA 2–4). We call it as the joint 

spatial attention (J s – A) that enhances inter-pixel relationship to make the network better 

focus on the segmentation target. Channel attention (C A 1–4) is used to calibrate the 

concatenation of low-level and high-level features in the network so that the more relevant 

channels are weighted by higher coefficients. Unlike the SE block that only uses average-

pooling to gain channel attention weight, we additionally introduce max-pooled features to 

exploit more salient information for channel attention [32]. Finally, we concatenate feature 

maps at multiple scales in the decoder and propose a scale attention module (LA) to 
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highlight features at the most relevant scales for the segmentation target. These different 

attention modules are detailed in the following.

1) Joint Spatial Attention Modulθ¦: The joint spatial attention is inspired by the non-

local network [31] and AG [9]. We use four attention blocks (SA 1–4) in the network to learn 

attention maps at four different resolution levels, as shown in Fig. 1. First, for the spatial 

attention at the lowest resolution level (S A1), we use a non-local block that captures 

interactions between all pixels with a better awareness of the entire context. The detail of 

(SA 1) is shown in Fig. 2(a). Let x represent the input feature map with a shape of 256 × H × 

W, where 256 is the input channel number, and H, W represent the height and width, 

respectively. We first use three parallel 1 × 1 convolutional layers with an output channel 

number of 64 to reduce the dimension of x, obtaining three compressed feature maps x’, x” 

and x’”, respectively, and they have the same shape of 64 × H × W. The three feature maps 

can then be reshaped into 2D matrices with shape of 64 × H W. A spatial attention 

coefficient map is obtained as:

α1 = σ x′T ⋅ x″ (1)

where T means matrix transpose operation.α1 ∈ (0,1)HW×HW is a square matrix, and σ is a 

row-wise Softmax function so that the sum of each row equals to 1.0. α1 is used to represent 

the feature of each pixel as a weighted sum of features of all the pixels, to ensure the 

interaction among all the pixels. The calibrated feature map in the reduced dimension is:

x = α1 ⋅ x′′′T (2)

x is then reshaped to 64 × H × W, and we use Φ256 that is a 1 × 1 convolution with batch 

normalization and output channel number of 256 to expand x to match the channel number 

of x. A residual connection is finally used to facilitate the information propagation during 

training, and the output of SA 1 is obtained as:

ySA1 = Φ256 (x) + x (3)

Second, as the increased memory consumption limits applying the non-local block to feature 

maps with higher resolution, we extend AG to learn attention coefficients in SA 2–4. As a 

single AG may lead to a noisy spatial attention map, we propose a dual-pathway spatial 

attention that exploits two AGs in parallel to strengthen the attention to the region of interest 

as well as reducing noise in the attention map. Similarly to model ensemble, combining two 

AGs in parallel has a potential to improve the robustness of the segmentation. The details 

about a single pathway AG are shown in Fig. 2(b). Let xl represent the low-level feature map 

at the scale s in the encoder, and xh represent a high-level feature map up-sampled from the 

end of the decoder at scale s + 1 with a lower spatial resolution, so that xh and xl have the 

same shape. In a single-pathway AG, the query feature xh is used to calibrate the low-level 

key feature xl. As shown in Fig. 2(b), xh and xl are compressed by a 1 × 1 convolution with 

an output channel number C (e.g., 64) respectively, and the results are summed and followed 
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by a ReLU activation function. Feature map obtained by the ReLU is then fed into another 1 

× 1 convlution with one output channel followed by a Sigmoid function to obtain a pixel-

wise attention coefficient α ∈ [0, 1]H×W. xl is then multiplied with α to be calibrated. In our 

dual-pathway AG, the spatial attention maps in the two pathways are denoted as α and α
respectively. As shown in Fig. 2(c), the output of our dual-pathway AG for SAs (s = 2, 3,4) 

is obtained as:

ySAs = ReLU ΦC xl ⋅ α ⊙ xl ⋅ α (4)

where © means channel concatenation. ΦC denotes 1 × 1 convolution with C output 

channels followed by batch normalization. Here C is 64, 32 and 16 for SA 2, SA 3 and SA 4, 

respectively.

2) Channel Attention Modules—In our network, channel concatenation is used to 

combine the spatial attention-calibrated low-level features from the encoder and higher-level 

features from the decoder as shown in Fig. 1. Feature channels from the encoder contain 

mostly low-level information, and their counterparts from the decoder contain more 

semantic information. Therefore, they may have different importance for the segmentation 

task. To better exploit the most useful feature channels, we introduce channel attention to 

automatically highlight the relevant feature channels while suppressing irrelevant channels. 

The details of proposed channel attention module (CA 1–4) is shown in Fig. 3.

Unlike previous SE block that only utilized average-pooled information to excite feature 

channels [7], we use max-pooled features additionally to keep more information [32]. 

Similarly, let x represent the concatenated input feature map with C channels, a global 

average pooling Pavg and a global maximal pooling Pmax are first used to obtain the global 

information of each channel, and the outputs are represented as Pavg (x) ∈ R C×1×1 and 

Pmax(x) ∈ RC×1×1, respectively. A multiple layer perception (MLP) Mr is used to obtain the 

channel attention coefficient β ∈ [0, 1]C×1×1, and Mr is implemented by two fully connected 

layers, where the first one has an output channel number of C/r followed by ReLU and the 

second one has an output channel number of C. We set r = 2 counting the trade-off of 

performance and computational cost [7]. Note that a shared Mr is used for Pavg(x) and Pmax 

(x), and their results are summed and fed into a Sigmoid to obtain β. The output of our 

channel attention module is obtained as:

yCA = x ⋅ β + x (5)

where we use a residual connection to benefit the training. In our network, four channel 

attention modules (CA 1–4) are used (one for each concatenated feature), as shown in Fig. 1.

3) Scale Attention Modulue—The U-Net backbone obtains feature maps in different 

scales. To better deal with objects in different scales, it is reasonable to combine these 

features for the final prediction. However, for a given object, these feature maps at different 

scales may have different relevance to the object. It is desirable to automatically determine 

the scale-wise weight for each pixel, so that the network can be adaptive to corresponding 
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scales of a given input. Therefore, we propose a scale attention module to learn image-

specific weight for each scale automatically to calibrate the features at different scales, 

which is used at the end of the network, as shown in Fig. 1.

Our proposed LA block is illustrated in Fig. 4. We first use bilinear interpolation to resample 

the feature maps Fs at different scales (s = 1, 2, 3, 4) obtained by the decoder to the original 

image size. To reduce the computational cost, these feature map are compressed into four 

channels using 1 × 1 convolutions, and the compressed results from different scales are 

concatenated into a hybrid feature map F . Similarly to our CA, we combine Pavg Pmax with 

MLP to obtain a coeffcieint for each channel (i.e., scale here), as shown in Fig. 4. The scale 

coefficient attention vector is denoted as γ ∈ [0,1]4×1×1. To distribute multi-scale soft 

attention weight on each pixel, we additionally use a spatial attention block LA* taking F  · 

γ as input to generate spatial-wise attention coefficient γ * ∈ [0, 1]1×H×W, so that γ · γ * 

represents a pixel-wise scale attention. LA* consists of one 3 × 3 and one 1 × 1 

convolutional layers, where the first one has 4 output channels followed by ReLU, and the 

second one has 4 output channels followed by Sigmoid. The final output of our LA module 

is:

yLA = F ⋅ γ ⋅ γ∗ + F ⋅ γ + F (6)

where the residual connections are again used to facilitate the training, as shown in Fig. 4. 

Using scale attention module enables the CNN to be aware of the most suitable scale (how 

big the object is).

IV Experimental Results

We validated our proposed framework with two applications: (i) Binary skin lesion 

segmentation from dermoscopic images. (ii) Multi-class segmentation of fetal MRI, 

including the fetal brain and the placenta. For both applications, we implemented ablation 

studies to validate the effectiveness of our proposed CA-Net and compared it with state-of-

the-art networks. Experimental results of these two tasks will be detailed in Section IV-B 

and Section IV-C, respectively.

A Implementation and Evaluation Methods

All methods were implemented in Pytorch framework.1,2 We used Adaptive Moment 

Estimation (Adam) for training with initial learning rate 10−4, weight decay 10−8, batch size 

16, and iteration 300 epochs. The learning rate is decayed by 0.5 every 256 epochs. The 

feature channel number in the first block of our CA-Net was set to 16 and doubled after each 

down-sampling. In MLPs of our CA and LA modules, the channel compression factor r was 

2 according to [7]. Training was implemented on one NVIDIA Geforce GTX 1080 Ti GPU. 

We used Soft Dice loss function for the training of each network and used the best 

performing model on the validation set among all the epochs for testing. We used 5-fold 

1 https://pytorch.org/ 
2 https://github.com/HiLab-git/CA-Net 
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cross-validation for final evaluation. After training, the model was deployed at SenseCare 

platform to support clinic research [33].

Quantitative evaluation of segmentation accuracy was based on: (i) The Dice score between 

a segmentation and the ground truth, which is defined as:

Dice = 2 Ra ∩ Rb
Ra + Rb

(7)

where Ra and Rb denote the region segmented by algorithm and the ground truth, 

respectively. (ii) Average symmetric surface distance (ASSD). Supposing Sa and Sb 

represent the set of boundary points of the automatic segmentation and the ground truth 

respectively, the ASSD is defined as:

ASSD = 1
Sa + Sb

× ∑
a ∈ Sa

d a, Sb + ∑
b ∈ Sb

d b, Sa (8)

where d v, Sa = min
w ∈ Sa

( ∥ v − w ∥ ) denotes the minimum Euclidean distance from point v to 

all the points of Sa.

B Lesion Segmentation From Dermoscopic Images

With the emergence of automatic analysis algorithms, it becomes possible that accurate 

automatic skin lesion boundary segmentation helps dermatologists for early diagnosis and 

screening of skin diseases quickly. The main challenge for this task is that the skin lesion 

areas have various scales, shapes and colors, which requires automatic segmentation 

methods to be robust against shape and scale variations of the lesion [34].

1) Dataset—For skin lesion segmentation, we used the public available training set of 

ISIC 20183 with 2594 images and their ground truth. We randomly split the dataset into 

1816, 260 and 518 for training, validation and testing respectively. The original size of the 

skin lesion segmentation dataset ranged from 720 × 540 to 6708 × 4439, and we resized 

each image to 256 × 342 and normalized it by the mean value and standard deviation. 

During training, random cropping with a size of 224 × 300, horizontal and vertical flipping, 

and random rotation with a angle in (−π/6,π/6) were used for data augmentation.

2) Comparison ofSpatialAttention Methods—We first investigated the effectiveness 

of our spatial attention modules without using the channel attention and scale attention 

modules. We compared different variants of our proposed multi-level spatial attention: 1) 

Using standard single-pathway AG [9] at the position of SA 1–4, which is refereed to as s-

AG; 2) Using the dual-pathway AG at the position of SA 1–4, which is refereed to as t-AG; 

3) Using the non-local block of SA 1 only, which is refereed to as n-Local [31]. Our 

proposed joint attention method using non-local block in SA 1 and dual-pathway AG in SA 

3 https://challenge2018.isic-archive.com/ 
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2–4 is denoted as Js-A. For the baseline U-Net, the skip connection was implemented by a 

simple concatenation of the corresponding features in the encoder and the decoder [6]. For 

other compared variants that do not use SA 2–4, their skip connections were implemented as 

the same as that of U-Net. Table I shows a quantitative comparison between these methods. 

It can be observed that all the variants using spatial attention lead to higher segmentation 

accuracy than the baseline. Also, we observe that dual-pathway spatial AG is more effective 

than single-pathway AG, and our joint spatial attention block outperforms the others. 

Compared with the standard AG [9], our proposed spatial attention improved the average 

Dice from 88.46% to 90.83%.

Fig. 5(a) visualizes the spatial attention weight maps obtained by s-AG, t-AG and our Js-A. 

It can be observed that single-pathway AG pays attention to almost every pixel, which 

means it is dispersive. The dual-pathway AG is better than than the single-pathway AG but 

still not self-adaptive enough. In comparison, our proposed Js-A pays a more close attention 

to the target than the above methods.

Fig. 5(b) presents some examples of qualitative segmentation results obtained by the 

compared methods. It can be seen that introducing spatial attention block in neural network 

largely improves the segmentation accuracy. Furthermore, the proposed Js-A gets better 

result than the other spatial attention methods in both cases. In the second case where the 

lesion has a complex shape and blurry boundary, our proposed Js-A keeps a better result.

We observed that there may exist skew between original annotation and our cognition in 

ISIC 2018, as shown in Fig. 5. This is mainly because that the image contrast is often low 

along the true boundary, and the exact lesion boundary requires some expertise to delineate. 

The ISIC 2018 dataset was annotated by experienced dermatologists, and some annotations 

may be different from what a non-expert thinks.

3) Comparison of Channel Attention Methods—In this comparison, we only 

introduced channel attention modules to verify the effectiveness of our proposed method. We 

first investigate the effect of position in the network the channel attention module plugged 

in: 1) the encoder, 2) the decoder, 3) both the encoder and decoder. These three variants are 

referred to as C-A (Enc), C-A (Dec) and C-A (Enc&Dec) respectively. We also compared 

the impact of using and not using max pooling for the channel attention module.

Table II shows the quantitative comparison of these variants, which demonstrates that 

channel attention blocks indeed improve the segmentation performance. Moreover, channel 

attention block with additional max-pooled information generally performs better than those 

using average pooling only. Additionally, we find that channel attention block plugged in the 

decoder performs better than plugged into the encoder or both the encoder and decoder. The 

C-A (Dec) achieved an average Dice score of 91.68%, which outperforms the others.

Fig. 6 shows the visual comparison of our proposed channel attention and its variants. The 

baseline U-Net has a poor performance when the background has a complex texture, and the 

channel attention methods improve the accuracy for these cases. Clearly, our proposed 

channel attention module C-A (Dec) obtains higher accuracy than the others.
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4) Comparison of Scale Attention Methods—In this comparison, we only 

introduced scale attention methods to verify the effectiveness of our proposed scale 

attention. Let L-A (1-K) denote the scale attention applied to the concatenation of feature 

maps from scale 1 to K as shown in Fig. 1. To investigate the effect of number of feature 

map scales on the segmentation, we compared our proposed method with K = 2, 3, 4 and 5 

respectively.

Table III shows the quantitative comparison results. We find that combining features for 

multiple scales outperforms the baseline. When we concatenated features from scale 1 to 4, 

the Dice score and ASSD can get the best values of 91.58% and 0.66 pixels respectively. 

However, when we combined features from all the 5 scales, the segmentation accuracy is 

decreased. This suggests that the feature maps at the lowest resolution level is not suitable 

for predicting pixel-wise label in details. As a result, we only fused the features from scale 1 

to 4, as shown in Fig. 1 in the following experiments. Fig. 7 shows a visualization of skin 

lesion segmentation based on different scale attention variants.

Fig. 8 presents the visualization of pixel-wise scale attention coefficient γ · γ * at different 

scales, where the number under each picture denotes the scale-wise attention coefficient γ. 

This helps to better understand the importance of feature at different scales. The two cases 

show a large and a small lesion respectively. It can be observed that the large lesion has 

higher global attention coefficients γ in scale 2 and 3 than the small lesion, and γ in scale 1 

has a higher value in the small lesion than the large lesion. The pixel-wise scale attention 

maps also show that the strongest attention is paid to scale 2 in the first row, and scale 1 in 

the second row. This demonstrates that the network automatically leans to focus on the 

corresponding scales for segmentation of lesions at different sizes.

5) Comparison of Partial and Comprehensive Attention—To investigate the 

effect of combining different attention mechanisms, we compared CA-Net with six variants 

of different combinations of the three basic spatial, channel and scale attentions. Here, SA 

means our proposed multi-scale joint spatial attention and CA represents our channel 

attention used only in the decoder of the backbone.

Table IV presents the quantitative comparison of our CA-Net and partial attention methods 

for skin lesion segmentation. From Table IV, we find that each of SA, CA and LA obtaines 

performance improvement compared with the baseline U-Net. Combining two of these 

attention methods outperforms the methods using a single attention. Furthermore, our 

proposed CA-Net outperforms all other variants both in Dice score and ASSD, and the 

corresponding values are 92.08% and 0.58 pixels, respectively.

6) Comparison With the State-of-the-art Frameworks—We compared our CA-Net 

with three state-of-the-art methods: 1) DenseASPP [35] that uses DenseNet-121 [36] as the 

backbone; 2) RefineNet [37] that uses Resnet101 [38] as the backbone; 3) Two variants of 

DeepLabv3+ [20] that use Xception [39] and Dilated Residual Network (DRN) [40] as 

feature extractor, respectively. We retrained all these networks on ISIC 2018 and did not use 

their pre-trained models.
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Quantitative comparison results of these methods are presented in Table V. It shows that all 

state-of-the-art methods have good performance in terms of Dice score and ASSD. Our CA-

Net obtained a Dice score of 92.08%, which is a considerable improvement compared with 

the U-Net whose Dice is 87.77%. Though our CA-Net has a slightly lower performance than 

DeepLabv3+, the difference is not significant (p-value=0.46 > 0.05), and our CA-Net has a 

model size that is 15 times smaller with better explainability. For skin lesion segmentation, 

the average inference time per image for our CA-Net was 2.1ms, compared with 4.0ms and 

3.4ms by DeepLabv3+ [20] and RefineNet [37], respectively. Fig. 9 shows the visual 

comparison of different CNNs dealing with skin lesion segmentation task.

C Segmentation of Multiple Organs From Fetal MRI

In this experiment, we demonstrate the effectiveness of our CA-Net in multi-organ 

segmentation, where we aim to jointly segment the placenta and the fetal brain from fetal 

MRI slices. Fetal MRI has been increasingly used to study fetal development and pathology, 

as it provides a better soft tissue contrast than more widely used prenatal sonography [4]. 

Segmentation of some important organs such as the fetal brain and the placenta is important 

for fetal growth assessment and motion correction [41]. Clinical fetal MRI data are often 

acquired with a large slice thickness for good contrast-to-noise ratio. Moreover, movement 

of the fetus can lead to inhomogeneous appearances between slices. Hence, 2D segmentation 

is considered more suitable than direct 3D segmentation from motion-corrupted MRI slices 

[2].

1) Dataset—The dataset consists of 150 stacks with three views (axial, coronal, and 

sagittal) of T2-weighted fetal MRI scans of 36 pregnant women in the second trimester with 

Single-shot Fast-Spin echo (SSFSE) with pixel size 0.74 to 1.58 mm and inter-slice spacing 

3 to 4 mm. The gestational age ranged from 22 to 29 weeks. 8 of the fetuses were diagnosed 

with spinal bifida and the others had no fetal pathologies. All the pregnant women were 

above 18 years old, and the use of data was approved by the Research Ethics Committee of 

the hospital.

As the stacks contained an imbalanced number of slices covering the objects, we randomly 

selected 10 of these slices from each stack for the experiments. Then, we randomly split the 

slices at patient level and assigned 1050 for training, 150 for validation, and 300 for testing. 

The test set contains 110 axial slices, 80 coronal slices, and 110 sagittal slices. Manual 

annotations of the fetal brain and placenta by an experienced radiologist were used as the 

ground truth. We trained a multi-class segmentation network for simultaneous segmentation 

of these two organs. Each slice was resized to 256 × 256. We randomly flipped in x and y 

axis and rotated with an angle in (−π/6,π/6) for data augmentation. All the images were 

normalized by the mean value and standard deviation.

2) Comparison of Spatial Attention Methods—In parallel to section IV-B.2, we 

compared our proposed Js-A with: (1) the single-pathway AG (s-AG) only, (2) the dual-

pathway AG (t-AG) only, (3) the non-local block (n-local) only.

Table VI presents quantitative comparison results between these methods. From Table VI, 

we observe that all the variants of spatial attention modules led to better Dice and ASSD 
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scores. It can be observed that dual-pathway AG performs more robustly than the single-

pathway AG, and Js-A module can get the highest scores, with Dice of 95.47% and ASSD of 

0.30 pixels, respectively. Furthermore, in placenta segmentation which has fuzzy tissue 

boundary, our model still maintains encouraging segmentation performance, with Dice score 

of 85.65%, ASSD of 0.58 pixels, respectively.

Fig. 10 presents a visual comparison of segmentation results obtained by these methods as 

well as their attention weight maps. From Fig. 10(b), we find that spatial attention has 

reliable performance when dealing with complex object shapes, as highlighted by red 

arrows. Meanwhile, with visualizing their spatial attention weight maps as shown in Fig. 

10(a), our proposed Js-A has a greater ability to focus on the target areas compared with the 

other methods as it distributes a higher and closer weight on the target of our interest.

3) Comparison ofChannelAttention Methods—We compared the proposed channel 

attention method with the same variants as listed in section IV-B.3 for fetal MRI 

segmentation. The comparison results are presented in Table VII. It shows that channel 

attention plugged in decoder brings noticeably fewer parameters and still maintains similar 

or higher accuracy than the other variants. We also compared using and not using max-

pooling in the channel attention block. From Table VII, we can find that adding extra max-

pooled information indeed increases performance in terms of Dice and ASSD, which proves 

the effectiveness of our proposed method.

4) Comparison of Scale Attention Methods—In this comparison, we investigate the 

effect of concatenating different number of feature maps from scale 1 to K as described in 

section IV-B.4, and Table VIII presents the quantitative results. Analogously, we observe 

that combining features from multiple scales outperforms the baseline. When we 

concatenate features from scale 1 to 4, we get the best results, and the corresponding Dice 

values for the placenta and the fetal brain are 86.21% and 95.18%, respectively. When the 

feature maps at the lowest resolution is additional used, i.e., L-A (1-5), the Dice scores are 

slightly reduced.

Fig. 11 shows the visual comparison of our proposed scale attention and its variants. In the 

second row, the placenta has a complex shape with a long tail, and combining features from 

scale 1 to 4 obtained the best performance. Fig. 12 shows the visual comparison of scale 

attention weight maps on fetal MRI. From the visualized pixel-wise scale attention maps, we 

observed that the network pays much attention to scale 1 in the first row where the fetal 

brain is small, and to scale 2 in the second row where the fetal brain is larger.

5) Comparison ofPartialand Comprehensive Attention—Similar to Section IV-

B.5, we compared comprehensive attentions with partial attentions in the task of segmenting 

fetal brain and placenta from fetal MRI. From Table IX, we find that models combining two 

of the three attention mechanism basically outperform variants that using a single attention 

mechanism. SA + CA gets the highest scores among three binary-attention methods, which 

can achieve Dice scores of 86.68% for the placenta and 95.42% for the fetal brain. 

Furthermore, our proposed CA-Net outperforms all these binary-attention methods, 
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achieving Dice scores of 87.08% for the placenta and 95.88% for the fetal brain, 

respectively. The ASSD value of CA-Net is lower than those of other methods.

6) Comparison of State-of-the-art Frameworks—We also compared our CA-Net 

with the state-of-the-art methods and their variants as implemented in section IV-B.5. The 

segmentation performance on images in axial, sagittal and coronal views was measured 

respectively. A quantitative evaluation of these methods for fetal MRI segmentation is listed 

in Table X. We observe that our proposed CA-Net obtained better Dice scores than the 

others in all the three views. Our CA-Net can improve the Dice scores by 2.35%, 1.78%, and 

2.60% for placenta segmentation and 3.75%, 0.85%, and 2.84% for fetal brain segmentation 

in three views compared with U-Net, respectively, surpassing the existing attention method 

and the state-of-the-art segmentation methods. In addition, for the average Dice and ASSD 

values across the three views, CA-Net outperformed the others. Meanwhile, CA-Net has a 

much smaller model size compared with RefineNet [37] and Deeplabv3+ [20], which leads 

to lower computational cost for training and inference. For fetal MRI segmentation, the 

average inference time per image for our CA-Net was 1.5ms, compared with 3.4ms and 

2.2ms by DeepLabv3+ and RefineNet, respectively. Qualitative results in Fig. 13 also show 

that CA-Net performs noticeably better than the baseline and the other methods for fetal 

MRI segmentation. In dealing with the complex shapes as shown in the first and fifth rows 

of Fig. 13, as well as the blurry boundary in the second row, CA-Net performs more closely 

to the authentic boundary than the other methods. Note that visualization of the spatial and 

scale attentions as show in Fig. 10 and Fig. 12 helps to interpret the decision of our CA-Net, 

but such explainability is not provided by DeepLabv3+, RefineNet and DenseASPP.

V Discussion and Conclusion

For a medical image segmentation task, some targets such as lesions may have a large 

variation of position, shape and scale, enabling the networks to be aware of the object’s 

spatial position and size is important for accurate segmentation. In addition, convolution 

neural networks generate feature maps with a large number of channels, and concatenation 

of feature maps with different semantic information or from different scales are often used. 

Paying an attention to the most relevant channels and scales is an effective way to improve 

the segmentation performance. Using scale attention to adaptively make use of the features 

in different scales would have advantages in dealing with objects with a variation of scales. 

To take these advantages simultaneously, we take a comprehensive use of these 

complementary attention mechanisms, and our results show that CA-Net helps to obtain 

more accurate segmentation with only few parameters.

For explainable CNN, previous works like CAM [14] and GBP [15] mainly focused on 

image classification tasks and they only consider the spatial information for explaining the 

CNN’s prediction. In addition, they are post-hoc methods that require additional 

computations after a forward pass prediction to interpret the prediction results. Differently 

from these methods, CA-Net gives a comprehensive interpretation of how each spatial 

position, feature map channel and scale is used for the prediction in segmentation tasks. 

What’s more, we obtain these attention coefficients in a single forward pass and require no 

additional computations. By visualizing the attention maps in different aspects as show in 
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Fig. 5 and Fig. 8, we can better understand how the network works, which has a potential to 

helps us improve the design of CNNs.

We have done experiments on two different image domains, i.e., RGB image and fetal MRI. 

These two are representative image domains, and in both cases our CA-Net has a 

considerable segmentation improvement compared with U-Net, which shows that the CA-

Net has competing performance for different segmentation tasks in different modalities. It is 

of interest to apply our CA-Net to other image modalities such as the Ultrasound and other 

anatomies in the future.

In this work, we have investigated three main types of attentions associated with 

segmentation targets in various positions and scales. Recently, some other types of attentions 

have also been proposed in the literature, such as attention to parallel convolution kernels 

[42]. However, using multiple parallel convolution kernels will increase the model 

complexity.

Most of the attention blocks in our CA-Net are in the decoder. This is mainly because that 

the encoder acts as a feature extractor that is exploited to obtain enough candidate features. 

Applying attention at the encoder may lead some potentially useful features to be suppressed 

at an early stage. Therefore, we use the attention blocks in the decoder to highlight relevant 

features from all the candidate features. Specifically, following [9], the spatial attention is 

designed to use high-level semantic features in the decoder to calibrate low-level features in 

the encoder, so they are used at the skip connections after the encoder. The scale attention is 

designed to better fuse the raw semantic predictions that are obtained in the decoder, which 

should naturally be placed at the end of the network. For channel attentions, we tried to 

place them at different positions of the network, and found that placing them in the decoder 

is better than in the encoder. As shown in Table II, all the channel attention variants 

outperformed the baseline U-Net. However, using channel attention only in the decoder 

outperformed the variants with channel attention in the encoder. The reason may be that the 

encoding phase needs to maintain enough feature information, which confirms our 

assumption that suppressing some features at an early stage will limit the model’s 

performance. However, some other attentions [42] might be useful in the encoder, which will 

be investigated in the future.

Differently from previous works that mainly focus on improving the segmentation accuracy 

while hard to explain, we aim to design a network with good comprehensive property, 

including high segmentation accuracy, efficiency and explainability at the same time. 

Indeed, the segmentation accuracy of our CA-Net is competing: It leads to a significant 

improvement of Dice compared with the U-Net (92.08% VS 87.77%) for skin lesion. 

Compared with state-of-the-art DeepLabv3+ and RefineNet, our CA-Net achieved very 

close segmentation accuracy with around 15 times fewer parameters. What’s more, CA-Net 

is easy to explain as shown in Fig. 5, 8, 10, and 12, but DeepLabv3+ and RefineNet have 

poor explainability on how they localize the target region, recognize the scale and determine 

the useful features. Meanwhile, in fetal MRI segmentation, experimental results from Table 

X shows that our CA-Net has a considerable improvement compared with U-Net (Dice was 

87.08% VS 84.79%), and it outperforms the state-of-the-art methods in all the three views. 
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Therefore, the superiority of our CA-Net is that it could achieve high explainability and 

efficiency than state-of-the-art methods while maintaining comparable or even better 

accuracy.

In the skin lesion segmentation task, we observe that our CA-Net leads to slightly inferior 

performance than Deeplabv3+, which is however without significant difference. We believe 

the reason is that Deeplabv3+ is mainly designed for natural image segmentation task, and 

the dermoscopic skin images are color images, which has a similar distribution of intensity 

to natural images. However, compared to Deeplabv3+, our CA-Net can achieve comparable 

performance, and it has higher explainability and 15 times fewer parameters, leading to 

higher computational efficiency. In the fetal MRI segmentation task, our CA-Net has 

distinctly higher accuracy than those state-of-the-art methods, which shows the effectiveness 

and good explainability of our method.

In conclusion, we propose a comprehensive attention-based convolutional neural network 

(CA-Net) that learns to make a comprehensive use of multiple attentions for better 

performance and explainability of medical image segmentation. We enable the network to 

adaptively pay attention to spatial positions, feature channels and object scales at the same 

time. Motivated by existing spatial and channel attention methods, we make further 

improvements to enhance the network’s ability to focus on areas of interest. We propose a 

novel scale attention module implicitly emphasizing the most salient scales to obtain 

multiple-scale features. Experimental results show that compared with the state-of-the-art 

semantic segmentation models like Deeplabv3+, our CA-Net obtains comparable and even 

higher accuracy for medical image segmentation with a much smaller model size. Most 

importantly, CA-Net gains a good model explainability which is important for understanding 

how the network works, and has a potential to improve clinicians’ acceptance and trust on 

predictions given by an artificial intelligence algorithm. Our proposed multiple attention 

modules can be easily plugged into most semantic segmentation networks. In the future, the 

method can be easily extended to segment 3D images.
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Fig. 1. 
Our proposed comprehensive attention CNN (CA-Net). Blue rectangles with 3 × 3 or 1 × 1 

and numbers (16, 32, 64, 128, and 256, or class) correspond to the convolution kernel size 

and the output channels. We use four spatial attentions (SA 1 to SA 4), four channel 

attentions (CA 1 to CA 4) and one scale attention (LA). F 1–4 means the resampled version 

of feature maps that are concatenated as input of the scale attention module.
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Fig. 2. Details of our proposed joint spatial attention block.
(a) SA 1 is a non-local block used at the lowest resolution level. (b) single-pathway spatial 

attention block (SA). (c) SA 2–4 are the dual-pathway attention blocks used in higher 

resolution levels. The query feature xh is used to calibrate the low-level key feature xl. δ 
means the Sigmoid function.
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Fig. 3. 
Structure of our proposed channel attention module with residual connection. Additional 

global max-pooled features are used in our module. β means the channel attention 

coefficient.
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Fig. 4. 
Structure of our proposed scale attention module with residual connection. Its input is the 

concatenation of interpolated feature maps at different scales obtained in the decoder. γ 
means scale-wise attention coefficient. We additionally use a spatial attention block LA* to 

gain pixel-wise scale attention coefficient γ*.
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Fig. 5. Visual comparison between different spatial attention methods for skin lesion 
segmentation.
(a) is the visualized attention weight maps of single-pathway, dual-pathway and our 

proposed spatial attention. (b) shows segmentation results, where red arrows highlight some 

missegmentations. For better viewing of the segmentation boundary of the small target 

lesion, the first row of (b) shows the zoomed-in version of the region in the blue rectangle in 

(a).
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Fig. 6. 
Visual comparison of our proposed channel attention method with different variants. Our 

proposed attention block is CA (Dec) where the channel attention module uses an additional 

max pooling and is plugged in the decoder. The red arrows highlight some mis-

segmentations.
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Fig. 7. Visual comparison of segmentation obtained by scale attention applied to concatenation of 
features from different scales.
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Fig. 8. 
Visualization of scale attention on dermoscopic images. warmer color represents higher 

attention coefficient values. γ means the global scale-wise attention coefficient.
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Fig. 9. 
Visual comparison between CA-Net and state-of-the-art networks for skin lesion 

segmentation. Red arrows highlight some mis-segmentation. DeepLabv3+ has similar 

performance to ours, but our CA-Net has fewer parameters and better explainability.
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Fig. 10. Visual comparison between different spatial attention methods for fetal MRI 
segmentation.
(a) is the visualized attention weight maps of single-pathway, dual-pathway and proposed 

spatial attention. (b) shows segmentation results, where red arrows and circles highlight 

missegmentations.
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Fig. 11. Visual comparison of proposed scale attention method applied to concatenation of 
features form different scales.
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Fig. 12. 
Visualization of scale attention weight maps on fetal MRI. Warmer color represents higher 

attention coefficient values. γ means the global channel-wise scale attention coefficient.
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Fig. 13. 
Visual comparison of our proposed CA-Net with the state-of-the-art segmentation methods 

for fetal brain and placenta segmentation from MRI. Red arrows highlight the mis-

segmented regions.
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Table I

Quantitative Evaluation of Different Spatial Attention Methods for Skin Lesion Segmentation. (s-AG) Means 

Single-Pathway AG, (T-AG) Means Dual-Pathway AG, (n-Local) Means non-Local Networks. Js-A Is Our 

Proposed Multi-Scale Spatial Attention That Combines Non-Local Block And Dual-Pathway AG

Network Para Dice(%) ASSD(pix)

Baseline(U-Net [6]) 1.9M 87.77±3.5l l.23±1.07

S-A(s-AG) [9] 2.1M 88.46±3.37 1.18±1.24

S-A(t-AG) 2.4M 89.18±3.29 0.90±0.50

S-A(n-L0cal) 1.9M 90.l5±3.21 0.65±0.72

Proposed S-A(Js-A) 2.0M 90.83±3.31 0.81±1.06
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Table II

Quantitative Comparison of Different Channel Attention Methods for Skin Lesion Segmentation. Enc, Dec 

and Enc&Dec Means Channel Attention Blocks Are Plugged in the Encoder, the Decoderand Both Encoder 

and Decoder, Respectively

Network Pmax Para Dice(%) ASSD(pix)

Baseline - 1.9M 87.77±3.51 1.23±1.07

C-A(Enc) × 2.7M 91.06±3.17 0.73±0.56

C-A(Enc) √ 2.7M 91.36±3.09 0.74±0.55

C-A(Dec) × 2.7M 91.56±3.17 0.64±0.45

C-A(Dec) √ 2.7M 91.68±2.97 0.65±0.54

C-A(Enc&Dec) × 3.4M 90.85±3.42 0.92±1.40

C-A(Enc&Dec) √ 3.4M 91.63±3.50 0.58±0.41
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Table III

Quantitative Evaluation of Different Scale-Attention Methods for Skin Lesion Segmentation. L-A (1-K) 

Represents the Features From Scale I to K Were Concatenated for Scale Attention

Network Para Dice(%) ASSD(pix)

Baseline 1.9M 87.77±3.51 1.23±1.07

L-A(1-2) 2.0M 91.21±3.33 1.00±1.36

L-A(1-3) 2.0M 91.53±2.52 0.70±0.61

L-A(1-4) 2.0M 91.58±2,48 0.66±0.47

L-A(1-5) 2.0M 89.67±3.40 0.82±0.50
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Table IV

Comparison Between Partial and Comprehensive Attention Methods for Skin Lesion Segmentation. SA, CA 

and LA RepresentOur Proposed Spatial, Channeland Scale Attention Modules Respectively

Network Para Dice(%) ASSD(pix)

Baseline 1.9M 87.77±3.51 1.23±1.07

SA 2.0M 90.83±3.31 0.81±1.06

LA 2.0M 91.58+2.48 0.66+0.47

CA 2.7M 91.68±2.97 0.65±0.54

SA+LA 2.1M 91.62±3.13 0.70±0.48

CA+LA 2.7M 91.75±2.87 0.67±0.48

SA+CA 2.8M 91.87±3.00 0.73±0.69

CA-Net(Ours) 2.8M 92.08±2.67 0.58±0·39
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Table V

Comparison of the State-of-the-art Methods and Our Proposed CA-NET For Skin Lesion Segmentation. INF-

T Means the Inference Time for a Single Image. E-Able Means the Method Is Explainable

Network Para/Inf-T E-able Dice(%) ASSD(pix)

Baseline(U-Net [6]) 1.9M/1.7ms × 87.77±3.51 1.23±1.07

Attention U-Net [9] 2.1M/1.8ms √ 88.46±3.37 1.18±1.24

DenseASPP [35] 8.3M/4.2ms × 90.80±3.81 0.59±0.70

DeepLabv3+(DRN) 40.7M/2.2ms × 91.79±3.39 0.54±0.64

RefineNet [37] 46.3M/3.4ms × 91.55±2.11 0.64±0.77

DeepLabv3÷ [20] 54.7M/4.0ms × 92.21 ±3.38 0.48 ±0.58

CA-Net(Ours) 2.8M/2.1ms √ 92.08±2.67 0.58±0.56
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Table VI

Quantitative Evaluation of Different Spatial Attention Methods for Placenta and Fetal Brain Segmentation. s-

AG Means Single-Pathway AG, T-AG Means Dual-Pathway AG, n-Local Means non-Local Networks. Js-A Is 

Our Proposed Multi-Scale Spatial Attention That Combines Non-Local Block and Dual-Pathway AG

Network Placenta Fetal Brain

Dice(%) ASSD(pix) Dice(%) ASSD(pix)

Baseline 84.79+8.45 0.77+0.95 93.20+5.96 0.38+0.92

s-AG [9] 84.71±6.62 0.72±0.61 93.97±3.I9 0.47±0.73

t-AG 85.26±6.81 0.71±0.70 94.70±3.63 0.30+0.40

n-Local 85.43±6.80 0.66±0.55 94.57±3.48 0.37±0.53

Js-A 85.65+6.19 0.58+0.43 95.47+2.43 0.30±0.49
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Table VII

Comparison Experiment on Channel Attention-Based Networks For Fetal Mri Segmentation. ENC, DEC, 

AND Enc&Dec Means the Channel Attention Blocks Are Located in the Encoder, Decoder and Both Encoder 

and Decoder, Respectively

Network Pmax Para Placenta Fetal Brain

Dice(%) ASSD(pix) Dice(%) ASSD(pix)

Baseline - 1.9M 84.79±8.45 0.77±0.95 93.20±5.96 0.38±0.92

C-A(Enc) × 2.7M 85.42±6.46 0.51±0.32 95.42±2.24 0.36±0.24

C-A(Enc) √ 2.7M 86.12±7.00 0.50±0.44 95.60±3.30 0.31±0.36

C-A(Dec) × 2.7M 86.17±5.70 0.44±0.29 95.61±3.69 0.33±0.42

C-A(Dec) √ 2.7M 86.65±5.99 0.52±0.40 95.69±2.66 0.28±0.39

C-A(Enc&Dec) × 3.4M 85.83±7.02 0.52±0.40 95.60±2.29 0.26±0.46

C-A(Enc&Dec) √ 3.4M 86.26±6.68 0.51±0.43 94.39±4.I4 0.47±0.64
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Table VIII

Comparison Between Different Variants of Scale Attention-Based Networks. L-A (1-K) Represents the 

Features From Scale 1 To K Were Concatenated For Scale Attention

Network Placenta Fetal Brain

Dice(%) ASSD(pix) Dice(%) ASSD(pix)

Baseline 84.79±8.45 0.77±0.95 93.20±5.96 0.38±0.92

L-A(l-2) 86.17±6.02 0.59±0.41 94.19±3.29 0.27±0.36

L-A(1-3) 86.17±6.53 0.50±0.37 94.61±3.13 0.54±0.63

L-A(1-4) 86.21+5.96 0.52±0.58 95.18±3.22 0.27±0.59

L-A(1-5) 86.09±6.10 0.61±0.47 95.05±2.51 0.24±0.47
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Table IX

Quantitative Comparison of Partial and Comprehensive Attention Methods for Fetal MRI Segmentation. SA, 

CA and LA Are Our Proposed Spatial, Channel And Scale Attention Modules Respectively

Network Placenta Fetal Brain

Dice(%) ASSD(pix) Dice(%) ASSD(pix)

Baseline 84.79±8.45 0.77±0.95 93.20±5.96 0.38±0.92

SA 85.65±6.19 0.58±0.43 95.47±2.43 0.30±0.49

LA 86.21±5.96 0.52±0.58 95.18±3.22 0.27±0.59

CA 86.65±5.99 0.52±0.40 95.39±2.66 0.28±0.39

SA+LA 86.20±6.26 0.54±0.42 94.59±3.14 0.35±0.53

CA+LA 86.50±6.89 0.47±0.29 95.29±3.10 0.32±0.59

SA+CA 86.68±4.82 0.48±0.42 95.42±2.44 0.25±0.45

CA-Net(Ours) 87.08±6.07 0.52±0.39 95.88±2.07 0.16±0.26

IEEE Trans Med Imaging. Author manuscript; available in PMC 2021 August 01.



 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Gu et al. Page 41

Ta
b

le
 X

Q
ua

nt
ita

tiv
e 

E
va

lu
at

io
ns

 o
f 

th
e 

St
at

e-
of

-t
he

-a
rt

 M
et

ho
ds

 a
nd

 O
ur

 P
ro

po
se

d 
FA

-N
et

 f
or

 F
et

al
 M

R
I 

Se
gm

en
ta

tio
n 

on
 T

hr
ee

 V
ie

w
s 

(A
xi

al
, C

or
on

al
 a

nd
 

Sa
gi

tta
l)

. I
nf

-T
 M

ea
ns

 th
e 

In
fe

re
nc

e 
T

im
e 

on
 W

ho
le

 T
es

t D
at

as
et

. E
-A

bl
e 

M
ea

ns
 th

e 
M

et
ho

d 
Is

 E
xp

la
in

ab
le

N
et

w
or

k
P

ar
a/

In
f-

T
E

-a
bl

e

P
la

ce
nt

a

A
xi

al
C

or
on

al
Sa

gi
tt

al
W

ho
le

D
ic

e(
%

)
A

SS
D

(p
ix

)
D

ic
e(

%
)

A
SS

D
(p

ix
)

D
ic

e(
%

)
A

SS
D

(p
ix

)
D

ic
e(

%
)

A
SS

D
(p

ix
)

B
as

el
in

e(
U

-N
et

 [
6]

)
1.

9M
/0

.9
m

s
×

85
.3

7±
7.

12
0.

38
±

0.
18

83
.3

2±
5.

41
0.

90
±

0.
88

85
.2

8±
10

.4
8

1.
06

±
1.

33
84

.7
9±

8.
45

0.
77

±
0.

95

A
tte

nt
io

n 
U

-N
et

 [
9]

2.
1M

/1
.1

m
s

√
86

.0
0±

5.
94

0.
44

±0
.2

9
84

.5
6±

7.
47

0.
71

±
0.

45
85

.7
4±

10
.2

0
1.

00
±

1.
27

85
.5

2±
7.

89
0.

72
±

0.
83

D
en

se
A

SP
P 

[3
5]

8.
3M

/3
.1

m
s

×
84

.2
9±

5.
84

0.
67

±
0.

70
82

.1
1±

7.
28

0.
60

±
0.

21
84

.9
2±

10
.0

2
1,

06
±

1.
17

83
.9

3±
7.

84
0.

80
±

0.
84

D
ee

pL
ab

v3
+

(D
R

N
)

40
.7

M
/1

.6
m

s
×

85
.7

9±
6.

00
0.

60
±

0.
56

82
.3

4±
6.

69
0.

73
±

0.
46

85
.9

8±
7.

11
0.

90
±

0.
58

84
.9

1±
6.

59
0.

75
±

0.
54

R
ef

in
eN

et
 [

37
]

46
.3

M
/2

,2
m

s
×

86
.3

0±
5.

72
0.

55
±

0.
48

83
.2

5±
5.

55
0.

64
±

0.
40

86
.6

7±
7.

04
0.

88
±

0.
79

85
.6

0±
6.

18
0.

70
±

0.
60

D
ee

pL
ab

v3
+

 [
20

]
54

.7
M

/3
.4

m
s

×
86

.3
4±

6.
30

0.
46

±
0.

50
83

.3
8±

7.
23

0.
54

±
0.

37
86

.9
0±

7.
84

0.
58

±
0.

49
85

.7
6±

7.
17

0.
57

±
0.

45

C
A

-N
et

(O
ur

s)
2.

8M
/1

.5
m

s
√

87
.7

2±
4.

43
0.

53
±

0.
42

85
.1

0±
5.

83
0.

52
±0

.3
5

87
.8

8±
7.

67
0.

50
±0

.4
5

87
.0

8±
6.

07
0.

52
±0

39

N
et

w
or

k
P

ar
a/

In
f-

T
E

-a
bl

e

B
ra

in

A
xi

al
C

or
on

al
Sa

gi
tt

al
W

ho
le

D
ic

e(
%

)
A

SS
D

(p
ix

)
D

ic
e(

%
)

A
SS

D
(p

ix
)

D
ic

e(
%

)
A

SS
D

(p
ix

)
D

ic
e(

%
)

A
SS

D
(p

ix
)

B
as

el
in

e(
U

-N
et

 [
6]

)
1.

9M
/0

.9
m

s
×

91
.7

6±
7.

44
0.

22
±

0.
25

95
.6

7±
2.

28
0.

15
±

0.
15

92
.8

4±
6.

04
0.

71
±

1.
48

93
.2

0±
5.

96
0.

38
±

0.
92

A
tte

nt
i0

n 
U

-N
et

 [
9]

2.
1M

/1
.1

m
s

√
93

.2
7±

3.
21

0.
20

±
0.

16
94

.7
9±

5.
49

0.
57

±
1.

36
94

.8
5±

3.
73

0.
19

±
0.

21
94

.2
5±

4.
03

0.
30

±
0.

70

D
en

se
A

SP
P 

[3
5]

8.
3M

/3
.1

m
s

×
91

.0
8±

5.
52

0.
24

±
0.

21
93

.4
2±

4.
82

0.
25

±
0.

23
92

.0
2±

6.
04

0.
68

±
1.

76
92

.0
8±

5.
43

0.
41

±
1.

09

D
ee

pL
ab

v3
+

(D
R

N
)

40
.7

M
/1

.6
m

s
×

92
.6

3±
3.

00
0.

33
±

0.
42

94
.9

4±
2.

49
0.

14
±

0.
09

92
.3

6±
0.

09
0.

94
±

2.
75

93
.1

0±
5.

90
0.

51
±

1.
70

R
ef

in
eN

et
 [

37
]

46
.3

M
/2

·2
m

s
×

94
.0

4±
1.

85
0.

25
±

0.
45

91
.9

0±
11

.1
0

0.
25

±
0.

41
90

.3
6±

10
.9

1
0.

81
±

2.
09

92
.0

5±
8.

77
0.

46
±

1.
32

D
ee

pL
ab

v3
+

 [
20

]
54

.7
M

/3
.4

m
s

×
93

.7
0±

4.
17

0.
19

±0
.3

1
95

.5
0±

2.
60

0.
09

±0
.0

3
94

.9
7±

4.
27

0.
58

±
1.

24
94

.6
5±

3.
87

0.
31

±
0.

78

C
A

-N
et

(O
ur

s)
2.

8M
/1

.5
m

s
√

95
.5

1±
2.

66
0.

21
±

0.
23

96
.5

2±
1.

61
0.

09
±

0.
05

95
.6

8±
3.

49
0.

09
±0

.0
9

95
.8

8±
2.

07
0.

16
±0

.2
6

IEEE Trans Med Imaging. Author manuscript; available in PMC 2021 August 01.


	Abstract
	Introduction
	Related Works
	CNNs for Image Segmentation
	Attention Mechanism

	Methods
	Comprehensive-Attention CNN
	Joint Spatial Attention Modulθ¦:
	Channel Attention Modules
	Scale Attention Modulue


	Experimental Results
	Implementation and Evaluation Methods
	Lesion Segmentation From Dermoscopic Images
	Dataset
	Comparison ofSpatialAttention Methods
	Comparison of Channel Attention Methods
	Comparison of Scale Attention Methods
	Comparison of Partial and Comprehensive Attention
	Comparison With the State-of-the-art Frameworks

	Segmentation of Multiple Organs From Fetal MRI
	Dataset
	Comparison of Spatial Attention Methods
	Comparison ofChannelAttention Methods
	Comparison of Scale Attention Methods
	Comparison ofPartialand Comprehensive Attention
	Comparison of State-of-the-art Frameworks


	Discussion and Conclusion
	References
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Fig. 5
	Fig. 6
	Fig. 7
	Fig. 8
	Fig. 9
	Fig. 10
	Fig. 11
	Fig. 12
	Fig. 13
	Table I
	Table II
	Table III
	Table IV
	Table V
	Table VI
	Table VII
	Table VIII
	Table IX
	Table X

