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ABSTRACT
◥

Population-based screening for colorectal cancer is an
effective and cost-effective way of reducing colorectal cancer
incidence and mortality. Many genetic and phenotypic risk
factors for colorectal cancer have been identified, leading to
development of colorectal cancer risk scores with varying
discrimination. However, these are not currently used by
population screening programs.We performed an economic
analysis to assess the cost-effectiveness, clinical outcomes,
and resource impact of using risk-stratification based on
phenotypic and genetic risk, taking a UK National Health
Service perspective. Biennial fecal immunochemical test
(FIT), starting at an age determined through risk-
assessment at age 40, was compared with FIT screening
starting at a fixed age for all individuals. Compared with
inviting everyone from age 60, using a risk score with area
under the receiver operating characteristic curve of 0.721 to
determine FIT screening start age, produces 418 QALYs,
costs £247,000, and results in 218 fewer colorectal cancer
cases and 156 fewer colorectal cancer deaths per 100,000
people, with similar FIT screening invites. There is 96%

probability that risk-stratification is cost-effective, with net
monetary benefit (based on £20,000 per QALY threshold)
estimated at £8.1 million per 100,000 people. The maximum
that could be spent on risk-assessment and still be cost-
effective is £114 per person. Lower benefits are produced
with lower discrimination risk scores, lower mean screening
start age, or higher FIT thresholds. Risk-stratified screening
benefits menmore than women. Using risk to determine FIT
screening start age could improve the clinical outcomes and
cost effectiveness of colorectal cancer screening without
using significant additional screening resources.

Prevention Relevance: Colorectal cancer screening is
essential for early detection and prevention of colorectal
cancer, but implementation is often limited by resource
constraints. This work shows that risk-stratification using
genetic and phenotypic risk could improve the effectiveness
and cost-effectiveness of screening programs, without using
substantially more screening resources than are currently
available.

Introduction
Colorectal cancer (colorectal cancer) is the third most com-

mon diagnosed cancer in the world, accounting for 1.8 million
new cases and 0.8 million deaths in 2018 (1). Screening is an
effective way of reducing both mortality and incidence, by
identifying colorectal cancer at earlier stages that are easier to

treat and identifying and removing cancerous precursors (ade-
nomas). Many high-income countries have chosen to screen
their populations using the biennial fecal immunochemical test
(FIT; ref. 2). The age at which FIT screening starts varies
between countries with many starting at age 50 (e.g., Italy,
France & Scotland; ref. 2). In England, FIT screening currently
starts at age 60, despite studies indicating that reducing the start
age to 50 would be highly cost-effective (3).While the intention
is to reduce screening start age to 50 eventually, resource
constraints mean that there is currently insufficient capacity
(at the point of follow-up colonoscopy) to do this (4).
While age is the most important risk factor for colorectal

cancer, many other genetic and phenotypic risk factors for
colorectal cancer have been identified and quantified (5–8). In
rare cases, individuals are at particularly high risk for colorectal
cancer, for example, if they have monogenic conditions such as
Lynch syndrome and familial adenomatous polyposis (9).Once
identified, such individuals should receive specialist surveil-
lance and are generally not included in population screen-
ing (10). For most individuals, colorectal cancer risk is due to a
combination of a large number of risk and protective factors
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each contributing a very small amount. These include lifestyle
factors such as alcohol consumption, physical activity, and
diet (5), polygenic risk factors, of which more than 120 have
been identified so far (7), and other characteristics such as
family history and ethnicity, which are likely to be based on a
combination of genetic and environmental risk (6, 8). Using
various risk factors, a large number of different colorectal
cancer risk-predictionmodels have been developed throughout
the world (11, 12). Use of risk scores to determine who should
be screened, and when, could result in better disease outcomes
and more efficient targeting of scarce resources. Despite this,
risk score–based screening has not been evaluated in practice
and no current population-based screening programs use risk
factors other than age to determine eligibility criteria.
While risk-based screening has not been evaluated in clinical

trials, several recent modelling studies have examined the
potential cost-effectiveness of risk-based strategies (13–15).
However, these analyses have several limitations. First, they
have been based on hypothetical risk scoring and have not
evaluated or compared the many preexisting risk scores to
determine whether any of these perform adequately. Second,
none have evaluated risk scores that combine both genetic and
modifiable phenotypic risk factors. Third, existing studies have
generally not examined the benefits of risk stratification in the
context of screening resource constraints that operate in prac-
tice and that prevent more cost-effective strategies using more
screening resources, from being implemented.
Previously we reviewed published risk scores and externally

validated them against UK Biobank data to determine which
scores have the best discrimination within a UK popula-
tion (16, 17). The aim of the analysis presented here was to
use the best-performing risk scores including phenotypic and
genetic risk as the basis for determining the age at which FIT
screening should start, then to estimate the cost-effectiveness,
clinical benefits, and resource impact of risk-stratification,
compared with current screening strategies, from the English
NHS perspective.

Materials and Methods
A new individual patient-level microsimulation model was

developed in R programming language:MicrosimulationMod-
el in Cancer of the Bowel (MiMiC-Bowel). This model simu-
lates the life course of patients who each have a set of individual
characteristics that determines their cancer risk and response to
screening and surveillance. Patient baseline characteristics
including phenotypic colorectal cancer risk factors are taken
from the 6,787 individuals aged 30 or over in the Health Survey
for England (HSE) 2014 (18). For this analysis, all individuals
were set to age 30 at the beginning of the model and were then
followed over time within the microsimulation. The model has
a lifetime horizon and takes an NHS perspective.

Model background
A brief summary of the model is presented here, with more

detailed explanation available in an online technical methods

document (http://eprints.whiterose.ac.uk/162743/). MiMiC-
Bowel is comprised of several modules; a core natural history
module, plus modules for symptomatic diagnosis, screening,
and surveillance. In the natural history module, all patients are
assumed to have normal colorectal epithelium at age-30 and
patients then travel through nine different health states repre-
senting normal epithelium, low- and high-risk adenoma
[definitions based onBritish Society ofGastroenterology (BSG)
guidelines; ref. 10], colorectal cancer stages between A and D
and death from colorectal cancer or other causes. The serrated
adenoma pathway is represented by a transition directly from
normal epithelium to colorectal cancer stage-A. Transitions
between health states were derived through calibration to find
parameter sets that enabled the model to replicate colorectal
cancer incidence and prevalence of adenomas and undiagnosed
colorectal cancer by age and sex in the absence of colorectal
cancer screening (19–23). A full description of model calibra-
tion and tests for model validity are available online (http://
eprints.whiterose.ac.uk/171343/). Transitions to colorectal
cancer–related death were calculated from English colorectal
cancer survival data from 2013–2017, which varies by age, sex,
stage at diagnosis, and year from diagnosis (6). Other-cause–
mortality was based on 2016–2018 English life tables by age and
sex (24), from which known colorectal cancer mortality from
2018 death certificate data was subtracted (25).
Patients with colorectal cancer may be diagnosed symptom-

atically or through screening. Modeled screening procedures
are based on the English Bowel Cancer Screening Programme
(BCSP), with positive results at FIT leading to further inves-
tigation by colonoscopy or computed tomography colonogra-
phy (CTC). Patients found to have adenomas undergo poly-
pectomy and BSG guidelines are implemented in the model for
surveillance following adenoma removal (10). Complications
of endoscopy including perforation, major bleed, andmortality
are included in the model (26, 27). Uptake of screening and
follow-up procedures varies by age, sex, socioeconomic dep-
rivation, and prior response to screening in line with published
data (28, 29), but is assumed not to be altered directly by risk-
stratification. The sensitivity and specificity of FIT screening,
calculated by dividing screening detection rates by modeled
disease prevalence, also varies by age, sex, FIT threshold,
underlying disease status, and screening round (Supplemen-
tary Table S1; refs. 28, 30, 31). All modeled procedures are
assumed to incur costs and resource use, with colorectal cancer
treatment costs varying by age, stage at diagnosis, and year
from diagnosis (32). All patients have an individual health-
related quality-of–life which comes originally from HSE
2014 (18), but then is subject to decrements based on age,
colorectal cancer diagnosis, and endoscopy complications.
Potential psychologic impacts of screening are not included.

Modeling stratified risk
Modeled phenotypic risk factors include body mass index

(BMI), alcohol consumption, smoking, physical activity, and
ethnicity. These were chosen as they are available from HSE
2014 for eachmodeled individual (18) and their relative risk for
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colorectal cancer has been reported (5, 6). Baseline values for
lifestyle risk factors, and changes as individuals age, were
incorporated in the model using a percentile method based
on HSE 2014 data. Family history of colorectal cancer was not
available fromHSE 2014 but important for stratified colorectal
cancer risk analysis (8). Both a “known” (age-dependent) and
“actual” (age-independent) family history was assigned ran-
domly to modeled individuals, based on proportions of the
population with a first-degree relative with colorectal cancer at
different ages in the UK Biobank population (33), with risk
depending upon the “actual” family history.
Genetic data was incorporated by assuming that an indivi-

dual’s true genetic risk of colorectal cancer was represented by
the 120 risk alleles associated with colorectal cancer, identified
to date from Huyghe and colleagues (2019; ref. 7). Each
modeled individual was randomly assigned each of these risk
alleles, taking into account allele frequency obtained from UK
Biobank data (33) and correlations between alleles on the same
chromosome obtained from LDlink (34). Phenotypic and
genetic risk factors were assumed to act independently on
colorectal cancer risk, although in practice there are likely to
be some correlations between them, particularly for family
history and ethnicity. Phenotypic and genetic factors were
combined for each person within the simulated population,
to obtain a single individualized relative risk for colorectal
cancer. These relative risks were applied to the transitions from
normal epithelium to LR adenoma, representing the adenoma–
carcinoma pathway, and from normal epithelium to colorectal
cancer, representing the serrated pathway. Calibration was
used to adjust relative risks to ensure the expected relative
amount of colorectal cancer was occurring in people with and
without risk factors.
To model the effects of using independent published risk

scores to identify individuals for screening, two risk models

identified from our previous work as having good performance
were incorporated intoMiMiC-Bowel; theMa phenotypic only
score (10) and the Jeon genetic only score (35), in addition to a
score combining the two sets of risk factors (called MaJeon in
this publication). Evaluation of these scores represents an
independent assessment of the performance of risk-stratified
screening. The discrimination of each risk score within MiM-
iC-Bowel, in a population cohort risk-assessed at age 40 and
then simulated over a 10-year period, was assessed using the
Area Under the Receiver Operating Curve (AUROC; Table 1;
Supplementary Fig. S1). Discrimination is lower than previ-
ously found during validation against UK Biobank (16), as the
impact of age predictors is absent due to use of a single-aged
cohort in the model. In addition to using these independent
risk scores, the performance of optimal risk scoring was
also evaluated on the basis of genes alone (the Huyghe risk
score), and the combined genetic and phenotypic factors
included in development of the model (Huyghe plus BMI,
physical activity, alcohol consumption, and smoking), with or
without the additional incorporation of sex-specific risks
(called “Total Risk” and “Total Riskþ Sex” scores respectively
in thismanuscript). Thesewere not independent frommodeled
colorectal cancer transitions, but enabled risk scores with
higher discrimination to be assessed. Each risk score was
adapted to enable calculation of absolute 10 year colorectal
cancer risk based on Cancer Research UK colorectal cancer
incidence for England (36). This enabled for example the Ma
risk score, which is based on a Japanese population, to be
calibrated to the English population.
Given that risk score administration costs are unknown and

likely to vary considerably for different risk scores depending
upon whether they require routinely gathered data, phenotypic
data or genetic data, no costs were assigned to risk scoring itself.
Instead, a justifiable cost analysis was carried out to determine

Table 1. Characteristics of risk scores used in the analysis, based on assessing risk at age-40.

Risk score Maa Jeon MaJeona Huyghe Total risk
Total risk
plus Sex

Included risk factors BMI 57 SNPs BMI 120 SNPs BMI BMI
Smoking Smoking Smoking Smoking
Alcohol Alcohol Alcohol Alcohol
PA PA PA PA

57 SNPs 120 SNPs 120 SNPs
Sex

10-year AUROC: total 0.559 0.577 0.660 0.678 0.720 0.721
10-year AUROC: male 0.566 0.572 0.654 0.673 0.715 0.715
10-year AUROC: female 0.546 0.582 0.666 0.684 0.723 0.723
Proportion who get colorectal cancer in top decile of risk 0.145 0.157 0.242 0.250 0.314 0.316
Mean age at first FIT invite: with comparator age-60 60.06 60.11 60.50b 60.08 60.05 60.10
Mean 10 year risk: with comparator age-60 0.96% 0.98% 0.94% 0.90% 0.90% 0.86%
Mean age at first FIT invite: with comparator age-50 50.13 50.10 50.07 50.02 50.04 50.06
Mean 10 year risk: with comparator age-50 0.34% 0.34% 0.29% 0.32% 0.31% 0.30%

Abbreviations: BMI, bodymass index; PA, physical activity; SNP, small nucleotidepolymorphism;AUROC, area under the receiver operating characteristic curve; CRC,
colorectal cancer; FIT, faecal immunochemical test.
aThe original Ma score also includes age, but this was not included here as all individuals are being screened at age 40.
bThe MaJeon age distribution is highly skewed compared to other scores meaning a risk level with a higher mean screening start age had to be selected to ensure a
similar value for number of FIT invites per person.
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the maximum justifiable cost of implementing risk-scoring in
the population at age 40, while ensuring that risk scoring is still
cost-effective. This is useful for policy makers thinking about
using a risk stratified approach as it provides a guide as to how
much could be spent on collecting risk information.

Model analyses
The current FIT screening strategy in England [biennial FIT

at a threshold of 120 mg/g (FIT120), age 60–74] was chosen as
the basecase comparator. Three additional comparators were
included; one with a start age of 50 instead of 60, a second using
FIT20 rather than FIT120 as the threshold, and a third in which
screening uptake was reduced by 25%, as the impact of risk
stratification on uptake is unknown. The intention is for
screening start age to fall to 50 eventually within the BCSP,
and then for FIT threshold to be reduced when resources allow,
andmany other European countries currently start screening at
age 50 and/or use a much lower FIT threshold than England.
Risk assessmentwas assumed to be carried out in allmodeled

individuals at age 40 using each of the risk scores described
above. Age at first FIT invite was calculated for each individual
as the age at which they would be expected to reach a particular
risk threshold given their risk at age 40; the risk threshold was
defined separately for each risk score to ensure that population
mean screening start age allocated using that score, approxi-
mated comparator start age (Table 1; Supplementary Fig. S1).
This was essential to ensure that total number of FIT screening
episodes was kept at approximately the same level between
comparator and intervention strategies, to ensure that any
benefits of stratified screening could be attributed to the
risk-stratification itself and not to reducing overall screening
start age, or performing more screening overall. This is impor-
tant because previous work has indicated that lowering screen-
ing start age below 60 in all individuals is cost-effective and
reduces colorectal cancer incidence and mortality, but is cur-
rently not feasible in England due to resource constraints (3).
Age at last FIT invite remained unchanged at 74 in all analyses.
Strategies were modeled using probabilistic sensitivity anal-

ysis (PSA), to enable parameter uncertainty to be incorporated.
Discount rate was set at 3.5% for costs and QALYs in the
basecase analysis as per UK National Institute of Health and
Care Excellence (NICE) guidelines (37). Sensitivity analyses
were carried out using alternative discount rates of 1.5% or 5%.
Cost effectiveness was measured using incremental net mon-
etary benefit [calculated as (incremental QALYs � willingness
to pay threshold) – incremental costs], assuming a willingness
to pay threshold of £20,000 or £30,000 per QALY (37). Out-
comes were collected for the whole population and by sex. All
model outcomes were weighted usingHSE 2014 survey weights
to represent the population of England.

Data availability
Full description of model methods, parameters, and data

sources are available online (http://eprints.whiterose.ac.uk/
162743/). Model code is available on request.

Ethical approval
This research has been conducted using the UK Biobank

Resource under Application Number 28126. The UK Biobank
study was conducted according to the guidelines laid down in
the declaration ofHelsinki and all procedures involving human
subjects/patients were approved by the North West Multi-
Centre Research Ethics Committee (reference number 06/
MRE09/65). At recruitment all participants gave written
informed consent to participate inUKBiobank and be followed
up, using a signature capture device.

Results
Cost-effectiveness outcomes
Risk-stratification based on amean FIT120 screening start age

of 60 is expected to be cost-effective compared with starting
FIT120 screening in all individuals at age 60,with incremental net
monetary benefit per person ranging between £4 using the Ma
score and £81 using the Total Riskþ Sex score (Fig. 1; Table 2),
assuming a willingness-to–pay threshold of £20,000 per QALY.
Net monetary benefit is higher for the risk scores with higher
discrimination. This difference in cost-effectiveness between risk
scores is due to differences in QALY gain (ranging between
0.0001QALYs per person using theMa score and 0.0042QALYs
per person using the Total Risk þ Sex score), as the higher
discrimination risk scores also result in higher total costs, with
some of the lower discrimination scores actually being cost-
saving (ranging between -£1.41 per person using the Ma score
and £2.47 per person using the Total Riskþ Sex score). All scores
result in reduced colorectal cancer treatment costs, with greater
cost-savings coming from the high discrimination risk scores;
however additional screening costs outweigh the colorectal can-
cer treatment savings for the higher discrimination risk scores
(Table 2). In line with the cost-effectiveness results, the maxi-
mum cost at which risk scoring at age 40 could be priced, whilst
still enabling the risk stratification strategy to be cost-effective at a
threshold of £20,000 per QALY, varies between £5 per person for
theMa score and £114 per person for the Total Riskþ Sex score.
Risk-stratification based on a mean FIT120 screening start

age of 50, compared with starting FIT120 screening in all
individuals at age-50, produces lower QALY gains (0.0001 to
0.0025 QALYs per person), higher total costs (�£0.34 to £3.82
per person), and consequently lower incremental netmonetary
benefit (£2 to £46 per person) and maximum justifiable cost of
risk scoring (£4 to £65 per person) for each of the risk scores
(Supplementary Fig. S2; Supplementary Table S2). In contrast,
if FIT threshold is reduced to 20, but mean screening start age
is kept at 60, the risk stratified approach produces slightly
higher QALY gains (0.0001 to 0.0058 QALYs per person), all
strategies produce cost savings (�£3.29 to�£1.96 per person),
and incremental netmonetary benefit andmaximum justifiable
costs for risk scoring are greater compared with FIT120
screening (Supplementary Fig. S3; Supplementary Table S3).
As expected, reducing FIT uptake reduces the benefits of
screening and the overall cost-effectiveness of each strategy
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(Supplementary Table S4). Reducing the discount rate results
in lower incremental net monetary benefit for all risk-stratified
strategies and vice versa for increased discount rates in most
cases, although the Ma score is no longer cost-effective at a
discount rate of 5% (Supplementary Tables S5 and S6).
Probabilistic sensitivity analysis results indicate that the

best performing Total Risk þ Sex score, when used for risk-
stratification for FIT120 screening with a mean screening start
age of 60, has a 96% probability of being more cost-effective
than the comparator (all invited at age 60) and a 47% prob-
ability of being the most cost-effective risk score overall,

assuming a willingness-to-pay threshold of £20,000 per QALY
(Fig. 2). TheMa score in contrast has only a 53% probability of
being cost-effective when compared with no risk stratification.
Uncertainty is generally higher if the mean FIT screening start
age is 50, with the Total Risk þ Sex score having only 78%
probability of being more cost-effective than the comparator
(all invited at age 50), and 29% probability of being the most
cost-effective risk score overall. Uncertainty is generally lower if
a FIT threshold of 20 is used for screening, with the Total Risk
þ Sex score having 99%probability of beingmore cost-effective
than the comparator.
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Figure 1.

Incremental outcomes for risk stratification (based on a mean screening start age of 60), compared with screening start age of 60 for the entire population.
Incremental net monetary benefit is based on a cost-effectiveness threshold of £20,000/QALY. A: Net Monetary Benefit, B: Costs, C: Quality-adjusted life years
(QALYs), D: CRC incidence, E: CRC mortality, F: Use of screening colonoscopies.
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Disease & resource use outcomes
Risk-stratification using risk scores with low discrimina-

tion is expected to cause a slight increase in colorectal cancer
incidence and mortality (e.g., an increase of 2 in 100,000 in
colorectal cancer incidence and of 18 in 100,000 in colo-
rectal cancer mortality using the Ma score with a mean
FIT120 screening start age of 60; Fig. 1; Supplementary
Table S2). By comparison, risk-stratification using risk
scores with higher discrimination is expected to reduce
colorectal cancer incidence and mortality considerably
(e.g., a reduction of 218 in 100,000 in colorectal cancer
incidence and of 136 in 100,000 in colorectal cancer mor-
tality using the Total Risk þ Sex score with a mean FIT
screening start age of 60). Again, a clear gradient is apparent
by risk score discrimination, smaller impacts are seen at

when the mean FIT screening start age is 50 or if FIT uptake
is reduced, and larger impacts are seen if the FIT threshold is
20 rather than 120.
The mean number of incremental FIT invites per person is

very similar between all the strategies, as the intention was to
minimize these differences when comparing strategies. FIT
invites range from �0.023 for the Jeon risk score to 0.077 for
the Total Risk þ Sex score per person throughout their
lifetime (Table 2). However, the number of screening colo-
noscopies varies quite considerably (between �166 per
100,000 people for the Ma score and 859 per 100,000 for
the Total Risk þ Sex score), reflecting the ability of each risk
score to redirect screening resources towards higher risk
people who are more likely to test positive with FIT screen-
ing. The combined impact of this differential screening

Table 2. Full set of incremental outcomes for risk-stratification based on a mean FIT120 screening start age of 60, compared with
screening everyone with FIT120 at age 60.

Risk score Ma Jeon MaJeon Huyghe Total risk
Total risk
þ Sex

Total costs per person M �£1.41 �£1.35 �£1.24 £0.44 £1.47 £2.47
L �£20 �£18 �£19 �£18 �£20 �£20
U £15 £15 £17 £19 £23 £22

colorectal cancer treatment costs per person M �£2.11 �£1.73 �£3.37 �£6.38 �£8.55 �£8.51
L �£21 �£20 �£21 �£26 �£31 �£32
U £15 £15 £16 £13 £14 £13

Screen & surveillance costs per person M £0.70 £0.38 £2.12 £6.82 £10.02 £10.99
L �£3 �£4 �£2 £2 £5 £5
U £5 £5 £7 £12 £16 £17

QALYs per person M 0.0001 0.0002 0.0007 0.0026 0.0038 0.0042
L �0.0039 �0.0034 �0.0028 �0.0016 �0.0007 �0.0002
U 0.0037 0.0037 0.0046 0.0072 0.0088 0.0094

NMB per person (£20,000/QALY threshold) M £3.71 £4.99 £14.81 £52.27 £75.36 £81.15
L �£70 �£64 �£57 �£29 �£12 �£4
U £76 £72 £90 £138 £177 £185

NMB per person (£30,000/QALY threshold) M £4.86 £6.81 £21.59 £78.63 £113.77 £122.97
L �£107 �£96 �£83 �£45 �£15 �£9
U £115 £109 £137 £211 £268 £275

MJC per person (£20,000/QALY threshold) M £5.23 £7.04 £20.89 £73.74 £106.30 £114.48
L �£99 �£90 �£80 �£41 �£17 �£5
U £107 £102 £126 £195 £250 £261

MJC per person (£30,000/QALY threshold) M £6.86 £9.61 £30.45 £110.92 £160.49 £173.46
L �£150 �£136 �£118 �£64 �£21 �£13
U £162 £154 £193 £298 £379 £389

Prob. cost-effective (£20,000/QALY) 53% 55% 65% 89% 96% 96%
Prob. cost-effective (£30,000/QALY) 54% 55% 65% 89% 96% 96%
colorectal cancer incidence per 100,000 people M 2 �2 �28 �134 �205 �218

L �1117 �1035 �1127 �1275 �1384 �1391
U 1109 1069 1062 1006 946 927

colorectal cancer mortality per 100,000 people M 18 9 �4 �87 �140 �156
L �467 �459 �474 �568 �633 �647
U 485 468 483 404 352 351

FIT screening invites per person M 0.016 �0.023 0.034 0.038 0.053 0.077
L �0.008 �0.045 0.007 �0.003 �0.012 0.009
U 0.041 0.000 0.062 0.076 0.110 0.136

Screening colonoscopies per 100,000 people M �166 �101 �37 408 728 859
L �847 �802 �710 �310 �49 14
U 493 656 654 1143 1552 1655

Abbreviations: CRC, colorectal cancer; L, lower 95% credible interval; M,mean;MJC,maximum justifiable cost (of risk scoring procedure); NMB, netmonetary benefit;
Prob., probability; QALY, quality adjusted life year; U, upper 95% credible interval.
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resource use is to result in lower screening costs for scores
with low discrimination and increased screening costs for
scores with higher discrimination.

Subgroup outcomes
Benefits of risk-stratification are distributed unequally

between men and women, particularly if sex is included as a
criterion for risk stratification, but even where sex is not
explicitly included (Fig. 3; Supplementary Table S7). Using
the Total Riskþ Sex score with a mean FIT screening start age
of 60, the model predicts that men will gain more QALYs than
women (0.0061 vs. 0.0024 per person), will lead to an increase
in NHS costs, whilst women produce savings (£6.31 vs.�£1.11
per person), and compared with women,men will gain a bigger
reduction in colorectal cancer incidence (�321 per 100,000 vs.
�123 per 100,000) and mortality (�219 per 100,000 vs. �98
per 100,000). Due to the additional QALY gains, risk stratifi-
cation is more cost-effective in men than women (incremental
net monetary benefit per person is £115 inmen, but only £50 in
women) and the maximum cost at which risk scoring at age 40
could be priced, whilst still enabling the risk stratification
strategy to be cost-effective at a threshold of £20,000 perQALY,
is higher inmen thanwomen (£162 formen comparedwith £70
for women). Men are invited to FIT screening more frequently
(an additional 0.93 invites), whilst women are invited less

frequently (�0.72 additional invites), and whilst the number
of screening colonoscopies increases in both sexes, this is much
greater inmen thanwomen (1455 additional colonoscopies per
100,000 men vs. 303 per 100,000 women). This indicates that
part of the benefit of risk-stratification in men is due to a
redistribution of resources away from the women at lower risk,
to the men at higher risk, although both sexes are expected to
benefit overall from improved health and cost-effectiveness
outcomes.

Discussion
Our findings suggest that stratified screening in which

individuals are invited to screening based on personalized risk,
assessed through genetic and/or phenotypic risk scores rather
than age alone, is likely to save costs and reduce colorectal
cancer incidence andmortality without significantly increasing
resource use. Given the resource constraints currently prevent-
ing cost-effective initiation of screening at younger ages in
many countries including England, this could represent a
reasonably resource-neutral means of improving efficiency,
providing that costs of risk scoring can beminimized.However,
we have shown that these benefits of risk-stratification dimin-
ish if resources are available to screen the entire population at a
younger age. This result is supported by evidence from other
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Figure 2.

Cost-effectiveness planes (A–C) and cost-effectiveness acceptability curves (D–I) comparing probabilistic sensitivity analysis results for risk-stratification using the
Total Riskþ Sex score (based on a mean starting age of 60 or 50 and at a FIT threshold of 120 or 20), against inviting all at age 60 or age 50 respectively or against
other risk scores.
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modelling studies that have compared strategies in which
screening starts from age-50 or younger, and which have
concluded that risk stratification based on genetic risk is not
likely to be more cost-effective than uniform screening at
current levels of risk score discrimination (13, 14). This means
that whilst risk-stratification may be an attractive option
currently in England where population screening starts at age
60, it may not be attractive in other countries that start
screening at lower ages, or in England in the future if more
resources become available for screening.
The results indicate that benefits increase as the discrim-

ination of the risk scores used increases. Scores with low
discrimination such as the Ma score that has an AUROC of
0.56 appear to be cost-effective primarily through their
impacts in increasing cost savings due to screening lower
risk people later/less frequently, producing few or even
negative health benefits. However, higher ranking risk scores
with AUROCs of above 0.65 are likely to promote QALY
gains in addition to cost-savings, and result in colorectal
cancer incidence and mortality reductions. In external val-
idation within a UK cohort, the risk score by Huyghe with
120 SNPs had an AUROC of 0.62 (95% CI, 0.61–0.64) in
both women and men (16), which is close to this level,
although the performance of this score could not be eval-
uated independently within our model. It is important to
note that discrimination of risk scores may differ consider-
ably between cohorts from different countries, and scores
that perform well in a UK population may not rank as highly
in non-European populations, indicating that there may be a

need for different risk scores with high discrimination for
different populations of interest. With increasing access to
large datasets and more sophisticated statistical techniques,
it is likely that better performing models will be developed in
the future that combine known genetic and phenotypic risk
for specific populations.
The costs of calculating risk in the population at age 40 were

not incorporated within the modelling as these currently
cannot be accurately quantified. However, the maximum jus-
tifiable cost analysis suggests that this could be as high as £114
per person for risk scores with high discrimination and risk-
stratification, whilst still being cost-effective. Actual costs of
risk-scoring will vary depending upon whether included risk
factors are already routinely collected in primary care, or
whether additional data collection or sampling (e.g., for genetic
testing) is required and if so, whether these additional costs can
be offset by combining them with data collection for other
screening programs. The relative cost-effectiveness of different
risk scores is therefore highly likely to differ, dependent upon
their administration costs aswell as the gradient of benefits they
produce. In addition to the cost, there are also logistical
challenges associated both with linking routinely collected
primary care data with screening program data and collecting
new information on the population. In England the NHS
Health Check program provides a potential vehicle for collect-
ing new information. At age-40 all those without a prior history
of cardiovascular disease are invited to theirfirst 5-yearly health
check (38), which involves taking blood samples and collecting
information about phenotypic risk factors including BMI and
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Figure 3.

Incremental outcomes by sex for screening start age based on risk-stratification using the Total Risk þ Sex score, compared with screening start age of 60 for the
entire population. Incremental net monetary benefit is based on a cost-effectiveness threshold of £20,000/QALY. A: Net Monetary Benefit, B: Use of screening
colonoscopies, C: CRC incidence, D: CRC mortality.

Thomas et al.

Cancer Prev Res; 14(8) August 2021 CANCER PREVENTION RESEARCH818



smoking. It seems feasible that this NHSHealth Check could be
extended for fairly minimal cost, to enable collection of addi-
tional risk factor information and assessment of risk for
colorectal cancer and potentially other conditions. However,
uptake of NHS Health Checks is currently only 41% (39),
meaning that the risk for many people would not be assessed.
An alternative route would also be required for those not
eligible for an NHS Health Check. In this analysis we have
assumed that the risk of all individuals is known; however,
incomplete uptake would significantly reduce the overall
population benefits of risk-stratification. This analysis has
also assumed that individuals would not change either their
screening uptake or their colorectal cancer risk behavior in
response to risk-assessment, although there is some evidence
that willingness to uptake screening could be increased in people
who know they are high risk, andunchanged in peoplewho know
they are low risk,which if true could improve cost-effectiveness of
risk stratification (40). Using risk-scoring as an opportunity to
modify lifestyle risk factors could increase its cost-effectiveness
further if costs of behavior-change–interventions could be mini-
mised. In England, some behavior change programs that would
reduce colorectal cancer risk (e.g., smoking cessation and weight
management) are already offered to some people as part of the
NHS Health Check (38), and uptake or effectiveness of these
might be improved if patients were also aware of the potential
impact on their colorectal cancer risk, although evidence from a
recent study suggests that there is little impact on health-related
behavior in response to risk scoring (41). Uptake of risk-scoring
and behavior change in response to risk-scoring should be
investigated as part of any future pilot study for risk score-
based screening.
Our results suggest that inviting individuals to screening based

on estimated risk rather than age alone, is likely to benefit men
more thanwomen due to the higher underlying rate of disease in
men (42), andalso that theywill start screening earlier on average
than women when risk scores including sex, or phenotypic risk
factors correlated with sex, are used. This results in a shift of
screening resources towards men, and greater improvement in
their colorectal cancer incidence andmortality outcomes.Whilst
uptake of screening is lower in men (43–46), the modelling
indicates that overall, the benefits of inviting them at a younger
age outweighs the disadvantages of not inviting women until
older age, thereby both improving efficiency and mitigating
some of the inequities inherent to colorectal cancer screening.
This analysis also only focused on one potential application of
risk-stratification – to determine age at first FIT screen, but risk
stratification could be applied elsewhere in the screening path-
way, for example, using a combination of individual colorectal
cancer risk and FIT score to determine who gets follow-up
colonoscopy, or using a combination of individual colorectal
cancer risk and result of previous screen to determine when the
next screening invite should occur.
There are several limitations of the modelling that could

impact on results. Data limitations have meant that some
known risk factors are missing from the model (in particular

red meat and fibre, neither of which are in HSE 2014; ref. 18),
and correlations between the set of correlated genetic risk
factors and the HSE correlated phenotypic risk factors are
absent. Assumptions were also made that all risk factors will
impact on the first natural history transitions from normal
epithelium only, and through both the adenoma carcinoma
and serrated natural history pathways to a similar extent,
thereby making disease attributed to all risk factors equally
amenable to screening.Whilst there is no data to inform this, it
is unlikely to be the case given the posited differences between
pathways and adenoma/colorectal cancer prevalence in terms
of age and sex distribution and location in the bowel. Data
limitations have also resulted in high uncertainty around
modelling results. Better quality routine data collection (e.g.,
using FIT screening data from the BCSPnow it has commenced
in England, rather than FIT pilot data), and more knowledge
around colorectal cancer natural history should enable more
accurate estimates of the benefits of risk-stratification to be
produced in the future.
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