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Abstract

Circulating proteins are vital in human health and disease and are frequently used as biomarkers 

for clinical decision-making or as targets for pharmacological intervention. Here we map and 

replicate protein quantitative trait loci (pQTL) for 90 cardiovascular proteins in over 30,000 

individuals, resulting in 451 pQTLs for 85 proteins. For each protein we further perform pathway 

mapping to obtain trans-pQTL gene and regulatory designations. We substantiate these regulatory 

findings with orthogonal evidence for trans-pQTLs using mouse knock-down experiments 

(ABCA1, TRIB1) and clinical trial results (CCR2, CCR5), with consistent regulation. Finally 

we evaluate known drug targets, and suggest new target candidates or repositioning opportunities 

using Mendelian randomization. This identifies 11 proteins with causal evidence of involvement 

in human disease that have not previously been targeted, including (gene symbols) EGF, IL16, 

PAPPA, SPON1, F3, ADM, CASP8, CHI3L1, CXCL16, GDF15, and MMP12. Taken together 

these findings demonstrate the utility of large-scale mapping the genetics of the proteome, and 

provide a resource for future precision studies of circulating proteins in human health.
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Proteins circulating in blood are derived from multiple organs and cell types, and consist 

of both actively secreted and passively leaked proteins. Plasma proteins are frequently used 

as biomarkers to diagnose and predict disease and have been of key importance for clinical 

practice and drug development for many decades.

Circulating proteins are attractive as potential drug targets as they can often be directly 

perturbed using conventional small molecules or biologics such as monoclonal antibodies1. 

However, a prerequisite for successful drug development is efficacy, which is predicated 

on the drug target playing a causal role in disease. One approach to clarifying causation is 

through Mendelian randomization (MR), which has successfully predicted the outcome of 

randomized controlled trials (RCT) for pharmacological targets such as PCSK9, LpPLA2 

and NPC1L1, and is increasingly becoming a standard tool for triaging new drug targets2.

Recent technological developments of targeted proteomic methods have enabled hundreds to 

thousands of circulating proteins to be measured simultaneously in large studies3–6. This has 

paved the way for studies of genetic regulation of circulating proteins using genome-wide 

association studies (GWAS) for detection of protein quantitative trait loci (pQTL), some of 

which are referenced here3,4,7–9.

Here, we present a genome-wide meta-analysis of 90 cardiovascular-related proteins, many 

of which are established prognostic biomarkers or drug targets, measured using the Olink 

Proximity Extension Assay CVD-I panel 10 in 30,931 subjects across 14 studies. The 

identified pQTLs were combined with other sources of information to suggest new target 

candidates underpinned by insights into cis- and trans- regulation of protein levels and 

to evaluate past and present efforts to therapeutically modify the proteins analysed in the 

present investigation. We also show that protein-centric polygenic risk scores (PRS) can 

predict a substantial fraction of inter-individual variability in circulating protein levels, 

explaining a proportion of disease susceptibility attributable to specific biological pathways.

These are the first results to emerge from the SCALLOP consortium, a collaborative 

framework for pQTL mapping and biomarker analysis of proteins on the Olink platform 

(www.scallop-consortium.com).

Results

Genome-wide meta-analysis of 90 proteins reveals 467 independent genetic loci 
associated with plasma levels of 85 proteins

Ninety proteins in up to 21,758 participants from 13 cohorts passed quality control (QC) 

criteria and were available for GWAS meta-analysis [Supplementary Table 1]. We found a 

total of 401 pQTLs that were significant at a discovery P-value threshold conventional for 

GWAS (P<5x10-8) [Figure 1] [Supplementary Table 2]. Conditioning each of these primary 

pQTLs using the GCTA-COJO software, we identified an additional 144 proximal pQTLs 

that independently surpassed conventional genome-wide significance (P<5x10-8), termed 

as secondary pQTLs. We attempted to replicate the primary and secondary pQTLs in two 

independent studies (9,173 participants) whereupon the discovery and replication datasets 

were meta-analysed, leading to 315 primary pQTLs and 136 secondary pQTLs surpassing a 
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Bonferroni corrected P-value (P<5.6x10-10). The discovery P-values were used for pQTLs 

absent in the replication dataset (nsnp=25) [Supplementary Table 2].

Some proteins such as SCF, RAGE, PAPPA, CTSL1 and MPO showed association with 

more than nine primary pQTLs, but most proteins (22 of 85) were associated with 2 primary 

pQTLs. We also observed that some proteins were associated with multiple conditionally 

significant (secondary) pQTLs such as CCL-4 with 4 secondary signals, implicating 

complex genetic regulation of circulating CCL-4 at the CCL4 locus.

Analysis of trans-pQTLs suggests common mechanisms by which genetic variants affect 
plasma protein levels

A “best guess” causal gene for each of the CVD-I trans-pQTLs was assigned by a 

hierarchical approach based on analysis of protein-protein interactions (PPI), literature 

mining, genomic distance to gene and manual review of literature around the gene as 

well as the genomic context of the association signal. In total, 326 primary trans-pQTLs 

were assigned to unique genes and 30 trans-pQTLs were assigned more than one gene, 

with ABO, ST3GAL4, JMJD1C, SH2B3, ZFPM2 showing association with the levels of 

five or more CVD-I proteins [Extended Figure 2A and 2B] [Supplementary Table 2]. 

Extending this analysis to pQTLs from literature expanded the list of genes with five or 

more protein associations to include also KLKB1, GCKR, FUT2, TRIB1, SORT1 and F12 
[Supplementary Table 4].

Gene ontology (GO) analysis of genes assigned to all significant trans-pQTLs showed 

functional enrichment for chemokine binding, glycosaminoglycan binding, receptor binding 

and G-protein coupled chemoattractant activity [Figure 2C]. A broader classification of 

genes assigned to both cis- and trans-pQTLs [Figure 2A, 2B] [Supplementary Table 2] 

using a wider set of tools (Online Methods) suggested that transcriptional regulation, 

post-translational modifications, such as glycation and sialylation, cell-signalling events, 

protease activity and receptor binding are potential common mechanisms by which trans­

pQTLs influence circulating protein levels. The default gene calls and paths for the CVD-I 

trans-pQTLs based on PPI and literature mining can be visualised using the SCALLOP 

CVD-I network tool [Extended Figure 2C] whereas details on the classification of genes are 

available in the Online Methods, [Supplementary Information 1] and [Supplementary Table 

3].

Evidence of mRNA expression mediating associations with a third of cis pQTLs

We investigated the overlap of the CVD-I cis- and trans-pQTLs with expression quantitative 

trait loci (eQTL) by a combination of approaches and eQTL studies, including direct genetic 

lookups and colocalisation using PrediXcan 11 and SMR / HEIDI 12. For direct lookups, 

three studies were used: LifeLines-DEEP (whole blood), eQTLGen meta-analysis (whole 

blood and PBMCs) and GTEx (48 tissue types). Of 545 pQTLs from [Supplementary table 

2], eQTL data were available for 434 SNP-transcript pairs, including 168 cis-pQTLs and 

266 trans-pQTLs. Of these, 72 (43%) of cis-pQTLs had at least one corresponding eQTL 

(FDR<0.05) in any of the eQTL datasets investigated, implicating 42 of the 75 proteins 

with a cis-pQTL. At a more stringent eQTL p-value of P<5x10-8, the percentage with a 
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corresponding eQTL was 26 %, similar to some previous reports 13–15 [Supplementary Table 

5].

Co-localisation analysis of CVD-I cis-pQTLs and mRNA levels was performed in selected 

tissues from the GTEx project by first imputing mRNA expression of the CVD-I protein­

encoding transcripts using the PrediXcan11 algorithm in one of the SCALLOP CVD-I 

cohorts (IMPROVE), and then testing imputed mRNA levels for association with CVD-I 

plasma protein levels using linear regression. Twenty-six of the 90 CVD-I proteins were 

associated with their corresponding mRNA transcript (FDR<0.05) in at least one of the 

20 GTEx tissues investigated [Extended Figure 3]. All 26 proteins were among the 42 

proteins found to also be an eQTL by direct lookups. Proteins CCL4, CD40, CHI3L1, CSTB 

and IL-6RA all associated with their corresponding transcript across five or more tissues 

whereas proteins ST2 and RAGE showed significant association exclusively in lung, and 

CTSD exclusively in skeletal muscle.

To further investigate if the CVD-I protein pQTLs overlap with eQTLs, we used the SMR/

HEIDI methods12, using data from the Consortium for the Architecture of Gene Expression 

(CAGE) study. SMR/HEIDI tests the hypothesis that there is a single variant affecting 

protein and gene expression (pleiotropy or causality), with the alternative hypothesis 

being that protein and gene expression are affected by two distinct variants. In total, 125 

associations between 96 genes and 54 proteins were identified at an experiment-wise SMR 

test significance level (PSMR<0.05/8558) and a stringent HEIDI test threshold (PHEIDI 

> 0.01) [Supplementary Table 6], of which 23.2 % were in cis-pQTL regions, such 

as IL-8 and U-PAR. The 96 genes were located in 74 loci, suggesting that pleiotropic 

associations between protein and mRNA expression were present for 18.4 % of significant 

and suggestive primary loci using SMR / HEIDI.

A minor proportion of cis-acting pQTLs are in high linkage-disequilibrium with non­
synonymous coding variants

“Pseudo-pQTLs” caused by epitope effects, i.e. differential assay recognition depending on 

presence of protein-altering variants, is a theoretical possibility for cis-pQTLs and likely 

dependent on the method of protein quantification 4,16. To evaluate the potential for pseudo­

pQTLs among the CVD-I pQTLs, we investigated presence of protein-altering variants for 

sentinel variants or variants in high linkage disequilibrium with a sentinel variant. Of the 

90 proteins, 85 had at least one pQTL, including 12 with only cis-pQTLs, 10 with only 

trans-pQTLs and 63 with both cis- and trans-pQTLs. Of the 170 primary or secondary cis­

pQTLs for 75 proteins, 20 cis-pQTLs for 18 proteins had a sentinel variant in high linkage 

disequilibrium (LD; R2>0.9) with a protein-altering variant, which suggests potential to 

affect assay performance [Supplementary Table 2].

Orthogonal evidence supports causal gene to protein relationships for a subset of the 
CVD-I trans-pQTLs

Of the 326 trans-pQTLs identified, eight were assigned to gene products targeted by 

compounds or antibodies that have been in clinical development [Supplementary Table 

7]. Assuming that trans- pQTLs represent causal relationships between gene variants and 
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proteins, we hypothesized that the downstream CVD-I proteins associated with CVD-I 

trans-pQTL genes would be modulated on therapeutic modification of the gene product. 

Support for this hypothesis was obtained by previous work showing that circulating FABP4 

is upregulated upon treatment with glitazones (PPARG inhibitors)17; that circulating IL-6 

is increased after treatment with tociluzumab18 (IL6R inhibitor) and that circulating TNF­

R2 is decreased upon infliximab (TNFA inhibitor) treatment in patients with Crohn’s 

disease19, which supports CVD-I trans-pQTLs for these proteins. Along these lines, we 

present novel evidence from a clinical trial supporting our observations that a CCR5 variant 

is a trans-pQTL for plasma CCL-4 and a variant in CCR2 is a trans-pQTL for plasma 

MCP-1 [Supplementary table 2]. CCR5 and CCR2 are targeted in combination by the 

small-molecule dual-inhibitor PF-04634817 20. To test whether dual inhibition of CCR5 and 

CCR2 resulted in a change of circulating CCL-4 and MCP-1 respectively, we measured 

these proteins in 350 type 2 diabetes patients in a randomized, double-blind, placebo­

controlled phase-II trial evaluating the efficacy of PF-04634817 in diabetic nephropathy 

(NCT01712061). In addition, we also measured known or suspected ligands of CCR5 and 

CCR2, including CCL-3, CCL-5 (RANTES) and CCL-8, and 5 additional proteins that were 

present on the Olink CVD-I panel, and for which assays were readily available. Compared 

to placebo, we observed a 9.25-fold increase in circulating MCP-1 levels (p < 0.0001) and 

a 2.11-fold increase in circulating CCL4 levels (p < 0.0001) at week 12 [Figure 3A]. An 

alternative ligand for CCR-2; CCL-8 did not change following exposure to PF-04634817, 

and neither did other CCR-5 ligands, such as CCL-5 (RANTES) and CCL-3. Moreover, EN­

RAGE, FGF-23, KIM-1, myoglobin and TNFR-2 were unchanged following PF-04634817 

exposure [Extended Figure 4]. We conclude that CVD-I trans-pQTLs at CCR5 and CCR2 
were concordant with the effects of PF-04634817 in human.

Two of the genes implicated by CVD-I trans-pQTLs, ABCA1 and TRIB1 for circulating 

SCF levels, were also investigated in the mouse. Mice with liver-specific or whole-body 

knockdown of ABCA1 21 and TRIB1 22 respectively showed decreased plasma levels of 

SCF compared to matched wild-type controls [Figure 3B], concordant with the human 

CVD-I trans-pQTLs.

Mendelian randomization analysis revealed 25 CVD-1 proteins causal for complex traits 
with strong evidence

To identify potential causal disease pathways indexed by proteins, we conducted an MR 

analysis of 85 proteins across 38 outcomes. 25 proteins showed strong evidence of causality 

for at least one disease or phenotype and an additional 24 proteins showed intermediate 

evidence of causality. [Figure 4A] [Extended Figure 7] [Supplementary Figure 1]. Using 

open-source information (clinicaltrials.gov) (www.ebi.ac.uk/chembl/) (www.drugbank.ca/) 

(www.opentargets.org) and Clarivate Integrity (integrity.clarivate.com), we identified records 

on past or present clinical drug development programs for 14 of the 25 proteins, all of 

which have been in phase 2 trials or later [Supplementary Table 7]. Of the 14 proteins, 

seven proteins were targeted for an indication different from the phenotype implicated by 

our MR analysis. Eleven of the 25 proteins have never been targeted in clinical trials, but 

may provide new promising target candidates for indications closely related to the traits in 

the MR analysis.
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Several published MR findings were confirmed, including that IL6RA variants associated 

with higher circulating levels of interleukin-6 (IL-6) and soluble IL6-RA were associated 

with lower risk of coronary heart disease (CHD), rheumatoid arthritis (RA) and atrial 

fibrillation but higher risks of atopy, such as asthma and eczema23. We also replicated 

previous findings suggesting a causal contribution of IL-1ra to rheumatoid arthritis (RA) but 

an inverse causal relationship with cholesterol levels 24, and a protective role of genetically 

higher MMP-12 against stroke 4,25.

Some novel MR observations included higher levels of CD40 protein and increased risk of 

RA, higher MMP-12 and increased risk of eczema, and higher TRAIL-R2 proteins levels 

and prostate cancer. Further, Dkk-1 has been targeted by a humanised monoclonal antibody 

(DKN-01) in clinical trials for advanced cancer (NCT01457417, NCT02375880), and was 

in our study causally linked to higher risk of bone fractures and lower risk of estimated 

bone mineral density (eBMD). In addition, strong evidence for protective roles of PLGF 

in CHD, CASP-8 in breast cancer and ST2 in asthma was observed. RAGE was causally 

linked to several traits, including lower body mass index (BMI) and a corresponding lower 

risk of type 2 diabetes (T2D), higher total cholesterol and triglycerides and higher risk of 

prostate cancer and schizophrenia. A small molecule brain penetrant RAGE inhibitor was 

tested in a phase 2 trial of Alzheimer’s disease (NCT00566397), but was stopped early 

for futility. We saw no strong signal for Alzheimer’s disease (or vascular disease) in our 

MR analysis. Our findings identify potential target-mediated effects across multiple other 

complex phenotypes that might manifest in beneficial and/or harmful effects on patients 

receiving RAGE-modifying therapies.

We also collated observational evidence for 23 of the 50 protein-trait pairs identified as 

causal in the MR analysis [supplementary table 10]. The direction of effect inferred from 

observational studies was concordant with the effect direction from MR estimates for 12 

pairs.

Heritability analysis and polygenic risk scores (PRS) demonstrates large differences in 
genetic architecture

We calculated SNP-heritability contributed by the major reported loci (major loci hSNP 2, 

any pQTL included in [supplementary table 2]), as well as additional genome-wide SNP­

heritability (polygenic hSNP 2) for each protein included in the entire SCALLOP CVD-I 

meta-analysis. We observed a large range of different genetic architectures: Differences in 

magnitude of the genetic component (hSNP 2) ranged from 0.01 (EGF) to 0.46 (IL-6RA). 

Differences in the contribution from non-genome-wide significant SNPs ranged from 

essentially monogenic (e.g. IL-6RA) to others showing considerable locus heterogeneity 

with genetic contributions originating entirely from a polygenic background with no single 

dominating locus (e.g. PDGF-B and Galanin) [Figure 5].

In addition, we calculated the out of sample variance explained in the independent Malmo 

Diet and Cancer (MDC) study (N=4,678) both for genome-wide significant loci (major 

loci V.E.PRS), as well as additional variance explained by adding PRS (polygenic V.E.PRS) 

[Figure 5]. The protein PRS’ applied in the MDC study for 11 proteins exceeded 10 % 

of variance explained (V.E.PRS) and the PRS’ for another 14 proteins exceeded 5 % of 
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variance explained, suggesting that the genetic contribution to inter-individual variability of 

CVD-I protein levels is considerable.

A polygenic risk score for circulating ST2 levels shows a dose-response relationship with 
asthma

Since circulating ST2 showed strong evidence of causation in asthma and inflammatory 

bowel disease (IBD) and the polygenic V.E.PRS model for ST2 explained nearly 20 % of its 

variance, we attempted to quantify the effect of the ST2 polygenic V.E.PRS on circulating 

ST2 levels in the MDC study, and risk of asthma and IBD in 337,484 unrelated White 

British subjects in the UK Biobank. The range of circulating ST2 across 11 categories of 

the ST2 PRS in MDC was nearly 1.2 standard deviations [Figure 6A]. Corroborating the 

Mendelian randomization analysis, the ST2 PRS showed a strong negative dose-response 

relationship with risk of asthma (p=1.2x10-8) and a positive trend for risk of IBD (p=0.13) 

[Figure 6B and 6C]. Overlaying the linear trends for ST2 levels, asthma and IBD using 

meta-regression, an increase in the PRS equivalent to a 1 standard deviation higher 

circulating ST2, corresponded to a 8.6 % (95%CI 3.8%, 13.2%; P=0.004) reduction in the 

relative risk of asthma and a 4.3 % (95%CI −3.8%, 13.0%; P=0.263) increase in the relative 

risk of IBD [extended Figure 8].

Reverse Mendelian randomization identifies widespread causal relationships, where 
complex phenotypes affects CVD-I proteins

To investigate whether genetic susceptibility (liability) to complex disease and phenotypes 

causally alter circulating levels of CVD-I proteins, we also performed MR using 38 complex 

phenotypes (including continuous risk factors, such as adiposity and clinical outcomes, 

such as T2D) as exposure and CVD-I protein levels as outcomes. All CVD-I proteins were 

causally altered by at least one complex phenotype. BMI and estimated glomerular filtration 

rate (eGFR) causally affected 32 and 29 of the 85 tested proteins respectively [Figure 

7A] [Extended Figure 7] [Supplementary Figure 2]. BMI seemed to causally affect protein 

levels in both positive and negative directions, whereas only REN (renin) was causally 

decreased with genetically higher eGFR. In an effort to elucidate whether these estimates 

were recapitulated in simple observational analyses, we compared effect estimates from 

linear regression analyses of associations of BMI and eGFR with each respective CVD-I 

protein in one of the participating study cohorts (IMPROVE). The correlation between the 

observational and MR estimates were high for BMI (R=0.78), and more modest for eGFR 

(R=0.50) [Figure 7B–C].

Discussion

Using a meta-analysis approach including >30,000 individuals, we identified and replicated 

315 primary and 136 secondary pQTLs for 85 circulating proteins to yield new insights 

for translational studies and drug development. Our study demonstrates that pQTLs can 

be harnessed to enhance evaluation of therapeutic hypotheses for protein targets, and to 

support those hypotheses with basic insights into potential protein regulatory pathways 

and biomarker strategies. However, we also observed large differences between proteins in 
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relation to genetic architecture, suggesting that the relative strength to apply these strategies 

is likely protein-dependent.

Our pQTL-based framework was developed to address several key challenges associated 

with drug development, including a) mapping of protein regulatory pathways, b) 

identification of new target candidates c) repositioning of drugs, d) target-associated safety 

and e) matching of target mechanisms to patients by protein biomarkers or genetic PRS’ 

[Figure 8].

The mapping of trans-pQTLs, which typically have smaller effects on protein levels 

[Extended Figure 9], was aided by the large SCALLOP discovery sample size, yielding on 

average 4 independent pQTLs per protein. A causal gene was assigned for each trans-pQTL 

to generate hypotheses that can be further tested using in vitro or in vivo perturbation 

experiments. The robustness of causal gene assignments for a few selected trans-pQTLs 

was demonstrated using samples from a randomised controlled trial testing a dual small­

molecular inhibitor of the protein products of assigned genes (CCR5, CCR2) and transgenic 

mice with liver-specific knockdown of assigned genes (ABCA1, TRIB1). Although further 

studies will be needed for orthogonal validation of most of the genes assigned from the 

CVD-I trans-pQTLs, several of the implicated genes have previously been identified as 

regulators of some of the CVD-I proteins including CASP1 26, NLRC4 26 and GSDMD 
27 for IL-18, FLT1 28 for PLGF, ADAM17 29 for TNFR1 and SLC34A1 30 for FGF-23 

[Supplementary Table 2].

Further, we attempted to estimate the proportion of pQTLs that were likely to be driven 

by effects on mRNA expression, using multiple eQTL approaches and datasets. The lowest 

estimate was obtained with SMR/HEIDI, suggesting that 18.4 % of pQTLs were also eQTLs 

whereas direct look-up and co-localisation analysis using PrediXcan yielded estimates 

between 26 % - 29 %. We conclude that the majority of pQTLs identified for the CVD-I 

proteins were not explained by eQTLs.

Clinical-stage targeting with any drug modality was reported for 35 of the 90 proteins on the 

Olink CVD-I panel [Supplementary Table 7]. Our MR analysis identified 11 proteins with 

causal evidence of involvement in human disease that have not previously been targeted. 

Among those, four proteins were causal for a disease phenotype and did not show strong 

evidence of inverse causality with another phenotype (increasing specificity for intended 

indication), including CHI3L1 and SPON1 for atrial fibrillation and PAPPA for type-2 

diabetes. Strong causal evidence was also identified for proteins targeted in phase-2 or 

later development. The MR evidence was concordant with drug indications for several 

protein targets but for some also suggested alternative indications or that monitoring of 

target-associated safety might be warranted. Monoclonal antibodies that block the CD40 

ligand binding to CD40 – a critical element in T cell activation – have been shown to 

have positive clinical effects in patients with autoimmune diseases; but increased risk 

of thromboembolism precluded further clinical development31. These observations from 

clinical trials are in line with our findings that genetically lower levels of CD40 are 

associated with lower risk of RA, but higher risk of stroke. There are ongoing efforts to 

modify CD40L antibodies to retain efficacy while avoiding thromboembolism 31. However, 
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our results suggest that decreasing circulating CD40 levels may have target-mediated 

beneficial effects on RA risk, while increasing the risk of ischemic stroke, i.e. that the 

increased risk of thromboembolism (manifest as stroke) is an on-target adverse effect. 

TRAIL-R2 is a key receptor for TRAIL, which has been shown to selectively drive tumour 

cells into apoptosis. Therefore, considerable effort to agonise TRAIL-R2 for treating cancers 

has been made in the past years32. We demonstrated that increased circulating TRAIL-R2 

is protective against prostate cancer, which may suggest that this cancer type should be 

investigated in clinical trials evaluating the efficacy of TRAIL-R2 agonists.

Biomarkers can be broadly classified as generic biomarkers for disease risk or prognosis, 

or as biomarkers reflecting the activity of specific disease processes or biology. Biomarkers 

that enable matching of target mechanisms to patient subgroups with greater than average 

benefit from treatment are enablers of precision medicine. We showed that CCR2/CCR5 

small-molecule inhibition modulated circulating levels of CCL-4 and MCP-1, which may 

suggest that trans-pQTLs can guide selection of exploratory biomarkers to monitor the 

efficacy of target mechanisms. We also identified multiple complex traits causally affecting 

circulating protein levels. For example, eGFR and BMI causally influenced over 1/3 of the 

CVD-I proteins, suggesting that future biomarker studies should consider these traits as 

potential confounders. Moreover, the causal phenotype-to-protein associations may represent 

pathway-related causality to the complex phenotype of interest; or alternatively, ‘reverse 

causality’ which might pose an opportunity to evaluate implicated proteins as surrogate 

biomarkers for efficacy in interventional trials 33. We found that higher BMI causally 

lowered RAGE, while higher circulating levels of RAGE were causally linked to a lower 

risk of T2D. Thus, developing a hypothetical therapeutic to increase RAGE might represent 

a mechanism by which it is possible to off-set the risk of T2D arising from the global 

increases in obesity.

Protein-centric PRS’ may allow stratification of individuals with genetic propensity for high 

circulating protein levels. Only 10 % of the protein-centric PRS’ explained 10 % or more 

of the protein variance in the independent replication cohort, including ST2, a prognostic 

biomarker for heart failure34. ST2 showed evidence of inverse causality in asthma and 

positive causality in IBD. By constructing a genome-wide polygenic risk score for ST2 

levels from the MDC study, applying it to the UK Biobank and comparing asthma and IBD 

prevalence across eleven quantiles of the ST2 PRS, estimated the magnitude of ST2 increase 

required to decrease the risk of asthma to similar levels as individuals in the highest ST2 

PRS category. Such use of PRS for proteins may be expanded to other disease endpoints and 

may be of use in precision medicine, to guide which patients may obtain most benefit from 

drugs that pharmacologically alter individual proteins.

In conclusion, our findings provide a comprehensive toolbox for evaluation and exploitation 

of therapeutic hypothesis and precision medicine approaches in complex disease. Such 

approaches provide an excellent opportunity to rejuvenate the drug development pipeline for 

new treatments.
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Online Methods

Selection of proteins

Proteins for the Olink PEA CVD-I panel were selected by mining the literature for protein 

biomarkers associated with cardiovascular risk or prognosis in human observational studies 

and in animal models and by bringing in protein biomarker suggestions from leading 

cardiovascular disease researchers 10. The list of proteins curated from these sources was 

then pruned down based on availability of high-quality antibodies and relative abundance of 

the proteins in human plasma.

Intra- and inter-plate coefficients of variation (CV) of the CVD-I panel are available 

from Olink Proteomics AB (https://www.olink.com/resources-support/document-download­

center/). In addition, we calculated the inter-plate coefficient of variation using data from 

a pooled plasma sample in one of the participating cohorts -the IMPROVE study. The 

mean inter-plate CV was averaged across proteins was 16.6 %, (range 11 % -26 %) 

[Supplementary Table 1].

Cohorts and data collection

Summary statistics from GWAS of Olink CVD-I proteins were obtained from 13 cohorts of 

European ancestry. The details of all study cohorts are shown in [Supplementary Table 9]. 

Together the cohorts included a total of 21,758 individuals; although the average per-protein 

sample size was 17,747, since not all proteins passed quality control (QC) in all cohorts. 

Each cohort provided data imputed to 1000 Genomes Project phase 3 reference or later or 

to the Haplotype Reference Consortium (HRC) reference, which resulted in the testing of 

21.4M SNPs. Because imputation schemes varied by cohort, this resulted in an average of 

20.3M SNPs under investigation for each protein.

Each cohort applied quality control measures for call rate filters, sex mismatch, population 

outliers, heterozygosity and cryptic relatedness as documented in [Supplementary Table 8]. 

Prior to running the genetic analyses, NPX values of proteins (on the log2 scale) were 

rank-based inverse normal transformed and/or standardised to unit variance, thus avoiding 

potential Olink batch-differences between cohorts. Genetic analyses were conducted using 

additive model regressions, with adjustment for population structure and study-specific 

parameters [Supplementary Table 8]. Forest plots of cohort-specific effects are available 

for all significant and suggestive pQTLs using the online tool. Each contributing cohort 

uploaded the resulting summary statistics in a standardized format using a secure 

computational cluster provided by Neic Tryggve (https://neic.no/tryggve/). All meta-analysis 

was performed in duplicate at two different research centres using completely separate 

bioinformatic pipelines (L.F. and S.G.).

Data cleaning and meta-analysis

A per-protein filtering threshold of >80% samples above the Olink detection limit was 

applied to each cohort, leaving data on 90 of the 92 proteins to be analysed. The 

remaining files had an average of 3% missing samples (per cohort statistics available in 

[Supplementary Table 8]). Minor allele frequencies were compared with those reported in 
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1000 Genomes EUR. A per-SNP filter was applied based on imputation quality level (at 

default setting for respective imputation algorithm) and minor allele count (at least 10 alleles 

per cohort). This resulted in the omission of 10% of the SNPs. Finally, meta-analysis was 

performed using METAL (2011-03-25) 35, applying the inverse-variance weighted approach 

(i.e. the STDERR option). Throughout the manuscript, P-values from this test are reported 

as-is, with multiple testing burden handled through appropriate thresholds. Cis-pQTLs were 

defined as a signal within 1 Mb of the gene encoding the protein and all other signals were 

defined as trans-pQTLs. See [extended figure 5] for flow chart overview of meta analysis.

Replication analyses

We sought to replicate the findings in the Malmö Diet and Cancer (MDC) population­

based cohort with 4,678 individuals, and in the Swedish Mammography Cohort Clinical 

(SMCC, part of the Swedish national research infrastructure SIMPLER described at 

www.simpler4health.se) population-based study of 4,495 women. In MDC, genotypes were 

imputed to the Haplotype Reference Consortium reference (HRC Unlimited v1.0.1) and data 

were analysed using linear regression in EPACTS 3.3.0 (linear Wald test). The genotypes 

in SMCC were measured using Illumina’s Global Screening Array and were imputed up 

to HRC v1.1 and 1000G phase3 (v5), and linear regressions of rank-based inverse-normal 

transformed protein values adjusting for age, storage time, and PC1-15 were performed 

using PLINK v2 (4 Mar 2019).

Conditional and joint association analysis

To identify secondary signals at the 401 loci reported in [Supplementary table 2], we 

performed analyses conditioning on the primary signal using conditional-joint analysis in 

GCTA (version 1.26.0) 36,37. The Stanley cohort was chosen as an ancestrally well-matched 

LD-reference cohort. Meta-analysis summary data were processed with filtering for MAF 

(0.01) and r2 (<0.001) to ensure that secondary association signals identified were not driven 

by LD with the primary signal. See [Extended figure 6] for a flow chart of signal selection 

criteria.

Cross-reference of pQTLs with other complex traits

For each pQTL association, we searched PubMed and the EBI GWAS catalogue (URL: 

https://www.ebi.ac.uk/gwas/ : November 2018) for published SNPs with any complex trait 

within 10kb or having an LD of r2>= 0.85.

Comparison between eQTLs and pQTL

To identify eQTL that corresponded to each pQTL, we used three independent eQTL 

studies: LifeLines-DEEP 38, GTEx39 and eQTLGen40. Each SNP-protein pQTL pair was 

first converted to SNP-gene pairs using Olink platform protein identification and the gene 

annotation of Ensembl v91. Then, the significance of eQTLs for these SNP-gene pairs 

was assessed in three eQTL datasets, using two different cut-offs: a stringent genome-wide 

significance threshold (P<5x10-8) and a nominal significance of P<0.05.

In the eQTL dataset of LifeLines-DEEP, individual-level whole blood RNA-seq, protein and 

genotype data were available. This allowed for a direct comparison of the concordance of 
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blood eQTLs and pQTLs. To do so, we re-tested eQTL associations for all pQTL pairs, 

using a previously published pipeline 41. The resulting eQTLs were considered genome­

wide significant if it passed the permutation-based FDR <0.05 level, or to be nominally 

significant if the P-value was < 0.05.

In the eQTL datasets of GTEx v7 and eQTL-Gen, we did not have access to individual 

level data. Thus, the comparisons were conducted using publicly available eQTL results. 

In these datasets, we considered an eQTL genome-wide significant if it was within the 

reported genome-wide significant list, and nominally significant if it had a nominal P-value 

< 0.05. Altogether, if one pQTL pair had at least one significant eQTL effect in any dataset 

irrespective of allelic direction it was considered an overlapping pQTL-eQTL pair.

Expression SMR analysis

We performed an SMR and HEIDI (heterogeneity in dependent instruments) analysis12 to 

identify the expression levels of genes that were associated with protein abundance through 

pleiotropy using pQTL summary statistics from this study and cis-eQTL summary data from 

published studies42,43.

The eQTL summary data used in the SMR analysis were from the Consortium for the 

Architecture of Gene Expression (CAGE), comprising 38,624 normalized gene expression 

probes and ~8 million SNPs from 2,765 blood samples. The eQTL effects were in standard 

deviation (SD) units of expression levels. We excluded the gene probes in the major 

histocompatibility complex (MHC) region and included only the gene probes with at least 

one cis-eQTL at P<5×10-8 (a basic assumption of SMR), resulting in 9,538 gene expression 

probes.

The SMR test uses a SNP instrument (i.e., the top associated eQTL) to detect association 

between two phenotypes (i.e., gene and protein in this case). The HEIDI test utilises LD 

between the SNP instrument and other SNPs in the cis-region to distinguish whether the 

association identified by the SMR test is driven by a set of shared genetic variants between 

two traits (pleiotropic or causal model) or distinct sets of variants in LD (linkage model)12. 

Only the associations that surpassed the genome-wide significance level of the SMR test (P 

SMR < 0.05 / m with m being the number of SMR tests) and were not rejected by the HEIDI 

test (P HEIDI > 0.01) were reported as significant.

PrediXcan and transcript-wide association of CVD-I protein levels

Imputation of gene expression was performed in the IMPROVE study. After standard 

quality control, genotypes were pre-phased using Eagle2, and then subsequently imputed 

by minimac4 using the 1000 Genomes reference. A filter on RSQ 0.8 and minor allele 

frequency 0.01 was set on the imputed genotypes prior to prediction with PrediXcan, which 

used 44 tissue models based on GTEx v7.

Using protein data collected on the CVD-I chip in the same individuals, the associations 

between protein levels in plasma and the predicted expression of their respective coding 

gene across 20 tissues (from the PrediXcan model) were modelled by a linear model in R. 

False discovery rate were estimated based on Q-values (using the R package qvalue). In 
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total, 64 genes in one to 18 tissues were tested for associations between protein levels and 

predicted expression. Heatmaps were constructed (using the pheatmap package in R) for any 

gene with a significant association (FDR<0.05) in at least one tissue.

Systems Biology

Two sets of network analysis were performed, one using the protein-protein interaction (PPI) 

data from the inBio Map™ (InWeb_InBioMap) and one using significant associations from 

text-mining (TM). These two networks each had 13,033 and 14,635 nodes, respectively; and 

147,882 and 193,777 edges, respectively. In both setups, the shortest path between any of the 

cis-gene intermediaries to the protein was identified; altogether 12,436 pairs were compared. 

Of the 372 trans-pQTL associations reported in [Supplementary Table 2], 335 associations 

had both cis-gene intermediaries and plasma protein in the network allowing their analysis. 

The likelihood of a path arising by chance was calculated by permutation sampling, using 

1,000,000 random networks were generated with a conserved degree distribution. A new 

algorithm was developed for de novo random network generation, which generated random 

networks with a nearly conserved degree distribution in a feasible time-frame. Further 

details are available in [Supplementary Information 1].

Assignment of cis-intermediary genes

To assign the most plausible causal gene for each of the CVD-I trans-pQTLs we applied 

a hierarchical approach based on analysis of InWeb_InBioMap PPI, TM, and genomic 

distance between gene and lead variant at each locus. Results were then manually reviewed 

by literature, gene expression analysis (proteinatlas.org) and published pQTLs which led 

to the re-assignment of 52 genes. The algorithmic gene assignment was overruled or 

complemented for instances when the assigned gene was different from the gene assigned 

by multiple prior studies [Supplementary table 4]. Gene Ontology analysis of most plausible 

genes was performed using the DAVID bioinformatics tools and the GO MF gene set 

definition, with default settings. The Panther pathway tool, Uniprot and the Human Protein 

Atlas were used to classify the genes according to basic functional class (see URLs).

Human in-vivo validation of trans-pQTLs

PF-04634817 is a competitive dual inhibitor of CCR2 and CCR5 receptors. In the recent 

B1261007 study, (ClinicalTrials.gov Identifier: NCT01712061), samples were collected 

from subjects with diabetic nephropathy and treated with PF-04634817 for 12 weeks. CCL-2 

(MCP-1) was measured in serum by ELISA at Eurofins (The Netherlands). CCL4 (MIP-1b) 

and CCL-8 were measured in plasma using Luminex assays (Bio-Rad, Berkeley, CA). CCL5 

(RANTES), was measured in plasma as part of a multi-analyte panel at Myriad Rules Based 

Medicine (Austin, TX).

Mouse in-vivo validation of trans-pQTLs

Plasma from transgenic- and matched control mice were randomised on a PCR plate. The 

samples included five mice with targeted deletion of hepatocyte ABCA121 together with five 

matched control mice, three mice with whole-body TRIB122 knockdown and three controls 

and four mice with liver-specific knockdown of TRIB1 and four matched controls. Protein 
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levels of stem cell factor (SCF) was measured using the Olink PEA Mouse exploratory 

panel according to the manufacturer’s instruction (Olink Proteomics, Uppsala, Sweden). 

The plasma levels of SCF were normalised against average protein concentrations using 

information on an additional 91 proteins. TRIB1 whole-body and liver-specific mice were 

analysed jointly as were the respective wild-type controls. The median plasma levels of SCF 

were compared using the Mann-Whitney U test for unpaired samples.

Mendelian randomization

To study the causal effects of the protein on selected disease outcomes, we performed 

two-sample Mendelian randomization analyses. We used between-study heterogeneity to 

guide the instrumental variable selection. In the presence of between-study heterogeneity (P­
het<9x10-5), variants had to surpass a Bonferroni-corrected p-value threshold in discovery 

(P<5.6x10-10) and show nominal significance (P<0.05) in the replication studies (9,173 

individuals), with directionally concordant beta coefficients. In the absence of between­

study heterogeneity we included variants showing conventional genome-wide significance 

(P<5x10-8) in a meta-analysis of the discovery and replication datasets. From these, we 

created two sets of instrumental variables (IVs) for each of the 85 proteins with variants 

reaching multiple testing-corrected significance in our discovery GWAS: (a) cis IVs 

including one or more independent variants (LD r2=0.001 within ±1Mb of the transcript 

boundaries of the gene encoding the protein); and (b) pan IVs including all independent 

(LD r2=0) variants associated with the protein, i.e. combining cis and trans pQTLs. The 

per-allelic beta coefficients from the main GWAS analyses were used as weights in the IVs. 

For the outcomes, we obtained the relevant SNP-to-trait summary statistics from publicly­

available GWAS as outcomes [Supplementary Table 9]. When lead variants from our main 

GWAS were not available in these summary statistics, we replaced them with proxies (LD 

r2>0.85). For each individual SNP-protein and SNP-outcome association, we generated an 

instrumental variable Wald ratio estimate, with standard errors obtained using the delta 

method. When the instrument included more than one SNP, summary IV estimates were 

generated by combining individual SNP Wald estimates by inverse-variance weighted fixed­

effect meta-analysis. We report associations with a Benjamini-Hochberg false discovery rate 

(FDR) ≤ 5%, applied separately to summary estimates from cis-pQTL and pan-pQTL IVs, 

using pooled estimates for all 38 diseases. We graded the evidence of causality using a 

framework outlined in [Extended Figure 7], using the following categories: strong (cis-IV 

estimate FDR≤ 5%); intermediate (pan-IV estimate FDR≤ 5% with: (i) no heterogeneity 

between cis-IV estimate and pan-IV estimate; and (ii) no evidence of the MR estimate 

being unduly influenced by a trans-pQTL in leave-one-out analysis); or weak (pan-IV 

estimate FDR≤ 5% but: no cis-pQTL IV available; heterogeneity between cis- and all-IVs; 

or evidence of undue influence by a trans-pQTL). Heterogeneity between pan-IV and cis-IV 

estimates were calculated using Cochran’s Q tests, with P<0.05 denoting evidence against 

the null hypothesis, and applying a Bonferroni adjustment for multiple testing. Mendelian 

randomization was conducted in duplicate by two separate analysts and analyses were 

performed in Stata (StataCorp, Texas, USA) version 13.3 using the mrivests, metan and 

multproc commands and R. Of the 2437 IV estimates derived using cis-pQTL instruments 

across the 85 proteins and 38 outcome traits, the IV estimates of 50 protein-to-disease 

associations met the FDR≤5% (corresponding to an uncorrected P≤1.1x10-3). Of the 3044 
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IV estimates composed using all pQTL instruments, 281 IV estimates met FDR≤ 5% 

(corresponding to P≤ 4.7x10-3; [Figure 4A]).

Heritability analyses

We estimated the total SNP-heritability (hSNP 2) for the plasma level of each protein from 

the summary statistics of each individual GWAS by summing the contributions from two 

independent partitions of the SNPs: primary major loci and polygenic background. We 

defined the variance explained by primary major loci (major loci hSNP 2) as the sum of 

the estimated variance explained (2*β2*f*(1-f)), where f is the minor allele frequency, and 

owing to the fact that the phenotypic variance has been standardized across lead SNPs 

indexing all primary genome-wide significant loci. We used LDSC regression44 to estimate 

the contribution of the polygenic background (polygenic hSNP 2) for each protein, which we 

define as the contribution of all loci not indexed by a genome-wide significant lead SNP. 

LDSC regression is known to perform poorly when large effect, major genes are present, 

as it was derived under the assumption of a simple polygenic genetic architecture44. To 

account for this and avoid double counting the variance explained by major loci through LD 

surrogates, prior to estimating the LDSC regression polygenic hSNP 2, we censored all SNPs 

within 10 Mb of genome-wide significant lead SNPs for all primary loci.

Polygenic risk score calculation

Polygenic risk scores were derived using LDpred algorithm45, which adjusts the effect 

of each SNP allele for those of other SNP alleles in linkage disequilibrium (LD) with 

it, and also takes into account the likelihood of a given allele to have a true effect 

according to a user-defined parameter, which we used as all 7 default LDpred-settings, 

with values from 1 through 1x10-5. The algorithm was directed to use HapMap3 SNPs that 

had a minor allele frequency >0.05, Hardy-Weinberg equilibrium P>1e-05 and imputation 

score >0.95. Variance explained in the independent MDC-study was tested according 

to a step-wise model, first including non-genetic covariates, then additional variability 

explained by adding SNPs from genome-wide significant SNPs (major loci V.E.PRS), and 

then additional variability explained by adding the 7 LDpred-derived scores as additional 

covariates (polygenic V.E.PRS).

ST2 polygenic risk score for asthma and inflammatory bowel disease in the UK biobank

Prior to analysis subjects who were not White British (based on self-reported ancestry in 

combination with genetic PCA) in the maximum unrelated subset were filtered out. All 

bi-allelic SNPs with MAF >= 1% and MaCH rsq >= 0.8 were kept. The Z-score transformed 

LDpred PRS (wt2) for ST2 was calculated as described for MDC in 337,484 White British 

UK Biobank participants. Association with asthma and IBD were tested using logistic 

regression adjusting for age, sex, PC1-10, genotype batch using either the continuous PRS 

or the PRS quantile-bins as predictors. The UK Biobank protocol has been described 

previously46 and is available online (https://www.ukbiobank.ac.uk). The genotype quality 

control (QC), phasing, and imputation was performed centrally and has been previously 

described 47. Outcomes (defined based on self-reported data at baseline and/or the inpatient 

and death registry [including primary and secondary causes as well as prevalent and incident 

disease]) Asthma: Self-reported touchscreen (6152), self-reported nurse interview (20002), 
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or ICD-10 “J45”. Conflicting self-reported results set to missing unless “J45” was reported. 

Inflammatory bowel disease: nurse interview (20002) or ICD-10 K50-K52.

Meta-regression analysis for ST2 PRS, asthma and IBD

We estimated the per-quantile and per-SD associations of the weighted PRS for ST2 (MDC 

study) on risks of asthma and IBD (UK Biobank) by taking the quantile associations with 

ST2, asthma and IBD and conducting meta-regression analyses whereby the dependent 

variable was the quantile-specific logOR and corresponding SE of asthma or IBD and the 

independent variable was the quantile specific beta coeffient for ST2. This was conducted 

using the “metareg” package in STATA SE v13.1 (Statacorp, USA). Plots from the 

metaregression are presented in [Extended Figure 8].

Observational evidence

Observational evidence for the CVD-I proteins showing strong evidence of causality 

in Mendelian randomization was collated from literature or by de-novo analysis in the 

IMPROVE cohort [supplementary table 10]. To identify evidence from literature, we 

searched for the protein name or aliases in combination with the implicated trait trait/disease 

in PubMed. For clinical outcome traits, only those reported as “significant” by the paper 

were included, and the table provides the directional information provided. For quantitative 

outcome traits, standardised betas and p-values are reported.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Authors 

Lasse Folkersen#1,2, Stefan Gustafsson#3, Qin Wang#4,5, Daniel Hvidberg Hansen6, 
Åsa K Hedman1,7, Andrew Schork8,9, Karen Page10, Daria V Zhernakova11, 
Yang Wu12, James Peters13, Niclas Eriksson14, Sarah E Bergen15, Thibaud 
Boutin16, Andrew D Bretherick16, Stefan Enroth17, Anette Kalnapenkis18, Jesper 
R Gådin1, Bianca Suur19, Yan Chen1, Ljubica Matic19, Jeremy D Gale20, 
Julie Lee10, Weidong Zhang21, Amira Quazi10, Mika Ala-Korpela4,5,22, Seung 
Hoan Choi23, Annique Claringbould11, John Danesh13, George Davey-Smith24, 
Federico de Masi6, Sölve Elmståhl25, Gunnar Engström25, Eric Fauman26, 
Celine Fernandez25, Lude Franke11, Paul Franks27, Vilmantas Giedraitis28, 
Chris Haley16, Anders Hamsten1, Andres Ingason8, Åsa Johansson17, Peter 
K Joshi29, Lars Lind30, Cecilia M. Lindgren31,32,33, Steven Lubitz33,23, Tom 
Palmer34, Erin Macdonald-Dunlop29, Martin Magnusson35,36, Olle Melander25, 
Karl Michaelsson37, Andrew P. Morris38,39,32, Reedik Mägi18, Michael W Nagle26, 
Peter M Nilsson25, Jan Nilsson25, Marju Orho-Melander40, Ozren Polasek41, Bram 
Prins13, Erik Pålsson42, Ting Qi12, Marketa Sjögren25, Johan Sundström43, Praveen 
Surendran13, Urmo Võsa18, Thomas Werge8, Rasmus Wernersson6, Harm-Jan 
Westra11, Jian Yang12,14, Alexandra Zhernakova11, Johan Ärnlöv45, Jingyuan 
Fu11,46, Gustav Smith47, Tonu Esko18,23, Caroline Hayward16, Ulf Gyllensten17, 

Folkersen et al. Page 16

Nat Metab. Author manuscript; available in PMC 2021 August 09.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Mikael Landen42, Agneta Siegbahn48, Jim F Wilson29,16, Lars Wallentin49, Adam 
S Butterworth13, SCALLOP consortium, Michael V Holmes#50, Erik Ingelsson#51, 
Anders Mälarstig#1,52

Affiliations
1Department of Medicine, Solna, Karolinska Institute, Sweden 2Danish National 
Genome Center, Copenhagen, Denmark 3Department of Medical Sciences, 
Molecular Epidemiology and Science for Life Laboratory, Uppsala University, 
Uppsala, Sweden 4Systems Epidemiology, Baker Heart and Diabetes Institute, 
Melbourne, VIC, Australia 5Computational Medicine, Faculty of Medicine, University 
of Oulu and Biocenter Oulu, Oulu, Finland 6Intomics, Lottenborgvej 26, 2800 Lyngby 
(Copenhagen), Denmark 7Pfizer Worldwide Research & Development, Cambridge, 
MA, USA 8Institute of Biological Psychiatry, Mental Health CenterSct. Hans, Mental 
Health Services Capital Region, Roskilde, Denmark 9Neurogenomics Division, The 
Translational Genomics Research Institute (TGEN), Phoenix, AZ, USA 10Early 
Clinical Development, Pfizer Worldwide Research & Development, Cambridge, MA, 
USA 11University of Groningen, University Medical Center Groningen, Department 
of Genetics, Groningen, the Netherlands 12Institute for Molecular Bioscience, The 
University of Queensland, Brisbane, Queensland, Australia 13BHF Cardiovascular 
Epidemiology Unit, Department of Public Health and Primary Care, University of 
Cambridge, United Kingdom 14Deparment of Medical Sciences, Uppsala Clinical 
Research Center, Uppsala University, Uppsala, Sweden 15Department of Medical 
Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden 16MRC 
Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of 
Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, Scotland 
17Department of Immunology, Genetics, and Pathology, Biomedical Center, Science 
for Life Laboratory (SciLifeLab) Uppsala, Box 815, Uppsala University, SE-75108 
Uppsala, Sweden 18Estonian Genome Center, Institute of Genomics, University 
of Tartu 51010, Estonia 19Department of Molecular Medicine and Surgery, Solna, 
Karolinska Institute, Sweden 20Inflammation and Immunology Research Unit, 
Pfizer Worldwide Research & Development, Cambridge, MA, USA 21Pfizer Global 
Product Development, Cambridge, MA, USA 22NMR Metabolomics Laboratory, 
School of Pharmacy, University of Eastern Finland, Kuopio, Finland 23Program in 
Medical and Population Genetics, Broad Institute, Cambridge, MA, USA 24MRC 
Integrative Epidemiology Unit, University of Bristol, UK 25Department of Clinical 
Sciences, Lund University, Skåne University Hospital, Malmö, Sweden 26Internal 
Medicine Research Unit, Pfizer Worldwide Research & Development, Cambridge, 
MA, USA 27Lund University Diabetes Center, Department of Clinical Sciences, 
Malmö, Sweden 28Department of Public Health and Caring Sciences/Geriatrics, 
Uppsala University, Uppsala, Sweden 29Centre for Global Health Research, Usher 
Institute for Population Health Sciences and Informatics, University of Edinburgh, 
Teviot Place, Edinburgh, EH8 9AG, Scotland 30Department of Medical Sciences, 
Uppsala University, Uppsala, Sweden 31Big Data Institute at the Li Ka Shing 
Centre for Health Information and Discovery, University of Oxford, Oxford, United 
Kingdom 32Wellcome Centre for Human Genetics, Nuffield Department of Medicine, 

Folkersen et al. Page 17

Nat Metab. Author manuscript; available in PMC 2021 August 09.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



University of Oxford, Oxford, United Kingdom 33Cardiovascular Research Center, 
Massachusetts General Hospital, United States 34Department of Mathematics and 
Statistics, University of Lancaster, Lancaster, UK 35Department of Cardiology, 
Skåne University Hospital Malmö, Malmö, Sweden 36Wallenberg Center for 
Molecular Medicine, Lund University, Lund, Sweden 37Department of Surgical 
Sciences, Uppsala University, Uppsala, Sweden 38Division of Musculoskeletal and 
Dermatological Sciences, University of Manchester, Manchester, UK 39Department 
of Biostatistics, University of Liverpool, Liverpool, UK 40Department of Clinical 
Sciences, Clinical Research Center, Lund University, Malmö, Sweden 41Faculty 
of Medicine, University of Split, Split, Croatia 42Department of Psychiatry and 
Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska 
Academy at the University of Gothenburg, Gothenburg, Sweden 43Department of 
Medical Sciences, Clinical Epidemiology, Uppsala University, Uppsala, Sweden; 
and The George Institute for Global Health, University of New South Wales, 
Sydney, Australia 44Institute for Advanced Research, Wenzhou Medical University, 
Wenzhou, Zhejiang 325027, China 45Department of Neurobiology, Care Sciences 
and Society (NVS), Division of Family Medicine and Primary Care, Karolinska 
Institutet, Sweden 46University of Groningen, University Medical Center Groningen, 
Department of Paediatrics, Groningen, the Netherlands 47Department of Cardiology, 
Clinical Sciences, Lund University, Skåne University Hospital, Lund, Sweden 
48Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala, 
Sweden 49Department of Medical Sciences, Cardiology and Uppsala Clinical 
Research Center, Uppsala University, Uppsala, Sweden 50Clinical Trial Service 
Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population 
Health, University of Oxford, Oxford, United Kingdom 51Department of Medicine, 
Division of Cardiovascular Medicine, Falk Cardiovascular Research Center, Stanford 
University School of Medicine, 300 Pasteur Drive, CV 273, Stanford, CA, 94305, 
USA 52Emerging Science & Innovation, Pfizer Worldwide Research & Development, 
Cambridge, MA, USA

Acknowledgements

Secure computing was supported by NeIC Tryggve, which is the Nordic collaboration for sensitive data funded by 
NeIC and ELIXIR nodes of participating countries.

Sources of Funding for SMCC, part of the national research infrastructure SIMPLER. We acknowledge the 
national research infrastructure SIMPLER (the Swedish Infrastructure for Medical Population-based Life-course 
and Environmental Research) for provisioning of facilities and support. SIMPLER receives funding through the 
Swedish Research Council under the grant no 2017-00644. This study was also supported by additional grants 
from the Swedish Research Council (grants no 2017-06100; no 2015-05997 and no 2015-03257), from the 
Swedish Research Council for Health, Working Life and Welfare (FORTE grant no 2017-00721) and Stiftelsen 
Olle Engkvist Byggmästare (grant no 2017/49)

S Lubitz is supported by NIH grant 1R01HL139731 and American Heart Association 18SFRN34250007.

The Orkney Complex Disease Study (ORCADES) was supported by the Chief Scientist Office of the Scottish 
Government (CZB/4/276, CZB/4/710), a Royal Society URF to J.F.W., the MRC Human Genetics Unit 
quinquennial programme “QTL in Health and Disease”, Arthritis Research UK and the European Union framework 
program 6 EUROSPAN project (contract no. LSHG-CT-2006-018947). DNA extractions were performed at the 

Folkersen et al. Page 18

Nat Metab. Author manuscript; available in PMC 2021 August 09.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Edinburgh Clinical Research Facility. We would like to acknowledge the invaluable contributions of the research 
nurses in Orkney, the administrative team in Edinburgh and the people of Orkney.

MAK is supported by a Senior Research Fellowship from the National Health and Medical Research Council 
(NHMRC) of Australia (APP1158958). He also has a research grant from the Sigrid Juselius Foundation, Finland

AB was supported by a Wellcome PhD training fellowship for clinicians (204979/Z/16/Z), the Edinburgh Clinical 
Academic Track (ECAT) programme

J. G. Smith and the genotyping of MPP-RES was supported by grants from the Swedish Heart-Lung Foundation 
(2016-0134 and 2016-0315), the Swedish Research Council (2017-02554), the European Research Council (ERC­
STG-2015-679242), the Crafoord Foundation, Skåne University Hospital, the Scania county, governmental funding 
of clinical research within the Swedish National Health Service, a generous donation from the Knut and Alice 
Wallenberg foundation to the Wallenberg Center for Molecular Medicine in Lund, and funding from the Swedish 
Research Council (Linnaeus grant Dnr 349-2006-237, Strategic Research Area Exodiab Dnr 2009-1039) and 
Swedish Foundation for Strategic Research (Dnr IRC15-0067) to the Lund University Diabetes Center.

The study of the LifeLines-DEEP cohort is supported by the Netherlands Heart Foundation CVON grant 2018-27 
to JF and AZ, Netherlands Organization for Scientific Research (NWO-Vidi grant 864.13.013 to JF, 016.178.056 to 
AZ, 917.14.374 to LF, Veni grant 194.006 to DZ, gravitation grant ExposomeNL to AZ, gravitation 024.003.001 
to JF), European Research Council (ERC starting grant 715772 to AZ, 637640 to LF), LF also receives financial 
support from Oncode Institute.

We would like to thank Professor John Parks at Wake Forest School of Medicine, Winston-Salem, NC and 
Professor Daniel Rader at Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA for 
their kind donations of samples from transgenic mice and controls. This research has been conducted using the UK 
Biobank Resource under Application Number 13721.

Data availability

The full summary statistics of the Olink CVD-I protein GWAS have been deposited at the 

SCALLOPCVD-I online resource, allowing access to interactive SCALLOP-CVD-I tools 

and unrestricted download access for secondary analyses. Additionally, a full copy has been 

deposited at https://doi.org/10.5281/zenodo.2615265 for long-term retention, as well as with 

GWAS catalog. A copy of the polygenic scores have been deposited at the PGS catalog.

References

1. Chames P, Van Regenmortel M, Weiss E, Baty D. Therapeutic antibodies: successes, limitations and 
hopes for the future. Br J Pharmacol. 2009; 157 :220–233. [PubMed: 19459844] 

2. Holmes MV, Ala-Korpela M, Smith GD. Mendelian randomization in cardiometabolic disease: 
challenges in evaluating causality. Nat Rev Cardiol. 2017; 14 :577–590. [PubMed: 28569269] 

3. Folkersen L, et al. Mapping of 79 loci for 83 plasma protein biomarkers in cardiovascular disease. 
PLoS Genet. 2017; 13 e1006706 [PubMed: 28369058] 

4. Sun BB, et al. Genomic atlas of the human plasma proteome. Nature. 2018; 558 :73–79. [PubMed: 
29875488] 

5. Williams SA, et al. Plasma protein patterns as comprehensive indicators of health. Nat Med. 2019; 
25 :1851–1857. [PubMed: 31792462] 

6. Lehallier B, et al. Undulating changes in human plasma proteome profiles across the lifespan. Nat 
Med. 2019; 25 :1843–1850. [PubMed: 31806903] 

7. Enroth S, Johansson A, Enroth SB, Gyllensten U. Strong effects of genetic and lifestyle factors 
on biomarker variation and use of personalized cutoffs. Nat Commun. 2014; 5 :4684. [PubMed: 
25147954] 

8. Emilsson V, et al. Co-regulatory networks of human serum proteins link genetics to disease. 
Science. 2018; 361 :769–773. [PubMed: 30072576] 

9. Melzer D, et al. A genome-wide association study identifies protein quantitative trait loci (pQTLs). 
PLoS Genet. 2008; 4 e1000072 [PubMed: 18464913] 

Folkersen et al. Page 19

Nat Metab. Author manuscript; available in PMC 2021 August 09.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

https://dx.doi.org/10.5281/zenodo.2615265


10. Assarsson E, et al. Homogenous 96-plex PEA immunoassay exhibiting high sensitivity, specificity, 
and excellent scalability. PLoS One. 2014; 9 e95192 [PubMed: 24755770] 

11. Gamazon ER, et al. A gene-based association method for mapping traits using reference 
transcriptome data. Nat Genet. 2015; 47 :1091–1098. [PubMed: 26258848] 

12. Zhu Z, et al. Integration of summary data from GWAS and eQTL studies predicts complex trait 
gene targets. Nat Genet. 2016; 48 :481–487. [PubMed: 27019110] 

13. Sun W, et al. Common Genetic Polymorphisms Influence Blood Biomarker Measurements in 
COPD. PLoS Genet. 2016; 12 e1006011 [PubMed: 27532455] 

14. Chick JM, et al. Defining the consequences of genetic variation on a proteome-wide scale. Nature. 
2016; 534 :500–505. [PubMed: 27309819] 

15. Zhernakova DV, et al. Individual variations in cardiovascular-disease-related protein levels are 
driven by genetics and gut microbiome. Nat Genet. 2018; 50 :1524–1532. [PubMed: 30250126] 

16. Solomon T, et al. Identification of Common and Rare Genetic Variation Associated With Plasma 
Protein Levels Using Whole-Exome Sequencing and Mass Spectrometry. Circ Genom Precis Med. 
2018; 11 e002170 [PubMed: 30562114] 

17. Cabre A, et al. Fatty acid binding protein 4 is increased in metabolic syndrome and with 
thiazolidinedione treatment in diabetic patients. Atherosclerosis. 2007; 195 :e150–158. [PubMed: 
17553506] 

18. Nishimoto N, et al. Mechanisms and pathologic significances in increase in serum interleukin-6 
(IL-6) and soluble IL-6 receptor after administration of an anti-IL-6 receptor antibody, 
tocilizumab, in patients with rheumatoid arthritis and Castleman disease. Blood. 2008; 112 :3959–
3964. [PubMed: 18784373] 

19. Gustot T, et al. Profile of soluble cytokine receptors in Crohn’s disease. Gut. 2005; 54 :488–495. 
[PubMed: 15753533] 

20. Gale JD, et al. Effect of PF-04634817, an Oral CCR2/5 Chemokine Receptor Antagonist, on 
Albuminuria in Adults with Overt Diabetic Nephropathy. Kidney Int Rep. 2018; 3 :1316–1327. 
[PubMed: 30450458] 

21. Bashore AC, et al. Targeted Deletion of Hepatocyte Abca1 Increases Plasma HDL (High-Density 
Lipoprotein) Reverse Cholesterol Transport via the LDL (Low-Density Lipoprotein) Receptor. 
Arterioscler Thromb Vasc Biol. 2019; 39 :1747–1761. [PubMed: 31167565] 

22. Burkhardt R, et al. Trib1 is a lipid- and myocardial infarction-associated gene that regulates 
hepatic lipogenesis and VLDL production in mice. J Clin Invest. 2010; 120 :4410–4414. [PubMed: 
21084752] 

23. Rosa M, et al. A Mendelian randomization study of IL6 signaling in cardiovascular diseases, 
immune-related disorders and longevity. NPJ Genom Med. 2019; 4 :23. [PubMed: 31552141] 

24. Interleukin 1 Genetics, C. Cardiometabolic effects of genetic upregulation of the interleukin 1 
receptor antagonist: a Mendelian randomisation analysis. Lancet Diabetes Endocrinol. 2015; 3 
:243–253. [PubMed: 25726324] 

25. Mahdessian H, et al. Integrative studies implicate matrix metalloproteinase-12 as a culprit gene for 
large-artery atherosclerotic stroke. J Intern Med. 2017; 282 :429–444. [PubMed: 28734077] 

26. Kaplanski G. Interleukin-18: Biological properties and role in disease pathogenesis. Immunol Rev. 
2018; 281 :138–153. [PubMed: 29247988] 

27. Heilig R, et al. The Gasdermin-D pore acts as a conduit for IL-1beta secretion in mice. Eur J 
Immunol. 2018; 48 :584–592. [PubMed: 29274245] 

28. Autiero M, et al. Role of PlGF in the intra- and intermolecular cross talk between the VEGF 
receptors Flt1 and Flk1. Nat Med. 2003; 9 :936–943. [PubMed: 12796773] 

29. Dri P, et al. TNF-Induced shedding of TNF receptors in human polymorphonuclear leukocytes: 
role of the 55-kDa TNF receptor and involvement of a membrane-bound and non-matrix 
metalloproteinase. J Immunol. 2000; 165 :2165–2172. [PubMed: 10925303] 

30. Tenenhouse HS, Sabbagh Y. Novel phosphate-regulating genes in the pathogenesis of renal 
phosphate wasting disorders. Pflugers Arch. 2002; 444 :317–326. [PubMed: 12111239] 

31. Xie JH, et al. Engineering of a novel anti-CD40L domain antibody for treatment of autoimmune 
diseases. J Immunol. 2014; 192 :4083–4092. [PubMed: 24670803] 

Folkersen et al. Page 20

Nat Metab. Author manuscript; available in PMC 2021 August 09.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



32. de Miguel D, Lemke J, Anel A, Walczak H, Martinez-Lostao L. Onto better TRAILs for cancer 
treatment. Cell Death Differ. 2016; 23 :733–747. [PubMed: 26943322] 

33. Holmes MV, Davey Smith G. Can Mendelian Randomization Shift into Reverse Gear? Clin Chem. 
2019; 65 :363–366. [PubMed: 30692117] 

34. McCarthy CP, Januzzi JL Jr. Soluble ST2 in Heart Failure. Heart Fail Clin. 2018; 14 :41–48. 
[PubMed: 29153199] 

35. Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of genomewide association 
scans. Bioinformatics. 2010; 26 :2190–2191. [PubMed: 20616382] 

36. Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide complex trait 
analysis. Am J Hum Genet. 2011; 88 :76–82. [PubMed: 21167468] 

37. Yang J, et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies 
additional variants influencing complex traits. Nat Genet. 2012; 44 :369–375. S361-363 [PubMed: 
22426310] 

38. Tigchelaar EF, et al. Cohort profile: LifeLines DEEP, a prospective, general population cohort 
study in the northern Netherlands: study design and baseline characteristics. BMJ Open. 2015; 5 
e006772 

39. Consortium GT, et al. Genetic effects on gene expression across human tissues. Nature. 2017; 550 
:204–213. [PubMed: 29022597] 

40. Võsa Urmo. Unraveling the polygenic architecture of complex traits using blood eQTL 
metaanalysis. bioRxv. 2018 Oct 19. 

41. Westra HJ, et al. Systematic identification of trans eQTLs as putative drivers of known disease 
associations. Nat Genet. 2013; 45 :1238–1243. [PubMed: 24013639] 

42. Lloyd-Jones LR, et al. The Genetic Architecture of Gene Expression in Peripheral Blood. Am J 
Hum Genet. 2017; 100 :371. 

43. McRae AF, et al. Identification of 55,000 Replicated DNA Methylation QTL. Scientific Reports. 
2018; 8 

44. Bulik-Sullivan BK, et al. LD Score regression distinguishes confounding from polygenicity in 
genome-wide association studies. Nat Genet. 2015; 47 :291–295. [PubMed: 25642630] 

45. Vilhjalmsson BJ, et al. Modeling Linkage Disequilibrium Increases Accuracy of Polygenic Risk 
Scores. Am J Hum Genet. 2015; 97 :576–592. [PubMed: 26430803] 

46. Sudlow C, et al. UK biobank: an open access resource for identifying the causes of a wide range of 
complex diseases of middle and old age. PLoS Med. 2015; 12 e1001779 [PubMed: 25826379] 

47. Bycroft C, et al. The UK Biobank resource with deep phenotyping and genomic data. Nature. 
2018; 562 :203–209. [PubMed: 30305743] 

Folkersen et al. Page 21

Nat Metab. Author manuscript; available in PMC 2021 August 09.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 1. Chromosomal location of all associations discovered.
Cis-pQTLs are shown in red (bold) and trans-pQTLs in blue if they are significant at a 

conventional GWAS significance threshold of P<5x10-8. The gene annotations refer to the 

gene closest to the pQTL. A version of this figure with only loci selected according to the 

criteria for Mendelian randomization is available as [Extended figure 1].
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Figure 2. Classification of cis- and trans-pQTL genes.
A. The gene ontology label of all cis-pQTL genes, i.e. the protein-encoding genes. B. The 

gene-ontology label of all best-guess trans-pQTL genes. C. Gene set enrichment analysis 

of genes assigned to all significant trans-pQTLs, showing the top-gene sets from the Gene 

Ontology set Molecular Function.
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Figure 3. Clinical trial in humans and knock down experiment in mice corresponds to trans 
pQTL effects.
A) In humans treated with a small molecule dual-inhibitor of CCR5 and CCR2 

(PF-04634817) the induction of MCP-1 and CCL4, mirrors the observed CVD-I trans­

pQTLs. Box plots elements are according to standards for box-and-whisker diagrams. B) 
In mice, knockdown of ABCA1 or TRIB1 resulted in decreased circulating SCF levels 

mirroring CVD-I trans-pQTLs for SCF. Shown in the plot are SCF levels of individual mice 

represented by circles (wild-type in blue and transgenic mice in red) and the median level 

per group. P-value is calculated using a two-sided T-test.
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Figure 4. Main findings of Mendelian randomization analysis.
A. Heatmap of Mendelian randomization analyses of 38 complex traits. ICD-10 chapter of 

indication and clinical trial stage indicated for each target B. Forest plot showing CVD-I 

proteins with strong evidence of causality in the Mendelian randomization analysis. Drug 

development abbreviations: PC: pre-clinical, Ph1: Phase 1, Ph2: Phase 2, Ph3: Phase 3, 

post-MA: post-marketing authorisation. ICD-10 chapters of disease: A-B: infectious and 

parasitic; C-D: neoplasms; D: blood and immune; E: endocrine, nutritional and metabolic; 

F: mental and behavioural; G: nervous system; H: eye, adnexa, ear and mastoid; I: 

circulatory system; J: respiratory system; K: digestive system; L: skin and subcutaneous 

tissue; M: musculoskeletal and connective tissue; N: genitourinary; O: pregnancy, childbirth, 

puerperium; P: perinatal; Q: congenital, deformations and chromosomal; R: clinical and 

lab findings; S-T: injury, poisoning; U: provisional assignment (new diseases unknown 

aetiology); V-Y: external causes; Z: health status & health services
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Figure 5. SNP heritability and variance explained by genetics.
A. SNP-Heritability in the SCALLOP consortium discovery cohorts stratified by 

contributions major loci (light red) and polygenic effects (dark red). In the independent 

MDC cohort, additional variability explained by adding major loci (light blue) and 

polygenic risk scores (dark blue). Significance was reported according to the LDSC 

algorithm (blue) or a linear regression model (red). B. Differences in how protein levels 

are affected by polygenic (non-genome-wide significant) loci vs major loci, shown for both 
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the SCALLOP consortium discovery cohorts as hSNP
2 and for the MDC cohort as variability 

explained.

Folkersen et al. Page 27

Nat Metab. Author manuscript; available in PMC 2021 August 09.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 6. Mendelian randomization using polygenic risk scores.
A. Association of a polygenic risk score (PRS) with ST2 levels in the independent MDC 

cohort. B. Association of the ST2 PRS with asthma in the UK-biobank. B. Association of 

the ST2 PRS with inflammatory bowel disease (IBD) in the UK-biobank. The ST2 PRS 

was divided into 11 quantiles, with the middle group (quantile number 6) as the reference 

category. Effect estimates are presented as quantile-specific mean differences (ST2) and 

odds ratios (asthma and IBD) relative to the reference category.
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Figure 7. Mendelian randomization with proteins as outcome.
A. Heatmap showing the causal estimates of 38 complex traits on CVD-I protein levels. B. 
Correlation between beta-values for association between body mass index and circulating 

levels of CVD-I proteins in the IMPROVE cohort, and causal estimates from the Mendelian 

randomization analysis of body mass index genetic liability on same CVD-I proteins. C. 
Same as B but for estimated glomerular filtration rate.
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Figure 8. Protein-trait relationships that support target validation, repositioning, target­
mediated safety and new candidates for drug development.
For more information, see data presented in [Supplementary Table 7].
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