Skip to main content
. Author manuscript; available in PMC: 2021 Aug 1.
Published in final edited form as: IEEE Trans Med Imaging. 2021 Feb 2;40(2):699–711. doi: 10.1109/TMI.2020.3035253

Table V.

Comparison of the State-of-the-art Methods and Our Proposed CA-NET For Skin Lesion Segmentation. INF-T Means the Inference Time for a Single Image. E-Able Means the Method Is Explainable

Network Para/Inf-T E-able Dice(%) ASSD(pix)
Baseline(U-Net [6]) 1.9M/1.7ms × 87.77±3.51 1.23±1.07
Attention U-Net [9] 2.1M/1.8ms 88.46±3.37 1.18±1.24
DenseASPP [35] 8.3M/4.2ms × 90.80±3.81 0.59±0.70
DeepLabv3+(DRN) 40.7M/2.2ms × 91.79±3.39 0.54±0.64
RefineNet [37] 46.3M/3.4ms × 91.55±2.11 0.64±0.77
DeepLabv3÷ [20] 54.7M/4.0ms × 92.21 ±3.38 0.48 ±0.58
CA-Net(Ours) 2.8M/2.1ms 92.08±2.67 0.58±0.56