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Abstract

Achieving human-like visual abilities is a holy grail for machine vision, yet precisely how insights 

from human vision can improve machines has remained unclear. Here, we demonstrate two key 

conceptual advances: First, we show that most machine vision models are systematically different 

from human object perception. To do so, we collected a large dataset of perceptual distances 

between isolated objects in humans and asked whether these perceptual data can be predicted by 

many common machine vision algorithms. We found that while the best algorithms explain ∼70% 

of the variance in the perceptual data, all the algorithms we tested make systematic errors on 

several types of objects. In particular, machine algorithms underestimated distances between 

symmetric objects compared to human perception. Second, we show that fixing these systematic 

biases can lead to substantial gains in classification performance. In particular, augmenting a state-

of-the-art convolutional neural network with planar/reflection symmetry scores along multiple 

axes produced significant improvements in classification accuracy (1-10%) across categories. 

These results show that machine vision can be improved by discovering and fixing systematic 

differences from human vision.

Index terms
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1 Introduction

When [the Master] makes a mistake, he realizes it.

Having realized it, he admits it.

Having admitted it, he corrects it.

Tao Te Ching, v61 [1]
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Convolutional neural networks (CNNs) have revolutionized computer vision with their 

impressive performance on object recognition [2], [3], [4], [5]. Their performance, although 

impressive compared to other machine algorithms, is still inferior to humans [6]. The 

performance gap between machines and humans is even more striking when one compares 

top-1 accuracy: for instance, the accuracy for finding cars in natural scenes is ∼80% for 

CNNs and 93% for humans [7]. Can we use insights from human vision to bridge this 

performance gap? While it is relatively straightforward to identify objects and images on 

which humans perform better than machines [6], using these observations to improve 

machines is non-trivial for several reasons. First, better performance could be due to better 

classifiers or image features. Second, these observations tend to be class-specific and rarely 

point to generic image properties that should be included during training. In the visual 

cortex, neural responses are modulated by task demands but feature selectivity remains 

unaltered [8]. Third, classification accuracy is a discrete measure that is insensitive to fine-

grained variations across objects within a given object class. Finally, although abstract 

principles such as Gestalt have been extensively characterized in humans [9], [10], it is 

unclear how they contribute to recognition, and also unclear how to determine if they are 

present in machine vision algorithms.

A simpler alternative therefore would be to measure distances between objects in feature 

space. In machines, this can be done by calculating metric distances between feature vectors. 

In humans, these distances can be measured experimentally in behavior [11], [12], [13] or in 

specific brain regions [14], [15].

Here we compared object representations in human perception with machine algorithms, 

discovered image properties that are systematically biased in machines, and improved state-

of-the-art machine algorithms by augmenting them with these discovered properties. To 

measure feature representations in humans, we measured perceptual dissimilarity using 

visual search. Visual search is an extremely intuitive task where performance can be 

measured objectively, and the time taken to find the search target can be taken as an index of 

similarity. The reciprocal of search time serves as a useful measure of dissimilarity that 

behaves like a distance metric [12] and combines linearly across both object properties [16], 

[17], [18] as well as top-down factors [19]. Further, asymmetries and set size systematically 

modulate search but do not alter the rank ordering of search difficulty [12], [16]. Although 

subjects might make multiple eye movements during search, their search dissimilarity is 

predictable from the first few hundred milliseconds of neural activity in the higher visual 

areas, suggesting that search dissimilarity is driven largely by feedforward processing [20], 

[21], [22]. Finally, we note that while it is appealing to measure perceptual dissimilarity on 

natural scenes, interpreting this data can be complicated because the dissimilarity could be 

based on looking at multiple objects in a scene. Therefore we used objects isolated from 

their background in the human experiments to probe their underlying representation.

Using this approach, we measured a large set of perceptual dissimilarities and compared the 

ability of many common machine algorithms to explain these data. This analysis revealed 

several systematic biases between machines and human perception. The most notable bias 

was that symmetric objects were more distinct in human perception compared to most 

machine algorithms. Symmetry is an important property in our perception [9], [10], [23] that 
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we detect far better than machine algorithms [24]. Symmetry detection in an image is a 

challenging problem that has been studied extensively [24], [25], [26] including more 

recently using neural networks [27], [28], [29], [30], [31]. Recent studies have suggested a 

role for local ribbon symmetry in contours in scene categorization [32]. Despite these 

insights it is not clear whether detecting symmetry is useful for large-scale object 

recognition, and whether it is already learned by CNNs over the course of their training. We 

therefore augmented CNNs with symmetry features, and confirmed that this indeed resulted 

in significant improvements in performance. Our approach is validated by the fact that we 

obtained significant improvements on natural scenes despite discovering this bias using 

isolated objects. Finally, we show that CNNs represent symmetry differently because the 

units that contribute the most to classification have weaker symmetry bias and are tuned to 

high spatial frequencies.

1.1 Background

Below we review previous work in comparing machine and human vision. Machines and 

humans have traditionally been compared using their performance on many vision tasks 

from recognition [2], [4], [5], [6] to segmentation [33]. However comparing overall task 

performance is problematic for inference because any difference could be due to the 

underlying features or due to the underlying decision process that produces the eventual 

behavioral response. More recently, object representations have been characterized using 

human behavior [11], [12], [13], [34], [35] and in distinct brain regions [14], [15]. There are 

two broad findings from these studies: First, object representations in early visual cortex are 

explained by Gabor filters [36] or the Gabor-like representations found in early layers of 

CNNs [37]. Second, object representations in higher visual areas in both humans (using 

fMRI/MEG) and monkeys (using single neuron activity) are explained better using SIFT 

[14] and HMAX models [15], and more recently, by later layers of CNNs optimized for 

object classification [15], [38], [39], [40]. The similarity between brains and CNNs predicts 

similar, not inferior performance for CNNs compared to humans. Thus these results do not 

explain the performance gap between CNNs and humans.

This apparent contradiction could have arisen for two reasons: First, most of these 

comparisons are based on natural objects containing many features. This could have 

produced a large correlation between object distances even if the underlying features are 

entirely different. Second, there may be systematic differences between machine vision 

algorithms and brains for some types of images but not others. For example, images of cars 

or images with straight lines could show similar representations in both human perception 

and computer vision models whereas images of faces or images with curved lines could 

show systematic differences in representations between humans and machines. To the best of 

our knowledge, these issues have never been investigated. Even if systematic differences are 

identified [41], it is plausible but by no means certain that incorporating these differences 

will lead to tangible gains in performance [42].

Can we use brain data to improve machine vision? There is extensive evidence that 

augmenting images with virtually any human annotation can yield significant improvements, 

but these studies typically assume human-assisted situations where manual annotation is 
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always available [43], [44]. But can human annotations be automated and then used to 

improve machine vision in novel images lacking annotation? There has been surprisingly 

little work to address this question. A recent study has augmented CNNs with human-

derived contextual expectations to show improved performance [45]. Another recent study 

has shown that using brain data to constrain machine learning can lead to improved 

performance [46]. Yet another study uses a method called Data Distillation to generate 

annotations on unlabeled datasets and increase the size of the training data in order to 

improve model performance on various vision tasks [47]. These studies show that human-

derived data can improve machine vision but do not reveal any systematic biases in machine 

vision that may have been lacking in the first place.

1.2 Overview and contributions of this study

There are several novel aspects to this study. First, we have shown that perceptual similarity 

between objects in humans can be systematically measured and modeled using computer 

vision algorithms. To this end we are making publicly available a large dataset-the IISc-

Dissimilarity between Isolated Objects Dataset-containing 26,675 perceptual distances 

between 2,801 objects measured from 269 human subjects. Second, we show that nearly all 

computer vision models tested show systematic biases from human perception. In particular 

we show that symmetric objects are more distinct in perception compared to all 

computational models. Third, we show that augmenting state-of-the-art CNNs with 

symmetry features leads to tangible gains in performance. This finding is non-trivial because 

the systematic biases in humans may be present to serve visual functions other than 

classification. It is also nontrivial because state-of-the-art CNNs are already optimized for 

existing datasets and therefore augmenting them may not improve their performance. These 

results are a proof-of-principle of this approach: that fixing systematic differences between 

machine and human vision can lead to concrete improvements in machine vision. Some of 

these results have been presented previously [34], although we have expanded upon this 

work considerably.

In Section 2, we describe the collection and validation of the perceptual data and comparison 

with computational models. In Section 3, we describe how CNNs can be improved by 

including symmetry features. In Section 4, we analyze CNN unit activations to elucidate 

why they show a bias in representing symmetric objects, and discuss how CNNs could be 

trained to overcome this bias.

2 Comparing Machine And Human Vision

Here we collected a large dataset of perceived dissimilarity measurements between pairs of 

images and tested a large number of computational models for their ability to explain these 

data. These analyses revealed several systematic biases between all computational models 

and perception.

2.1 Dissimilarity measurements in humans

To compare object representations in humans and machines, we collected a dataset of 2,801 

objects containing natural objects and silhouettes (See Figure 1A for example objects). The 
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natural objects were drawn from various natural object categories like animals, vehicles and 

tools. For some natural objects, there were two views: a profile (sideways) view and an 

oblique view created by in-depth rotation of the profile view. The silhouette shapes also 

varied in complexity from simple to complex, and in familiarity from abstract to familiar. A 

subset of these silhouette shapes were created by combining 7 possible parts on either end of 

a stem to get a total of 49 objects (Figure 5A). The set of 2,801 objects were presented 

across 32 separate experiments each typically with at least 8 subjects. In each experiment, 

we measured perceived dissimilarity between pairs of objects using a visual search paradigm 

as given below. In total, we measured perceived dissimilarity for 26,675 pairs of objects 

across 269 human subjects.

All participants were aged 20-30 years, had normal or corrected-to-normal vision, naive to 

the purpose of the experiments and gave written informed consent to an experimental 

protocol approved by the Institutional Human Ethics Committee of the Indian Institute of 

Science. All experiments were conducted in a darkened room. Subjects were seated 

approximately 60 cm from a computer monitor controlled by custom programs written using 

Psychtoolbox [48] in MATLAB. At the beginning of each trial, a fixation cross appeared at 

the center of the screen for 500 ms. Following this an array of 16 items appeared in a 4x4 

grid, which contained one oddball image and 15 identical distractor images (e.g. see Figure 

1B). In most experiments, the search array measured 21° × 21° with the items measuring 3° 

along the longer dimension. The location of the distracter was randomly chosen with equal 

probability of occurance in all 16 locations. We jittered the position of items in the array to 

prevent alignment cues from driving the search. Subjects were instructed to respond as 

quickly and as accurately as possible to indicate the side on which the oddball target was 

present using a pre-specified key press (Z for left and M for right, on a QWERTY keyboard). 

To facilitate this, all search arrays had a red vertical line running down the middle of the 

display. The search array stayed on for 10 s or until the subject responded, whichever was 

earlier. All aborted or incorrect trials were repeated at a random time-point later in the task. 

Depending on the experiment, subjects performed between 2-8 correct trials for each pair of 

objects. We recorded the response time for each trial.

For each search, we took the reciprocal of the average search time as an estimate of 

perceived dissimilarity between the target and distractor. This measure behaves like a 

mathematical distance metric [12], shows linear summation across multiple features [17], 

[18] and correlates with measures of subjective dissimilarity [17].

Search asymmetry—It has been observed previously that, for some object pairs, search 

can be asymmetric. For example, searching for Q among O’s is significantly faster than 

searching for O among Q’s [49]. We therefore analysed our data for the presence of 

asymmetries. To this end, we selected all object pairs with at least 8 trials (n = 200) and for 

each pair, we performed an analysis of variance (ANOVA) on search reaction times with 

subject and asymmetry (each item as target) as factors. Across the 200 pairs, 27 pairs 

(13.5%) showed a significant main effect of asymmetry after correcting for multiple 

comparisons (p < 0.05, Bonferroni corrected). Thus, search asymmetries are relatively rare 

in our dataset.
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Dataset consistency—Since the complete dataset was collected from many human 

subjects, we were concerned that the measurements may not be representative of the 

perceptual distances within any given subject. However this is unlikely for the following two 

reasons: First, comparing the average dissimilarity between two random halves of the 

subjects yielded an extremely high correlation (r = 0.84, p < 0.00005; Pearson’s product-

moment correlation coefficient). Second, in a separate experiment, we measured perceptual 

distances for a random subset of 400 image pairs from the full dataset in four human 

subjects. These perceptual distances were strongly correlated with the original dataset (r = 

0.80, p < 0.00005; Pearson’s product-moment correlation coefficient). Further, the 

distributions of perceived distances measured in the main and control experiments were not 

significantly different (median perceptual distances: 0.98s –1 for the control experiment and 

0.94s –1 for the main experiment; p = 0.9 for a ranksum test on perceived distances).

2.2 Computer vision models

We tested a total of 23 popular computer vision models. We grouped these models roughly 

into five categories for ease of exposition: pixel-based, boundary-based, featurebased, 

statistical and biologically-inspired network models. For most models, we extracted the 

feature vector for each image and calculated the Euclidean (or city-block) distance between 

the feature vectors. For some models (like, Curvature Scale Space model) which were 

specified in terms of a distance metric rather than a feature vector, we computed the pairwise 

distances directly. All images in the dataset were scaled to a square frame of 140 pixels (or 

modelspecific size esp. for convolutional neural networks) before giving as input to each 

model. Each model has been described in detail previously [34].

2.3 Model evaluation

Because some of the computer vision models we tested are already optimized for 

classification (e.g. CNNs), we evaluated models in two ways. First, we calculated the direct 

correlation between model distances and observed perceptual distances. Second, we fit each 

model to the perceptual data by weighting its features to obtain the best match to the data. 

We used a standard cross-validation approach where the model was trained on 80% of the 

data and tested on the remaining 20%.

To equate predictive power across all models, we performed dimensionality reduction using 

Principal Component Analysis (PCA) and reduced each model’s feature representation into 

a 100-dimensional feature vector per image. We then asked if a weighted sum of distances 

along these 100 principal components could explain the observed perceptual data better. 

Specifically, if x 1 = [x 1,1 x 1,2 x 1,3 … x 1,100] and x 2 = [x 2,1 x 2,2 x 2,3, … x 2,100] are the 

100-dimensional feature vectors corresponding to two images, then our model predicts the 

observed distance y12 between these two images to be:

y12 = w1 x1, 1 − x2, 1 + w2 x1, 2 − x2, 2 + … + w100 x1, 100 − x2, 100 (1)

where w 1, w 2 etc represent the contribution of that particular principal component to the 

overall perceptual distance.
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In addition to the 23 individual models, we asked whether combining all models would yield 

better predictions of the observed perceptual data. To this end, we tested two combined 

models. In the first combined model (hereafter, comb1), we concatenated z-scored feature 

vectors from 15 individual models (out of the 23 models considered, we excluded 4 network 

based models in favor of VGG-16 as it on its own yielded better fit to the observed data; 

among the other 4 excluded models, SSIM does not have explicit feature representation, 

CSS and GB have very few features and the V1 model had too many features to perform 

PCA). We then further reduced the concatenated feature representation to 100 dimensions 

using PCA. We repeated the weighted summation and cross-validation procedures as 

described above to characterize the model performance.

In the second combined model (hereafter, comb2), we predicted perceptual distances as a 

weighted sum of individual model distances. Specifically, we solved a matrix equation of the 

form y = Xb, where y is a 26,675 × 1 vector containing observed distances, X is a 26,675 × 

23 matrix containing (feature unweighted) distances predicted by each of the 23 models and 

b is an unknown 23 x 1 weight vector representing the relative contribution of each model to 

the observed distances.

2.3.1 Evaluating model quality-of-fit—We estimated the amount of explainable 

variance or reliability of the observed data by calculating the splithalf correlation. 

Specifically, we separated the subjects into two random groups and calculated the perceptual 

distances separately. We then computed the correlation between perceptual distances for 

these two groups and reasoned that the degree to which these two random groups are 

correlated would be the upper limit for any model fit. However, split-half correlation 

computed this way cannot be used directly as it may underestimate the true reliability of the 

data. This is because split-half correlation is based on comparing two randomly selected 

halves of the data whereas models are trained on the entire dataset. We therefore corrected 

the split-half correlation using the Spearman-Brown formula, given by rc = 2r
(1 + r) , where r is 

the split-half correlation and rc is the corrected correlation. We calculated a composite 

measure of model performance as the squared ratio between model correlation and corrected 

split-half correlation.

% variance explained  = rm
rc

2
(2)

where rm is the model correlation with the observed data. All correlation coefficients 

reported in this study are Pearson’s product-moment correlation coefficients.

2.3.2 Strength of symmetry—Throughout, by ‘symmetry’ we mean the specific case 

of planar reflection symmetry about any axis in the image plane [50]. To quantify the 

strength of symmetry of an object, we computed the degree to which two halves of the 

object are mirror images of each other. Specifically, the pixel-wise difference between two 

halves of a symmetric object, mirrored about the axis of symmetry, will be zero. Thus, we 

defined the strength of symmetry about the vertical axis for an object A as:
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Sv = 1 − ∑abs(A − flipv(A))
∑abs(A + flipv(A)) (3)

Where flipv(A) represents the object mirrored about the vertical axis, and abs() is the 

absolute value, and the summation is taken over all pixels. This strength of symmetry 

measure is 0 when the object and its vertical mirror reflection do not overlap at all, and is 1 

when the object and its vertical mirror reflection are identical in every pixel (i.e. when the 

object is symmetric). In addition to this, we also calculated strength of symmetry about the 

horizontal axis (Sh) in a similar manner. For each pair of objects, we calculated the strength 

of symmetry about vertical axis averaged over both objects, and similarly strength of 

symmetry about horizontal axis averaged over both objects. The overall strength of 

symmetry for a given pair was computed as the larger of the vertical and horizontal 

symmetry measures. This way of measuring symmetry is appropriate in our case because all 

objects were centered in the image and hence had their axes of symmetry passing through 

the center of the image. Further, we did not account for skew-symmetry as only few natural 

objects in our dataset showed out of picture plane rotations.

2.4 Results

2.4.1 Comparing perception and computer vision models—We measured 

perceived dissimilarity for 26,675 pairs of objects taken from 2,801 objects across 269 

human subjects using a visual search paradigm (See Figure 1A for example objects and 

Figure 1B for an example visual search array). We only tested a subset of all object pairs due 

to experimental constraints as well as to avoid testing completely dissimilar objects that 

would yield only extreme values in the range. Specifically, the reciprocal of search reaction 

time was used as a measure of perceived dissimilarity [12].

Subjects were highly consistent in their performance, as evidenced by a strong correlation 

between the distances measured from two halves of subjects across all object pairs (split-half 

correlation: r = 0.81, p < 0.0005). This degree of consistency is striking, particularly 

considering that eye movement patterns, attentional engagement could have varied across 

subjects, and target eccentricity and item spacing were not held constant across experiments.

To visualize these dissimilarities, we used Multidimensional Scaling (MDS) to embed 

objects into two dimensions such that their distances best approximated the observed 

distances (Figure 1C). In the resulting plot, nearby objects represent hard searches. 

Interestingly, profile and oblique views of natural objects are close together, indicative of 

viewpoint invariance in human perception. It can also be seen that animate objects form a 

cluster indicative of their shared features.

Next, we asked whether distances between objects in computational models (without fitting 

to the data) are correlated with perceptual data. For each model, we took the feature vectors 

that are typically used for classification, and calculated distances between objects using the 

Euclidean distance between the corresponding feature vectors. As described in the previous 

section, we quantified model performance (or % variance explained) as the squared ratio 

between model correlation and corrected split-half correlation. All computational models 
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showed a significant positive correlation with perceptual data with the VGG-16 model 

achieving the best performance (r = 0.68, p < 0.00005). This model explained 55.1% of the 

explainable variance in the data. Interestingly, GoogLeNet did not do better than VGG-16 on 

this dataset even though it achieves significantly better classification results on the ImageNet 

dataset [2], [4], [5]. Further, when we allowed models to fit to the perceptual data by re-

weighting their features (100-dimensional feature vectors from PCA, see previous section), 

most models improved in their performance. Still, VGG-16 was the best model and 

explained 62.6% of the explainable variance (r = 0.72, p < 0.00005). Further, the observed 

trend in model fits remained similar when we used feature vectors with 50 dimensions 

instead of 100 dimensions.

Does combining all models in some way produce even better fit to the data? To answer this, 

we quantified how the two combined models (comb1 and comb2) fit to the perceptual data. 

It has to be noted here that all the tested models (including the combined models) have 

access to the entire dataset and cross-validated in the same way. We found that the comb1 

model, in which features were concatenated before performing PCA, yielded a performance 

worse than even some individual models. We speculate that this may have been because 

concatenating many model features leads to correlated but irrelevant variations that are 

captured in the PCA. By contrast, the comb2 model, in which the net distance is a weighted 

distance of all individual models, gave the best match to perceptual data (% variance 

explained = 68.1%; r = 0.74, p < 0.00005; Figure 2A). To identify the models that 

contributed the most and least to the comb2 model, we inspected the weights associated with 

each model. VGG-16 and V1 model distances contributed the most, while Fourier 

Descriptor and Curvature Length model distances contributed the least.

2.4.2 Systematic residual error patterns across all models—It is evident from 

the above analyses that even the best model doesn’t explain all the explainable variance in 

the data. To investigate this gap in greater detail, we calculated the residual error for each 

pair of objects as the signed difference between the observed distance and predicted 

distance. We then examined all image pairs whose residual error was one standard deviation 

away from model predictions. This revealed some systematic patterns. Image pairs whose 

dissimilarity was underestimated by the model (i.e. predicted < observed) frequently 

contained symmetric objects or pairs with objects having large area differences (Figure 2B). 

Image pairs whose dissimilarity was overestimated by the model (i.e. predicted > observed) 

contained objects that frequently shared features (Figure 2C). We found that these residual 

error patterns are not artefactual: using data from one half of the subjects to predict the other 

half revealed no such systematic errors.

To confirm that the above systematic error patterns were indeed present across all image 

pairs and in all models, we quantified these image properties and asked whether residual 

error increases systematically. These error patterns are investigated in greater detail in our 

previous study [34] and are only summarized here. First, we considered the specific case of 

symmetry. For each image pair, we calculated the average strength of symmetry in both 

images (see section 2.3.2) and asked whether this symmetry strength correlates with residual 

error for all models. A positive correlation would mean that as objects in a pair become more 

symmetric, model residual error increases – thereby confirming that symmetric objects are 
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more distinctive in perception than in models. Indeed, all models including the best 

combined model (comb2) showed a significant positive correlation between strength of 

symmetry and residual error (Figure 2D). There were only two exceptions to this trend: the 

SSE and SIFT models, which showed no significant correlation. GoogleNet, though a better 

model at object recognition than VGG-16, doesn’t capture perceptual dissimilarities as well 

as other deep models. As a consequence, GoogleNet shows stronger residual error 

correlation. Further, the Coarse Footprint model captures differences in the overall shape of 

objects by blurring the internal details and hence, shows stronger residual error pattern as a 

result of underestimating dissimilarities (for both symmetric and asymmetric object pairs). 

In sum, almost all computational models underestimate the dissimilarity between symmetric 

objects.

Next, we quantified our observation that object pairs with large area differences are more 

distinct in perception. For each image pair, we computed the ratio of area of the larger object 

to area of the smaller object and correlated this ratio with the residual error for each 

computer vision model. We found that almost all models show significant positive 

correlation confirming that image pairs with large area differences show larger residual 

errors (Figure 2E). Here, the only exception was the comb2 model (r = −0.03, p = 0.08).

Finally, we quantified our observation that dissimilarities between objects with shared parts 

are underestimated by computational models. To this end, we measured the average residual 

error for pairs of objects that shared two parts, one part or no part at all. We found that, for 

many models, the residual error was large and negative for objects sharing two parts, smaller 

but still negative for objects sharing one part and almost zero for objects with no shared parts 

(Figure 2F). Further, we found that the residual error was systematically negative for pairs 

that were constituted by two different views of the same object, pairs with mirror images of 

the same object, and pairs with either shared shape or texture (Figure 2G). Thus, objects 

with shared features or shared parts are more similar in perception compared to 

computational models.

2.4.3 Generalization to novel experiments—How robust are the above results to the 

set of object pairs chosen? The good cross-validation prediction of perceptual data by the 

best model (comb2) may not accurately represent its ability to generalize to novel images. 

This is because, the model is trained each time on 80% of the image pairs which may 

contain all the images in the dataset. To address this concern, we made use of the fact that 

our dataset of perceptual dissimilarities was compiled from 32 experiments with largely non-

overlapping sets of images. We tested the performance of comb2 model on each experiment 

after training it on all other experiments. This revealed a systematic trend – the model 

generalized poorly to experiments containing very similar natural objects, multiple views of 

various objects, and symmetric objects (Figure 3). Further, we set out to explore if these 

generalization trends hold even when the model was trained to predict data from the same 

experiment. We considered 16 experiments which had perceptual data for at least 1000 

image pairs and trained the comb2 model on 800 image pairs for each individual experiment 

with the testing done on the remaining 200 image pairs. We repeated this process 10 times to 

obtain an estimate of average variance explained. Here too, we saw similar trends as 
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observed before with larger generalization errors for experiments containing similar natural 

images and symmetric objects.

3 Augmenting Cnns With Symmetry Features

In the previous section we described how computational models deviate systematically from 

human perception. In particular, one systematic bias is that symmetric objects are more 

distinct in perception compared to all computational models. If symmetry is represented 

differently in perception compared to computational models and in particular CNNs, then 

we reasoned that augmenting a state-of-the-art CNN with symmetry features would improve 

its performance.

3.1 CNN and dataset selection

We selected two CNNs – RCNN [51] and VGG-16 [3] which were trained on PASCAL 

VOC 2007/2012 and ImageNet dataset respectively. We used the MATLAB implementation 

of faster-RCNN that gave a mean average precision (mAP) of 59.9% on the PASCAL VOC 

2007/2012 dataset. Similarly, we downloaded a pre-trained VGG-16 network which has a 

top-1 error of 24.4% on ImageNet Challenge 2014. To evaluate if augmenting with 

symmetry features improves the performance of the network on training images, we used the 

PASCAL VOC and ImageNet datasets. Specifically we used 17,125 images from 20 

categories from the PASCAL VOC 2012 trainval set and 544,546 images from 1000 

categories from the ImageNet training set (with ground-truth bounding box).

3.2 Symmetry feature extraction and augmentation

To extract symmetry features, we computed symmetry with respect to horizontal (Sh) and 

vertical (Sv) axis as explained in previous section (see section 2.3.2 and Equation 3). In 

addition, to account for variations in the orientation of symmetry axis, we computed 

symmetry score for 8 orientation axes uniformly sampled between 0° and 180°. All 

classifiers were trained using existing MATLAB functions (fitcdiscr) using 10-fold cross-

validation.

3.2.1 PASCAL-VOC dataset—We ran all of the PASCAL-VOC 2012 trainval images 

through the RCNN and collected the output detections (both bounding boxes and detection 

confidence). In all, we had 135,157 detections from 17,125 images (for a detection threshold 

of 0.2). We kept the detection threshold considerably low to get as many hits as possible. 

Each detection can either be a true detection or false alarm depending on the ground truth 

labels. We then collected hits and false alarms for each category and trained linear classifiers 

to segregate true from false detections. First, we trained a linear classifier on the RCNN 

detection confidence scores. Then, we trained a linear classifier on symmetry scores 

calculated using Equation 3. Finally, we trained a linear classifier on the combined 

representation of RCNN detection confidence score and the confidence score of the 

classifier trained on symmetry features.

3.2.2 ImageNet dataset—We took 544,546 images spanning 1000 categories from the 

ImageNet dataset with ground-truth bounding box annotations and extracted activations 
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from the penultimate fully connected layer of VGG-16. We calculated the symmetry scores 

for all images using Equation 3. We then trained linear classifiers to separate positive from 

negative examples. Positive examples were drawn from same category images based on the 

ground truth labels (n ≈ 500) and equal number of negative examples were drawn from 

images belonging to the rest of the categories. We trained linear classifiers on the activations 

extracted from the last fully connected layer of the VGG-16 network and on symmetry 

scores separately. We then trained another linear classifier on the confidence scores of the 

two classifiers. Finally, we tested these classifiers on the ImageNet validation set with 50 

images in each class.

Although we used only a subset of the ImageNet dataset with ground-truth bounding box 

annotations and computed symmetry scores on pixels within the bounding box, we found 

similar gains in performance when symmetry scores were computed on the entire image. 

Thus, we are reporting the results of the latter case.

3.2.3 Augmentation procedure—We used an augmentation procedure similar to the 

one used in [45]. Specifically, we first trained a binary linear classifier on the CNN 

representations (feature representation in the final fully connected layer of VGG-16 for 

ImageNet and RCNN detection confidence scores for PASCAL-VOC) and obtained 

posterior probability scores for both positive and negative examples. We then trained another 

binary linear classifier on symmetry features and obtained another set of posterior 

probability scores for both positive and negative examples. Finally, we trained a third binary 

linear classifier on the set of posterior probability scores computed from the first two 

classifiers to obtain predicted class labels. This augmentation pipeline is summarised in 

Figure 4A.

3.3 Results

The pipeline used to augment convolutional neural networks with symmetry features is 

summarized in Figure 4A and described in detail in the previous section. All three classifiers 

in the augmentation procedure were tested on an independent held-out set of images. Thus, 

if symmetry features are already learned by CNNs, then this procedure should not improve 

cross-validated detection accuracy. However, this was not the case. We observed significant 

gains in performance using VGG-16 on ImageNet validation set (average improvement: 

0.82% across 1000 categories; Figure 4B). In fact, this improvement in classification 

accuracy was significant as assessed through statistical testing (median accuracy: 94% and 

95% for VGG-16 before and after symmetry feature augmentation respectively; p < 

0.000005 for a ranksum test on classification accuracies across 1000 categories of ImageNet 

validation set). Many categories showed an improvement when the VGG-16 scores were 

augmented with symmetry scores. Interestingly, 101 categories showed improvements of 3% 

or more with ‘coil, helix’ category showing improvements as high as 10%. Symmetry 

features by themselves yielded above-chance classification (average classification accuracy 

= 58% compared to chance accuracy = 50%).

This improvement in classification was not specific to the VGG-16 on the ImageNet dataset. 

On the PASCAL VOC 2012 trainval images, the classification performance of the RCNN 
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improved upon including symmetry features (average improvement = 0.13% across all 20 

categories; Figure 4C). Some categories showed improvements greater than 0.5% 

(improvement in classification accuracy: 1.3% for tv-monitor and 0.55% for motorbike). 

Here too, symmetry features by themselves yielded above-chance classification (average 

classification accuracy = 53.32% with chance accuracy = 50%). Thus, augmenting CNNs 

with symmetry features leads to significant improvements in performance.

The smaller gains in classification accuracy after augmentation can be due to two reasons. 

First, it could be a reason intrinsic to symmetry itself. Symmetry as a property can never 

perfectly discriminate object identity because it does not contain shape information. Second, 

it could be because our measure of symmetry is not perfect. The Im-ageNet dataset does not 

contain objects segmented from the background, so our symmetry scores may be corrupted 

by background pixels. The symmetry score may also be corrupted by image skew due to 3D 

rotations, natural shading variations across the image or by occlusion. The fact that we 

obtained an accuracy improvement even with our rudimentary measure of symmetry 

suggests that more sophisticated measures would lead to even better improvements.

We next asked why symmetry feature augmentation showed smaller gains on PASCAL VOC 

compared to Im-ageNet. One reason could be that images in PASCAL VOC dataset are less 

symmetric compared to images in ImageNet. Indeed, we found that ImageNet has a larger 

range of symmetry scores across categories compared to PASCAL VOC and the average 

symmetry score for each category significantly differed from a common mean for both 

datasets (p < 0.00005, for Kruskal-Wallis test on symmetry scores with category labels as 

factor). Further, we found that ImageNet has more symmetric images than PASCAL VOC 

(average symmetry score, mean ± std: 0.78 ± 0.04 and 0.73 ± 0.03 for ImageNet and 

PASCAL VOC dataset respectively, p < 0.00005 for rank-sum test on category-wise average 

symmetry scores). Thus, augmenting with symmetry features leads to smaller gains on 

PASCAL VOC compared to ImageNet dataset. In general, the augmentation procedure can 

lead to significant gains in performance depending on the biases present in the dataset.

Why does augmenting with symmetry improve CNN accuracy? We examined two 

possibilities. First, we asked whether augmenting with symmetry improved categories on 

which the VGG-16 network performed badly. This was indeed the case: improvements in 

accuracy were negatively correlated with VGG-16 classification accuracy (correlation 

between improvement in classification accuracy and VGG-16 accuracy: r = −0.50, p < 

0.00005 across 1000 categories in ImageNet). Second, we surmised that highly symmetric or 

highly asymmetric objects would experience the greatest increases in accuracy. Indeed, 

objects such as coil, dragonfly, solar dish, park bench, and flagpole showed the largest 

improvement. To quantify this pattern, we asked whether the average strength of symmetry 

for each object category (calculated as the average score across all positive examples) was 

correlated with performance improvement. This revealed a positive correlation (r = 0.28, p < 

0.000005 across 1000 categories in ImageNet), suggesting that, as expected, symmetric 

objects benefited the most from augmenting CNNs with symmetry features.

Finally, we note that there are other ways of incorporating symmetry features into the CNN, 

which may well yield better improvements in performance. We explored one appealing 
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alternative: We concatenated the activations of the final fully connected layer with symmetry 

features (after z-scoring each feature across images) and used this augmented feature vector 

(with 1000 features from VGG-16 and 8 symmetry score features) to learn a new object 

classifier. We evaluated the performance of this classifier by training binary linear classifiers 

on equal numbers of positive and negative examples in each category using 5-fold 

crossvalidation. Interestingly, this produced no improvement in accuracy (average 

improvement across 1000 categories: −0.007 ± 0.22%). Thus, augmenting classifiers 

produces better performance than augmenting features themselves. A similar result has been 

reported previously in comparing early versus late fusion of features [52].

4 Understanding Why Cnns Underestimate Symmetry

So far we have shown that machine vision algorithms show systematic biases from human 

vision, and that fixing one of these biases by augmenting CNNs with symmetry features 

leads to significant improvements in performance. These results show that symmetric objects 

are more distinct in perception compared to CNNs but do not explain why this is so.

To address this issue, we systematically analyzed object representations in the penultimate 

fully-connected layer of VGG-16 for a subset of objects in the dataset. We chose the 

penultimate fully-connected layer activations for this analysis as this can be considered the 

last representational layer whose output is used for classification. The subset of objects used 

for the analysis, shown in Figure 5A, consists of 7 arbitrary parts combined in all possible 

ways to create a total of 49 objects. We measured visual search dissimilarities as well as 

VGG-16 feature distances for all possible pairs of these 49 objects (n = 49 C2 = 1,176 pairs).

To visualize these representations, we used multidimensional scaling. The resulting plot for 

perceptual dissimilarities is shown in Figure 5B – in this plot, nearby objects represent hard 

visual searches. It can be seen that objects that share parts are closer together, and that 

symmetric objects are far apart. The resulting plot for the VGG-16 representation is shown 

in Figure 5C – in this plot, nearby objects are those that evoked similar activation across the 

penultimate fully connected layer. It can be seen that the VGG-16 representation shares 

many features with the perceptual representation: objects that share parts are again closer to 

each other, and symmetric objects are further apart in general. There was a strong positive 

correlation between pairwise object distances of the VGG-16 representation with perception 

(r = 0.68, p < 0.00005).

To quantify the observation that symmetric objects are far apart, we compared the distance 

between pairs of symmetric objects (7 C 2 = 21 pairs) with distances between pairs of objects 

differing in two parts (pairs of the form AB-CD; n = 420 pairs). This revealed a statistically 

significant difference (mean ± std distance: 1.36 ± 0.24 s -1 for symmetric pairs, and 1.16 ± 

0.21 s -1 for asymmetric pairs, p < 0.0005, rank-sum test on distances; Figure 6A). This was 

true for the VGG-16 penultimate fully-connected layer (mean ± std of distance: 0.74 ± 0.17 

for symmetric pairs and, 0.61 ± 0.09 for asymmetric pairs, p < 0.005, rank-sum test on 

distances; Figure 6B). We also confirmed this trend for vertically-oriented objects created by 

rotating the objects shown in Figure 5A counter-clockwise by 90°. That is, symmetric object 

pairs were statistically more dissimilar than asymmetric object pairs both in perception 
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(mean ± std distance: 1.31 ± 0.26 s -1 for symmetric pairs, and 1.15 ± 0.2 s -1 for asymmetric 

pairs, p < 0.005, rank-sum test on distances; Figure 6A) and the penultimate fully-connected 

layer of VGG-16 (mean ± std of distance: 0.74 ± 0.17 for symmetric pairs and, 0.61 ± 0.09 

for asymmetric pairs, p < 0.005, rank-sum test on distances; Figure 6B). Interestingly, we 

found that horizontal symmetric objects were significantly more dissimilar than vertical 

symmetric objects in perception (p < 0.05 for a ranksum test on dissimilarities; Figure 6A) 

but not in VGG-16 (p = 0.07 for a rank-sum test on dissimilarities; Figure 6B). This 

difference between horizontal and vertical symmetry is very well established in literature 

where symmetry about the vertical axis is detected faster than symmetry about the horizontal 

axis [22], [53], which in turn is believed to be related to the distinctiveness of these objects 

[22].

Thus, symmetric objects are distinctive both in perception and in VGG-16.

4.1 Are symmetric objects special in CNNs trained without image flipping?

The fact that symmetric objects are more distinctive compared to asymmetric objects in 

VGG-16 could be due to the nature of its training, where each image and its mirror-reflected 

version are used for robustness. Alternatively it could be present due to mirror images 

present in the dataset itself, due to the presence of bilaterally symmetric objects that produce 

mirror images across views. Therefore we wondered whether the symmetry advantage would 

still be present if the VGG-16 network was trained without mirror-flip data augmentation.

To investigate this issue, we trained a VGG-16 network from scratch on the ImageNet 

training dataset containing ∼1.2 million images from 1000 object categories to perform 

object classification. The network was trained for 100 epochs with a batch-size of 20 using 

PyTorch framework on NVIDIA TITAN-X/1080i GPUs. The generalization capability of the 

model was tested on the ImageNet validation set which has 50,000 images from the same 

1000 object categories as in the training set. The VGG-16 network trained without data 

augmentation showed good generalization (average ± std of top-1 accuracy: 56% ± 19% and 

top-5 accuracy: 80% ± 14% over 1000 object categories). By contrast, the VGG-16 network 

trained with augmentation has better generalization (average top-1 accuracy: 75.6% and 

top-5 accuracy: 92.9%; [3]).

Next we analyzed symmetric and asymmetric object representations in the VGG-16 network 

trained without data augmentation using the same set of two-part objects as before (Figure 

5A). To visualize the underlying representation, we used multidimensional scaling as before. 

In the resulting plot (Figure 5D), it can be seen that objects that share the left part cluster 

together separately from objects that share the right part, and there is no apparent advantage 

of symmetric objects. Indeed, distances between symmetric objects were no greater than 

between other asymmetric objects (mean ± std of distance: 1.92 ± 0.45 and 1.96 ± 0.3 for 21 

pairs of symmetric and 420 pairs of asymmetric objects respectively; p = 0.93 for a rank-

sum test on distances; Figure 6C). This trend remained true even for vertical objects (mean ± 

std of distance: 1.95 ± 0.49 and 1.99 ± 0.31 for 21 pairs of symmetric and 420 pairs of 

asymmetric objects respectively; p = 0.87 for a rank-sum test on distances; Figure 6C). The 

regularity in arrangement of objects as shown in Figure 5D might arise from position-

dependent shape tuning in the network trained without mirror-flipped images.
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We conclude that CNNs trained without mirror-flip data augmentation do not show the 

symmetry advantage.

4.2 Understanding the CNN-perception difference

The results above show that the standard VGG-16 CNN (trained with data augmentation) 

shows a symmetry advantage just like in perception, albeit lower in magnitude. This 

difference may partially explain why augmenting with symmetry improved its performance. 

A further reason why augmenting worked could be that units that contribute more to object 

classification show a weaker symmetry advantage.

4.2.1 Identifying units important for classification—To address this issue, we 

calculated a measure of overall contribution towards classification for each unit [54]. We 

randomly selected 20 images from the ImageNet validation set from different classes that 

were classified correctly by the VGG-16 network. We computed the importance of each unit 

ni in the penultimate fully-connected layer as follows. First, we removed the contribution of 

unit ni towards classification by zeroing the weights going out from ni to all units in the final 

fully-connected layer. We then passed all 20 images through this modified VGG-16 network 

and also the original VGG-16 network and computed the change in output class 

probabilities. Finally, we defined the importance of ni as

δ ni = 1
20 ∑

j = 1

20
∣ po cj − pm cj ∣ (4)

where δ(ni) is the importance of unit ni, po(cj) is the output probability for image j 
corresponding to the true class cj for the original VGG-16 network, and pm(cj) is the 

corresponding class probability for the modified VGG-16 network.

4.2.2 Symmetry advantage in units important for classification—Next we asked 

whether the units with high importance show a weaker symmetry advantage. To this end we 

calculated a symmetry modulation index (SMI) as

SMI = dsym − dasym
dsym + dasym

(5)

where dsym and dasym are the average distances for symmetric and asymmetric object pairs 

respectively. We estimated the average symmetry modulation index by bootstrap i.e. by 

randomly sampling with replacement 21 symmetric object pairs and 420 asymmetric object 

pairs. We repeated this procedure to get 10,000 bootstrap estimates of symmetry modulation 

index each for perception, all units in the penultimate fully-connected layer of VGG-16, 

top-100 and bottom-100 units in the penultimate fully-connected layer of VGG-16, and all 

units in the penultimate fully-connected layer of VGG-16 trained without data 

augmentation.

The average SMI for both horizontal and vertical objects are shown in Figure 7A. The 

symmetry modulation index was highest for perception, followed by VGG-16, bottom-100 

units, top-100 units and VGG-16 trained without data augmentation. As hypothesized, SMI 
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for the top-100 units were smaller compared to the bottom-100 units for both horizontal and 

vertical objects indicating that units important for classification show weaker symmetry 

advantage.

4.2.3 Feature analysis of units important for classification—The above result 

shows that the top-100 units in the penultimate fully connected layers are systematically 

different from the remaining units in terms of representation of symmetry. Are they selective 

for different features compared to the rest of the units? We investigated this issue by 

comparing top-100 and bottom-100 units in the VGG-16 network using a widely used 

feature analysis technique from neuroscience, as detailed below.

We wondered whether the top-100 and bottom-100 units differed in their spectral power 

preferences. To assess this possibility, we created Gabor images (see some examples in 

Figure 7B) with 8 orientations (uniformly sampled from 0 to 180 degrees) and 6 spatial 

frequencies (0.06, 0.09, 0.17, 0.25, 0.33 and 0.5 cycles/pixel) and obtained CNN unit 

activations to these images from the top-100 and bottom-100 units. For each unit, we 

computed its average activation for each spatial frequency by averaging its activation across 

orientations. The average behaviour of the top-100 and bottom-100 units is shown in Figure 

7C. The average activity of the top-100 units was relatively low for low spatial frequencies 

and increased for high spatial frequencies. In contrast, the bottom-100 units showed a steady 

response to high spatial frequencies. To quantify the relative preference for high over low 

spatial frequencies for each unit ni, we calculated a spatial frequency modulation index as

MI ni = Aℎsf − Alsf
Aℎsf + Alsf

(6)

where Ahsf is the average activation for unit ni computed for high spatial frequency images 

(0.25, 0.33 and 0.5 cycles/pixel) and Alsf is the average activation for unit ni computed for 

low spatial frequency images (0.06, 0.09 and 0.17 cycles/pixel). The average spatial 

frequency modulation for top-100 units was significantly larger compared to the bottom-100 

units (Figure 7D; p < 0.0005 for a ranksum test on modulation indices for top-100 and 

bottom-100 units). Thus, VGG-16 units important for classification respond more to high 

spatial frequencies compared to low spatial frequencies, indicating that they may be tuned to 

spatially local features. We surmise that this could be the reason for their weaker symmetry 

advantage.

5 Discussion

Here we have compared perceptual dissimilarity in humans with a variety of computational 

models. Our main finding is that all machine algorithms tested show systematic biases from 

human perception. Furthermore, fixing one of these biases (symmetry) can improve CNN 

performance. We have further shown that CNNs show a weak advantage for symmetry 

particularly among the units important for classification. In a recent study, we showed that 

the advantage for symmetry in perception arises due to similar part selectivity on either side 

of an object [22]. We therefore propose that consistent part selectivity could be imposed as a 

constraint during learning, and that doing so will improve performance.
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Our improvements in performance may have been small due to noisy estimates of symmetry 

features. Recent advances in geometry processing using classical methods as well as deep 

learning have led to better symmetry detectors both on 3D models of objects [25], [29], [31] 

and 2D objects embedded in natural scenes [26], [30]. Further, there have been efforts to 

reduce the sample complexity of deep neural networks by designing convolutional filters 

that capture various symmetries in the training data [27], [28]. Although these are significant 

advances in symmetry detection, they haven’t been tested on large-scale datasets in the 

context of object recognition tasks. We speculate that combining our insights about human 

perception with better symmetry measures will lead to larger improvements in performance, 

particularly on real-world vision tasks.

Finally, we note that symmetry is not the only systematic difference we have observed 

between human perception and machine vision. Objects with large area differences, mirror 

images and objects with shared features all show systematic deviations. Augmenting CNNs 

with these properties is less straightforward but one possibility is to use perceptual data as an 

additional constraint during learning [55].
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Fig. 1. Stimuli and Experiment.
(A) Example objects used in the study for measuring perceived dissimilarities in humans; 

(B) Example 4x4 visual search array with one oddball target (dog) amongst multiple 

instances of the distractor (cougar); (C) 2D embedding of measured distances between a set 

of natural images, as obtained using Multidimensional scaling (MDS). The r-value indicates 

the agreement between search distances and the embedded distances (**** is p < 0.00005).
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Fig. 2. Model performance on perceptual data and residual patterns.
(A) Correlation between predicted and observed distances for the best model (comb2) for all 

26,675 pairs. Object pairs whose dissimilarity is underestimated by the model (residual error 

more than 1 standard deviation above the mean) are shown as filled black circles with 

example pairs highlighted in orange. Pairs whose dissimilarity is overestimated by the model 

(residual error less than 1 standard deviation below the mean) are shown as filled black 

diamonds with example pairs highlighted in blue. Pairs whose dissimilarity is explained by 

the model (residual error within 1 standard deviation of the mean) are shown as gray circles 
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with example pairs highlighted in green. **** is p < 0.00005. (B) Examples of under-

estimated pairs of objects; (C) Examples of overestimated pairs of objects; (D) Correlation 

between strength of symmetry and residual error across object pairs for each model. Error 

bars indicate bootstrap estimates of standard deviation (n = 10). All correlations are 

significant with p < 0.005 unless indicated by n.s (not significant); (E) Correlation between 

area ratio and residual error across object pairs for each model; (F) Average residual error 

across image pairs with zero, one or two shared parts; (G) Average residual error for object 

pairs related by view, mirror-reflection, shape and texture.
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Fig. 3. Generalization of the best model to novel experiments.
Each bar represents the amount of variance explained by the best model (comb2) when it 

was trained on all other experiments and tested on that particular experiment. The text inside 

each bar summarizes the images and image pairs used, and the image centered below each 

bar depicts two example images from each experiment.
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Fig. 4. Augmenting CNNs with symmetry features.
(A) Schematic of the pipeline used to augment symmetry information to CNN feature 

representation. Baseline CNN accuracy and symmetry classifier accuracy is shown for both 

ImageNet and PASCAL-VOC datasets; (B) Plot of improvement in classification 

performance of VGG-16 on augmenting with symmetry features computed on the validation 

set; (C) Similar plot as in (B) for RCNN on PASCAL-VOC dataset.
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Fig. 5. Representation of symmetric and asymmetric objects in perception and CNNs.
(A) Set of 49 two-part objects used to explore representation of symmetric objects in both 

perception and CNNs. Symmetric objects are highlighted in red. (B) Visualization of 

perceptual space using Multidimensional Scaling (MDS). r indicates the Pearson’s 

correlation coefficient between perceived distances and distances in the 2D plot, **** is p < 

0.00005 (C) Similar plot as in (B) for the penultimate fully connected layer of VGG-16. (D) 

Similar plot as in (C) for VGG-16 trained without data augmentation.
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Fig. 6. Symmetry advantage in perception and CNNs.
(A) Perceptual dissimilarity in humans for both horizontal and vertical symmetric and 

asymmetric object pairs. Asterisks represent statistical significance of comparisons: * is p < 

0.05, ** is p < 0.005 and *** is p < 0.0005. (B) Similar plot as in (A) for the penultimate 

fully connected layer of VGG-16. n.s. is not significant and ***** is p < 0.000005. (C) 

Similar plot as in (A) for the penultimate fully connected layer of a VGG-16 network trained 

without data augmentation.
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Fig. 7. Symmetry advantage in units important for classification.
(A) Symmetry modulation index (Eq. 5) for horizontal and vertical objects. (B) Example 

gabor images used for the spatial frequency analysis (C) Average activity evoked by Gabors 

of varying spatial frequency for top-100 and bottom-100 units in the penultimate fully-

connected layer of VGG-16. Error bars indicate s.e.m. across units; (D) Spatial frequency 

modulation index (Eq. 6) for top-100 and bottom-100 units. Error bars indicate s.e.m. ***** 

is p < 0.000005.
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