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Abstract

Membrane proteins perform a variety of functions, all crucially dependent on their orientation in 

the membrane. However, neither the exact number of transmembrane domains (TMDs) nor the 

topology of most proteins have been experimentally determined. Due to this most scientists rely 

primarily on prediction algorithms to determine topology and TMD assignments. Since these can 

give contradictory results, single-algorithm based predictions are unreliable. To map the extent of 

potential misanalysis we compared the predictions of nine algorithms on the yeast proteome, and 

find that they have little agreement when predicting TMD number and termini orientation. To view 

all predictions in parallel we created a webpage called TopologYeast: http://www.weizmann.ac.il/

molgen/TopologYeast. Comparing each algorithm with experimental data, we also find poor 

agreement. Our analysis suggests that more systematic data on protein topology is required to 

increase the training sets for prediction algorithms and to have accurate knowledge of membrane 

protein topology.
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1 Introduction

It has been estimated in the literature that nearly 30% of all proteins in eukaryotic cells span 

membranes [1]. These proteins are essential for diverse functions such as transfer of 

molecules across membranes, signal transduction, organelle tethering and fusion, and a 

myriad of enzymatic activities. The structure, function and localization of such proteins is 

heavily affected by the number and location of their transmembrane domains (TMDs), as 

well as the orientation of each of their residues that together comprise the protein topology 

in the membrane. Hence, to better understand the function of any transmembrane protein it 

is essential to understand its topology.
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2 Data Analysis

2.1 Experimental approaches to study TMD number and topology using systematic tools 
are essential for providing a whole-proteome view

A variety of biochemical techniques such as protease protection and cysteine scanning 

assays have been used for decades to map TMD number and topology in single proteins [2,3]. 

However, in recent years several experimental approaches have been published that enable 

the study of TMD number and protein membrane topology in a systematic manner on tens to 

hundreds of proteins, or even in entire proteomes. These have been extensively reviewed [2] 

but just a few examples include:

2.1.1 High sensitivity mass spectrometry (MS) coupled with protease 
protection assays—In short, peptides that are facing the cytosol will be sensitive to 

protease treatment and hence will be lost from MS analysis. This method was recently used 

to assess yeast mitochondrial protein membrane topology [4].

2.1.2 Genetic reporter tags to follow the termini of membrane proteins in 
living cells—For example, a Glycosylatable GFP (gGFP) tag that loses fluorescence when 

glycosylated in the lumen of the endoplasmic reticulum (ER) is a very powerful tool that has 

been developed for tracking orientation of a terminus for secretory proteins [5]. Another 

example for the use of reporter tags is the Suc2/His4C chimeric protein. The tag enables the 

following of glycosylation status (suggesting luminal orientation in the secretory pathway) 

since both the His4C and Suc2 peptides have N-linked glycosylation sites. Additionally, the 

His4C domain encodes for a histidinol dehydrogenase activity that converts histidinol to 

histidine, but only if located in the cytosol. This method was already successfully used to 

map the carboxy terminus (C’) orientation of hundreds of secretory proteins [6]. A third 

tagging approach was recently created based on a split Venus system [7]. A library was 

created with all yeast proteins containing one half of the split-Venus reporter on their amino 

terminus (N’). To determine termini orientation this library was mated with a strain 

expressing the other half of the Venus in the cytosol, and their ability to interact was assayed 

by complementation of the full Venus fluorophore and emission of fluorescence, suggesting 

that the N’ is facing the cytosol [8]

While more methods are starting to become available, such systematic analyses are usually 

only performed on one terminus of a protein, on subsets of proteins rather than on entire 

proteomes and often only in genetically pliable model organisms, such as yeast or bacteria, 

and not in other experimental systems. Hence we are still missing robust experimental data 

on topology at a proteome wide level for any organism.

2.2 Prediction algorithms based on different approaches and training sets show little 
overlap in their output on the presence and number of TMDs

While systematic experimental data on protein topology is slowly becoming available it is 

still not present for most organisms. In cases where experimental data is not available, 

prediction programs are widely used to estimate how many TMDs a protein has (TMD 

prediction), and the direction in which its N’ and C’ face (termini orientation). Over the 
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years, many different prediction algorithms have been created, each following a different 

approach and using varying training datasets.

To assay how robust the different TMD prediction algorithms are, we used the protein 

coding genome of the yeast Saccharomyces cerevisiae (from here on called yeast) as a test 

case. The yeast proteome contains 5800 proteins (excluding dubious genes and 

pseudogenes) and has the most experimental data on protein topology and hence is a good 

model for such analyses. We compiled the predictions on the presence and number of TMDs 

predicted for all yeast proteins using all TMD prediction algorithms that could be used in 

batch running for the entire proteome and that gave topology predictions: HMMTOP [9], 

TMHMM [1], Topcons [10], Octopus [11], Philius [12], Polyphobius [13], Scampi [14], 

Spoctopus [15] and MEMSAT-SVM [16]. All nine algorithms are widely used and rely on 

different methods (such as Hidden Markov Models, Artificial Neural Networks, Support 

Vector Machines, Bayesian Networks or combinations of methods) (See Table 1 for more 

details) and are trained on several protein properties, such as chemical traits, distributions or 

predicted structures of amino acids (aa). Topcons combines the results from several 

algorithms (Octopus, Philius, PolyPhobius, Scampi and Spoctopus).

When viewing the results from the nine algorithms, it was immediately apparent that even in 

the simple question of whether a protein is membrane spanning or not, each of the prediction 

programs provides very different answers. The results of the nine algorithms varied between 

20-42% of all proteins in the proteome being membrane spanning (Supplementary Table 1) 

(Figure 1A). Specifically, different algorithms gave conflicting assignments on whether even 

one TMD exists for over 2107 proteins (Supplementary Table 1). Only 2761 were 

consistently predicted to be soluble proteins and only 930 were consistently predicted by all 

9 programs to have at least one TMD, although in many cases each program predicted a 

different number of TMDs (Figure 1B). When looking at the number of TMDs predicted for 

each protein we found that for only 245 proteins (~4.2% of the proteome) did all 9 programs 

agree (Figure 1C). This observation raises the concern that utilizing a single prediction 

algorithm most likely has a very low probability of really predicting whether a protein spans 

the membrane at all and if so, the number of times it does so.

2.3 A new list of predicted tail-anchored proteins based on all TMD prediction algorithms 
pooled together suggests new proteins in this family

The location of TMDs across the aa sequence of a protein influences its structure and 

function. Often very extreme TMDs at either the N’ or C’ are harder to accurately predict. 

For example, a TMD at the very N’ may be confused with a highly hydrophobic signal 

peptide (SP) that does not form part of the mature protein but rather is only used to direct the 

protein into the secretory pathway and later cleaved off.

A single TMD at the C’ of a protein is the hallmark of tail-anchored (TA) proteins that are 

anchored to all intra-cellular membranes facing the cytosol thus enabling their cytosolic 

domains to carry out crucial functions. Due to their unique topology, distinct targeting and 

translocation pathways have evolved to cater for them. [17]

Weill et al. Page 3

Bioessays. Author manuscript; available in PMC 2021 July 29.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Despite intense research on TA proteins, the entire repertoire of yeast TA proteins has not 

been fully identified or verified. This may be due to the fact that any predictions to date only 

included a subset of prediction algorithms. Hence, we set out to predict all yeast TA proteins 

using the 9 algorithms mentioned above. We defined a TA protein as one that does not have 

any N’ targeting motif (SP or Mitochondrial Targeting Sequence (MTS)) [8] and harbours a 

single TMD at the C’ (no further than 80 aa from the last residue). Based on these criteria 

and agreement between at least 6 prediction algorithms (67% agreement), we predicted 78 

proteins that could be defined as TA proteins with high confidence (Supplementary Table 2). 

Out of these 31 have previously been assigned as TA proteins [18,19,28–35,20–27] and 47 are 

newly predicted TA proteins (19 additional TA proteins were missed by our threshold and 

would have been captured had we lowered the threshold of high confidence). 198 additional 

proteins were predicted to have a TA by at least one prediction method. Hence many 

additional TA proteins may exist and this remains to be experimentally verified.

More generally our analysis shows that using several prediction algorithms in parallel raises 

the chance of capturing an entire topological family. 29 of the newly identified TA proteins 

are uncharacterized proteins with no known function. Since TA proteins perform important 

regulatory functions in cells it may give a clue to the functions of these new members of this 

topological family.

2.4 Termini orientation predictions show little robustness

Uncovering the membrane topology of an integral membrane protein is an essential step in 

determining its structural and functional properties. While assigning TMD presence and 

number is already fairly inaccurate (as discussed above), an additional complicated task is to 

define termini orientation, i.e. whether the termini are facing the cytosol (in) or the lumen of 

an organelle/ the extracellular space (out). To date, most assays for determining termini 

orientation at the single protein level rely on laborious biochemical techniques and not many 

systematic assays have been performed in organisms other than yeast. As a result, prediction 

algorithms are heavily utilized by protein researchers. As in the case of TMD prediction, 

termini orientation results can vary between one prediction algorithm to the other. Moreover, 

for some proteins matters are further complicated as their termini can reside at either side of 

the membrane while still supporting function [36].

Indeed, looking at how our various prediction programs define an “in” orientation, we find 

very little agreement in their prediction for either N’ or C’ (Figure 2A, B). How can we 

know which one of the predictions is right? Or which prediction algorithm should be trusted 

in most instances? Studies for determining C’ orientation have, to date, been only performed 

on subsets of proteins and hence a simple systematic comparison was not possible. To 

collect as many datapoints to our comparisons we compiled the abovementioned data from 

the Suc2/His4C chimeric protein assays [6]. To these datapoints we added existing data, not 

originally intended for termini orientation assignments. Specifically, we added protein-

protein interaction data from large datasets from three types of protein complementation 

assays (PCAs) performed with C’ tagging. In these assays one half of a reporter protein is 

attached to the C’ of a query protein and the other half of the reporter protein to the C’ of 

another. If one protein is cytosolic and one is spanning a membrane than the only way that 
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the two tagged termini can interact and form the fully complemented assay protein (giving 

rise to a measurable phenotype) is if the tagged terminus is facing the cytosol. Hence this 

data can be used as a proxy for termini orientation even though the assay was not built for 

this matter but rather to assay protein-protein interactions.

The DHFR PCA reporter confers resistance to the cytostatic drug methotrexate [37]. We 

found 3 studies that carried out such analysis and from them deduced C’ orientation for 430 

yeast proteins [37–39]. A second PCA approach is based on the split-ubiquitin system [40]. In 

this approach the protein interaction enables cleavage of a ubiquitin releasing a transcription 

factor activating transcription of the HIS3 reporter gene and enabling growth in medium 

lacking histidine. We compiled the data from ten different studies that utilized this system 

and deduced C’ orientation for an additional 210 proteins [40–49]. Finally, we compiled the 

data from three different studies that utilized the split Venus approach on C’ tagged proteins 

and compiled information on an additional 112 proteins [50–52]. Most proteins were only 

represented in one of these datasets thus there is minimal overlap. In total, we compiled the 

topology assignments from 16 PCA experiments performed on C’ tags, spanning a total of 

15,843 independent interaction data points (Supplementary Table 3). Comparing the 

experimental data from the C’ topology and PCA experiments with the topology predictors 

enabled us to ask which ones correctly assigned termini orientation (Figure 2C).

Since N’ orientation was systematically assayed for yeast TMD proteins we compared the 

experimental data [8,53] to the predictions (Figure 2D).

For both termini it seems like nearly half of all proteins did not show agreement with most 

algorithms (Figure 2C,D). This makes it difficult to deteremine a specific algorithm that 

outperforms the rest.

Finally, to assess which prediction algorithm is the most accurate at the level of whole 

protein topology (orientation of termini and number of TMDs) we compared the outputs of 

all prediction algorithms to the experimental data on protein topology discussed above. We 

coupled the C’ and N’ orientation experimental data to determine whether the number of 

TMDs should be odd or even (if both termini are facing the same direction TMD number 

should be even) (Figure 2E) as well as whole protein topology (Figure 2F). We then 

compared this to the various algorithms focusing on 1014 yeast proteins predicted to have a 

TMD by at least 5 algorithms. In general, most TMD prediction programs had a similar, 

non-satisfactory chance of compatibility with the experimental data, though each one with a 

different roster of proteins (Figure 2E, F) (Supplementary Table 2).

Taking the N’ and C’ termini prediction comparisons together we can suggest that either all 

algorithms do not predict termini orientation well or that the experimental/computational 

analyses that were done to date to define terminus orientation are not satisfactory. 

Regardless, creating more systematic datasets on experimental evidence is rapidly needed to 

assess the superiority of any of the algorithms, or to increase the learning sets of prediction 

algorithms enabling them to increase their accuracy and sensitivity of prediction.
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3 Conclusions and outlook

Our study of 9 widely utilized prediction algorithms suggests that, at present, prediction 

programs still fall short of providing a strong platform for studying protein TMD number 

and topology. Additionally, our analyses suggest that in cases where experimental proof does 

not exist, a hybrid computational and experimental prediction might be the best approach for 

prediction of TMD number and topology.

Due to the high diversity and disparity between programs we have decided to create an easy 

platform to simplify the visualisation of the available data (predictions as well as 

experimental) utilized in this manuscript. To this end, we have integrated these data into a 

database, called TopologYeast, available for viewing at http://www.weizmann.ac.il/molgen/

TopologYeast Our findings make a strong argument for the importance of further gathering 

of topology information using systematic approaches for entire genomes. High-throughput 

approaches and the resulting large data sets are increasingly becoming available, but 

currently only a small portion of the information that they contain is utilized to understand 

and explore complicated biological phenomena. We believe that many questions, such as 

termini orientation and TMD number, can be calculated from some of these data. More 

generally, any additional information will be of wide use to the community of scientists 

working to understand protein functions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

We would like to thank Ines Castro, Emma Fenech and Nir Fluman for critical reading of the manuscript. We would 
like to thank Dr. Jaime Prilusky for custom scripting. The Schuldiner lab is supported through a Peroxisystem ERC 
CoG (646604), a Volkswagen foundation “Life” grant and an SFB 1190 “Gates and contact sites” grant. MS is an 
incumbent of the Dr. Gilbert Omenn and Martha Darling Professorial Chair in Molecular Genetics.

References

[1]. Krogh A, Larsson B, von Heijne G, Sonnhammer EL. J Mol Biol. 2001; 305:567. [PubMed: 
11152613] 

[2]. Lee H, Kim H. Biochem Biophys Res Commun. 2014; 453:268. [PubMed: 24938127] 

[3]. Bogdanov M, Zhang W, Xie J, Dowhan W. Methods. 2005; 36:148. [PubMed: 15894490] 

[4]. Morgenstern M, Stiller SB, Lübbert P, Peikert CD, Dannenmaier S, Drepper F, Weill U, Höß P, 
Feuerstein R, Gebert M, Bohnert M, et al. Cell Rep. 2017; 19:2836. [PubMed: 28658629] 

[5]. Lee H, Min J, von Heijne G, Kim H. Biochem Biophys Res Commun. 2012; 427:780. [PubMed: 
23047006] 

[6]. Kim H, Melén K, Osterberg M, von Heijne G. Proc Natl Acad Sci U S A. 2006; 103:11142. 
[PubMed: 16847258] 

[7]. Jin L, Baker B, Mealer R, Cohen L, Pieribone V, Pralle A, Hughes T. J Neurosci Methods. 2011; 
199:1. [PubMed: 21497167] 

[8]. Weill U, Yofe I, Sass E, Stynen B, Davidi D, Natarajan J, Ben-Menachem R, Avihou Z, Goldman 
O, Harpaz N, Chuartzman S, et al. Nat Methods. 2018; 15:617. [PubMed: 29988094] 

[9]. Tusnady GE, Simon I. Bioinformatics. 2001; 17:849. [PubMed: 11590105] 

Weill et al. Page 6

Bioessays. Author manuscript; available in PMC 2021 July 29.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

http://www.weizmann.ac.il/molgen/TopologYeast
http://www.weizmann.ac.il/molgen/TopologYeast


[10]. Bernsel A, Viklund H, Hennerdal A, Elofsson A. Nucleic Acids Res. 2009; 37:W465. [PubMed: 
19429891] 

[11]. Viklund H, Elofsson A. Bioinformatics. 2008; 24:1662. [PubMed: 18474507] 

[12]. Reynolds SM, Käll L, Riffle ME, Bilmes JA, Noble WS. PLoS Comput Biol. 2008; 4 e1000213 
[PubMed: 18989393] 

[13]. Kall L, Krogh A, Sonnhammer ELL. Bioinformatics. 2005; 21:i251. [PubMed: 15961464] 

[14]. Bernsel A, Viklund H, Falk J, Lindahl E, von Heijne G, Elofsson A. Proc Natl Acad Sci U S A. 
2008; 105:7177. [PubMed: 18477697] 

[15]. Viklund H, Bernsel A, Skwark M, Elofsson A. Bioinformatics. 2008; 24:2928. [PubMed: 
18945683] 

[16]. Nugent T, Jones DT. BMC Bioinformatics. 2009; 10:159. [PubMed: 19470175] 

[17]. Aviram N, Schuldiner M. J Cell Sci. 2017; 130:4079. [PubMed: 29246967] 

[18]. Albright CF, Orlean P, Robbins PW. Proc Natl Acad Sci U S A. 1989; 86:7366. [PubMed: 
2678101] 

[19]. Lewis MJ, Pelham HR. Cell. 1996; 85:205. [PubMed: 8612273] 

[20]. Becherer KA, Rieder SE, Emr SD, Jones EW. Mol Biol Cell. 1996; 7:579. [PubMed: 8730101] 

[21]. Elgersma Y, Kwast L, van den Berg M, Snyder WB, Distel B, Subramani S, Tabak HF. EMBO J. 
1997; 16:7326. [PubMed: 9405362] 

[22]. Spang A, Courtney I, Grein K, Matzner M, Schiebel E. J Cell Biol. 1995; 128:863. [PubMed: 
7876310] 

[23]. Ungermann C, von Mollard GF, Jensen ON, Margolis N, Stevens TH, Wickner W. J Cell Biol. 
1999; 145:1435. [PubMed: 10385523] 

[24]. Youker RT, Walsh P, Beilharz T, Lithgow T, Brodsky JL. Mol Biol Cell. 2004; 15:4787. 
[PubMed: 15342786] 

[25]. Ballensiefen W, Ossipov D, Schmitt HD. J Cell Sci. 1998; 111(Pt 1):1507. [PubMed: 9580559] 

[26]. Nichols BJ, Ungermann C, Pelham HR, Wickner WT, Haas A. Nature. 1997; 387:199. [PubMed: 
9144293] 

[27]. Banfield DK, Lewis MJ, Pelham HR. Nature. 1995; 375:806. [PubMed: 7596416] 

[28]. Hay JC, Scheller RH. Curr Opin Cell Biol. 1997; 9:505. [PubMed: 9261050] 

[29]. Burri L, Varlamov O, Doege CA, Hofmann K, Beilharz T, Rothman JE, Söllner TH, Lithgow T. 
Proc Natl Acad Sci U S A. 2003; 100:9873. [PubMed: 12893879] 

[30]. Kagiwada S, Hosaka K, Murata M, Nikawa J, Takatsuki A. J Bacteriol. 1998; 180:1700. 
[PubMed: 9537365] 

[31]. Sommer T, Jentsch S. Nature. 1993; 365:176. [PubMed: 8396728] 

[32]. Esnault Y, Feldheim D, Blondel MO, Schekman R, Képès F. J Biol Chem. 1994; 269:27478. 
[PubMed: 7961662] 

[33]. Holthuis JCM. EMBO J. 1998; 17:113. [PubMed: 9427746] 

[34]. Rossi G, Salminen A, Rice LM, Brünger AT, Brennwald P. J Biol Chem. 1997; 272:16610. 
[PubMed: 9195974] 

[35]. Beilharz T, Egan B, Silver PA, Hofmann K, Lithgow T. J Biol Chem. 2003; 278:8219. [PubMed: 
12514182] 

[36]. Nasie I, Steiner-Mordoch S, Gold A, Schuldiner S. J Biol Chem. 2010; 285:15234. [PubMed: 
20308069] 

[37]. Tarassov K, Messier V, Landry CR, Radinovic S, Serna Molina MM, Shames I, Malitskaya Y, 
Vogel J, Bussey H, Michnick SW, Molina MM, et al. Science. 2008; 320:1465. [PubMed: 
18467557] 

[38]. Schlecht U, Miranda M, Suresh S, Davis RW, St Onge RP. Proc Natl Acad Sci U S A. 2012; 
109:9213. [PubMed: 22615397] 

[39]. Messier V, Zenklusen D, Michnick SW. Cell. 2013; 153:1080. [PubMed: 23706744] 

[40]. Miller JP, Lo RS, Ben-Hur A, Desmarais C, Stagljar I, Noble WS, Fields S. Proc Natl Acad Sci U 
S A. 2005; 102:12123. [PubMed: 16093310] 

Weill et al. Page 7

Bioessays. Author manuscript; available in PMC 2021 July 29.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



[41]. Hruby A, Zapatka M, Heucke S, Rieger L, Wu Y, Nussbaumer U, Timmermann S, Dünkler A, 
Johnsson N. J Cell Sci. 2011; 124:35. [PubMed: 21118957] 

[42]. Mo C, Bard M. Biochim Biophys Acta. 2005; 1737:152. [PubMed: 16300994] 

[43]. Eckert JH, Johnsson N. J Cell Sci. 2003; 116:3623. [PubMed: 12876220] 

[44]. Yan A, Lennarz WJ. Glycobiology. 2005; 15:1407. [PubMed: 16096345] 

[45]. Chavan M, Yan A, Lennarz WJ. J Biol Chem. 2005; 280:22917. [PubMed: 15831493] 

[46]. Möckli N, Deplazes A, Hassa PO, Zhang Z, Peter M, Hottiger MO, Stagljar I, Auerbach D. 
Biotechniques. 2007; 42:725. [PubMed: 17612295] 

[47]. Xue X, Lehming N. J Mol Biol. 2008; 379:212. [PubMed: 18448120] 

[48]. Labedzka K, Tian C, Nussbaumer U, Timmermann S, Walther P, Müller J, Johnsson N. J Cell 
Sci. 2012; 125:4103. [PubMed: 22623719] 

[49]. Gulati S, Balderes D, Kim C, Guo ZA, Wilcox L, Area-Gomez E, Snider J, Wolinski H, Stagljar 
I, Granato JT, Ruggles KV, et al. FASEB J. 2015; 29:4682. [PubMed: 26220175] 

[50]. Sung M-K, Lim G, Yi D-G, Chang YJ, Bin Yang E, Lee K, Huh W-K. Genome Res. 2013; 
23:736. [PubMed: 23403034] 

[51]. Pu J, Ha CW, Zhang S, Jung JP, Huh W-K, Liu P. Protein Cell. 2011; 2:487. [PubMed: 21748599] 

[52]. Gallina I, Colding C, Henriksen P, Beli P, Nakamura K, Offman J, Mathiasen DP, Silva S, 
Hoffmann E, Groth A, Choudhary C, et al. Nat Commun. 2015; 6 6533 [PubMed: 25817432] 

[53]. Yofe I, Weill U, Meurer M, Chuartzman S, Zalckvar E, Goldman O, Ben-Dor S, Schütze C, 
Wiedemann N, Knop M, Khmelinskii A, et al. Nat Methods. 2016; 13:371. [PubMed: 26928762] 

Weill et al. Page 8

Bioessays. Author manuscript; available in PMC 2021 July 29.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 1. Comparison of the predictions from various algorithms on transmembrane domain 
presence and number.
(A) Bar graph showing the percent of proteins in the yeast genome predicted to be 

membrane spanning according to each of the prediction algorithms. (B) Pie chart showing 

the relative portion of prediction algorithms agreeing on presence of TMDs. Numbers inside 

pie chart represent the number of prediction programs that are in agreement. The numbers 

outside the pie chart represent the number of proteins falling into each category N=3037 (C) 
Pie chart showing the relative portion of prediction algorithms agreeing on the number of 

TMDs only in those proteins that were predicted to have more than one TMD by at least five 

programs. Numbers inside pie chart represent the number of prediction programs that are in 
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agreement. The numbers outside the pie chart represent the number of proteins falling into 

each category N=1235
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Figure 2. Comparison of the predictions from various algorithms on termini orientation and 
protein topology.
(A) The number of prediction algorithms agreeing on C-terminal orientation. Numbers 

inside pie chart represent the number of prediction programs that are in agreement. The 

numbers outside the pie chart represent the number of proteins falling into each category 

N=1235 (B) The number of prediction algorithms agreeing on N-terminal orientation. 

Numbers inside pie chart represent the number of prediction programs that are in agreement. 

The numbers outside the pie chart represent the number of proteins falling into each 
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category N=1235 (C) Pie chart showing the number of prediction algorithms agreeing with 

experimental data on C-terminal orientation. Numbers inside pie chart represent the number 

of prediction programs that are in agreement. The numbers outside the pie chart represent 

the number of proteins falling into each category N=642 (D) Pie chart showing the number 

of prediction algorithms agreeing with experimental data on N-terminal orientation. 

Numbers inside pie chart represent the number of prediction programs that are in agreement. 

The numbers outside the pie chart represent the number of proteins falling into each 

category N=60 (E) Pie chart showing the relative number of prediction algorithms that agree 

with experimental data on whether TMD number is even or odd. Numbers inside pie chart 

represent the number of prediction programs that are in agreement. The numbers outside the 

pie chart represent the number of proteins falling into each category N=60 (F) Bar graph 

showing the percentage of agreement with complete topology (termini orientation and odd/

even number of TMDs) between the various prediction and the experimental data N=60
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