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Abstract

Biochemical reactions are intrinsically stochastic, leading to variation in the production of mRNAs 

and proteins within cells. In the scientific literature, this source of variation is typically referred 

to as “noise”. The observed variability in molecular phenotypes arises from a combination of 

processes that amplify and attenuate noise. Our ability to quantify cell-to-cell variability in 

numerous biological contexts has been revolutionised by recent advances in single-cell technology, 

from imaging approaches through to “omics” strategies. However, defining, accurately measuring 

and disentangling the stochastic and deterministic components of cell-to-cell variability is 

challenging. In this review, we discuss the sources, impact and function of molecular phenotypic 

variability and highlight future directions to understand its role.

Introduction

The intrinsic stochasticity of biochemical reactions contributes to a wide distribution of 

expression of a given mRNA or protein across a seemingly homogeneous population of 

cells1,2 This phenomenon, which we call “noise”, has been widely studied in prokaryotic 

and eukaryotic systems, and understanding its functional role in development, health 

and disease is the subject of on-going research. Classically, noise has been quantified 

using fluorescent reporter measurements of gene expression across bacterial cells, and 

broadly separated into intrinsic and extrinsic noise1,3. Genetic and epigenetic features 

as well as RNA polymerase II pausing and translational events modulate intrinsic noise 

in a gene-specific manner3–5. Extrinsic noise arises via unobserved variation of cellular 

components, such as when cells reside in different cellular states (e.g. cell cycle, cell-to-cell 

signalling and metabolism) within an otherwise homogeneous population6–8. However, it 

is unknown whether these sources are independent of each other and to what extent the 

biological process that generates extrinsic noise is stochastic or deterministic. Furthermore, 

cells employ a variety of regulatory mechanisms to buffer such variation, leading to an 

attenuation in noise across the population9.
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Recent technological advances have enabled the in-depth measurement and analysis of 

molecular variability in cell populations. Imaging methodologies10 and single-cell “omics” 

techniques11 permit the quantification of thousands of mRNA species, the genomic 

sequence, its epigenetic modification, and selected sets of proteins per cell. Moreover, 

the development of multi-omics technologies opens the possibility to link cell-to-cell 

variation between multiple regulatory layers across individual cells12. When considering 

cost, throughput and content, single-cell RNA sequencing (scRNA-Seq) provides the best 

option to study variability within cell populations, which is reflected in the broad usage of 

this technology in recent studies where cell-to-cell variability in gene expression has been 

used as a proxy for transcriptional noise13,14.

Applying high-throughput scRNA-Seq to mammalian systems has enabled the 

characterisation of the role of transcriptional variability in a variety of contexts. One well­

studied system is early embryonic development, which is driven by continuous cell fate 

decision events. Several recent studies have hinted at changes in transcriptional variability 

in pluripotent cells between developmental stages15–17. Such variability is not confined 

to development as animal immune systems display substantial intra- and inter-cell-type 

heterogeneity. Here, molecular phenotypic variation promotes immune cell plasticity, thus 

facilitating cellular responses to pathogens18,19.

Conversely, uncontrolled variability in cellular systems can disrupt tissue function. 

For example, genetic and non-genetic heterogeneity within cell populations have been 

implicated in cancer development20. Additionally, the complete eradication of tumour cells 

is hindered by non-genetic phenotypic variation, which enables treatment resistance21,22. 

Similarly, transcriptional variability increases with age and has been shown to disrupt 

otherwise synchronised immune responses23. Furthermore, disruption of noise control may 

lead to a blurring of cell identity, as defined by specific hormone production24.

In this Review, we begin by defining the distinction between noise and observable cell-to­

cell variability in molecular measurements. We then describe how recently developed single­

cell sequencing and imaging technologies have facilitated genome-wide quantification of 

transcriptional, epigenetic and protein variability across thousands of cells. Finally, we 

give an overview of current challenges in experimental and computational approaches to 

precisely measure, validate and perturb cell-to-cell variability and highlight future directions 

to understand the role of variability in biological systems and human health.

Defining biological noise and molecular phenotypic variability

Throughout this review, we define noise as stochastic events at the level of transcription 

and translation (see Box 1). However, the effects of such events are subtle and difficult to 

directly measure. We therefore draw a distinction between noise and molecular phenotypic 

variability, which can be directly measured with the technologies explained below. In this 

context, we consider the mRNA and protein abundance of individual cells as the molecular 

phenotype. Variability in the molecular phenotype across cells reflects a combination of 

stochastic noise components and regulatory mechanisms that cells employ to modulate noise 

(see also Ecker et al. 25).
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Sources of phenotypic variability: from the genomic to population level

In prokaryotic and eukaryotic cells, transcription occurs in “bursts”, where RNAs are 

produced during an interval of active transcription followed by periods of transcriptional 

inactivity26–29. In the simple “random telegraph” model of transcriptional bursting30,31, the 

promoter switches between an ON state, in which, with a certain probability, transcripts 

are produced; and an OFF state32. This system is characterized by the “burst frequency”, 

which captures the frequency of the ON switch scaled by RNA lifetime, and the “burst size”, 

which measures the number of transcripts that are produced per burst. While transcriptional 

bursting was often profiled using smFISH33,34 or the MS226,27, a recent study used 

allele-specific expression quantified by scRNA-Seq to measure burst kinetics in mouse 

fibroblasts35.

Recently, it has been proposed that specifically the burst frequency and the rate of burst 

initiation is controlled by enhancer-promoter interactions36,37. Furthermore, changes in 

burst frequency control the up- or down-regulation of genes associated with Dictyostelium 
differentiation. This in turn leads to a reduction in variability for up-regulated genes38. 

However, in Dictyostelium, transcriptional bursting is primarily regulated by the promoter 

sequence and only weakly by long-range chromatin interactions39. In addition to burst 

control during development, enhancer-promoter interactions also modulate transcriptional 

bursts occurring upon signalling via the estrogen receptor. Here, variability in TFF1 arises 

due to long periods of repressed transcription40. While it was initially believed that bursts 

occur in a stochastic fashion, the recent findings of enhancer-controlled bursts indicate 

that transcriptional variability can be precisely regulated during development or cellular 

stimulation.

Transcriptional bursting leads to large variability in transcript levels, which can propagate 

to form variability in protein abundance. Given its importance, understanding what might 

regulate molecular phenotypic variability is a critical challenge. Consequently, we focus 

below on discussing genomic features that have been linked to modulating both noise and 

molecular phenotypic variability during transcription and translation (for an overview see 

Fig. 1).

DNA level—One of the key regulatory steps prior to RNA synthesis is the binding 

of transcription factors (TFs) to specific DNA sequences within the regulatory region 

(promoter) of a gene, which triggers the controlled production of primary RNA transcripts 

from the DNA of this gene41. Consequently, it is unsurprising that several studies have 

linked promoter architecture and sequence to the level of transcriptional variability. For 

example, genes with TATA-box containing promoters show high levels of variability 

in transcript abundance14. Moreover, this set of genes show an increased interspecies 

variability42 and higher spontaneous mutational variation43. The TATA-box is therefore one 

genomic feature that can differentiate between genes with variable and stable expression. 

Interestingly, TATA-box motifs are enriched amongst genes that need to respond rapidly 

to environmental stresses, suggesting a role for transcriptional variability in adjusting to 

changing environmental conditions44.
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It has also been shown that transcriptional variability increases with the numbers of 

TF binding sites (TFBSs)45 and decreases with the number of transcriptional start sites 

(TSSs)14. The observation that TATA-box containing promoters also contain more TFBSs42 

and lack enhancing histone marks46 highlights that multiple correlated genomic features are 

associated with modulating the effect of noise, thus highlighting challenges in disentangling 

the underlying sources of transcriptional variability.

Epigenetic level—Besides DNA sequence, gene transcription is also modulated by 

epigenetic factors that control the chromatin state. Chromatin describes the packaged 

state of DNA; its central elements are nucleosomes, combinations of eight of the four 

histones (H3, H4, H2A, H2B), around which 147 bases of DNA twist. At the DNA 

level, epigenetic modifications include the methylation of CpG dinucleotides, and represent 

distinct regulatory elements. Methylation of CpGs around promoters is linked to gene 

silencing, while DNA methylation in gene bodies is associated with transcription47.

Recently, the presence of CpG islands (CGIs; defined as genomic loci of more than 200 

bases with a CpG dinucleotide content greater than the genome-wide average) in gene 

bodies, the TSS and in promoter regions was linked to a reduction in transcriptional 

variability14. These findings introduce CGIs as DNA features that can regulate molecular 

phenotypic variability across cells. Morgan and Marioni further distinguished between genes 

controlled by promoters associated with short and long CGIs. Similar to the presence of 

TATA-box motifs, the length of CGIs in promoter regions controls how variably a gene is 

expressed: Genes associated with short CGIs tend to be more variably expressed, allowing 

an early response to stimulation, exemplified by observations in mouse bone-marrow derived 

dendritic cells and human breast cancer cells13.

Modifications of histones can induce the activation or repression of chromatin and therefore 

modulate gene expression48. In a comprehensive study of the link between histone 

modifications and expression variability, Faure et al. detected several histone modifications 

in promoters and in gene bodies that were associated with either increased or decreased 

variation in gene expression. Interestingly, they found that bivalent promoters, which carry 

the repressive H3K27me3 mark deposited by polycomb repressive complex 2 (PRC2), and 

the enhancing H3K4me3 mark, display high transcriptional variability14. One potential 

explanation for this observation was introduced by Kar et al. who combined information 

on PRC histone modifications with RNA polymerase II (RNAPII) activity marks to infer 

that switching between the repressed and active states introduces gene expression variability 

across a population of cells49.

Besides the modification of histones, the positioning of nucleosomes can also control the 

magnitude of transcriptional variability. Tirosh et al. showed that genes with promoters 

that have high nucleosome occupancy proximal to the TSS tend to display relatively more 

plastic expression levels across perturbations such as environmental stress, mutations and 

developmental transitions50.

A key limitation in using these epigenetic modifications to construct a phenotypic molecular 

variability code is that most measurements are made using technologies that average signals 

Eling et al. Page 4

Nat Rev Genet. Author manuscript; available in PMC 2021 August 17.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



across millions of cells. For example, the increased variation in expression caused by high 

nucleosome occupancy close to the TSS could also be driven by cell-to-cell variations 

in nucleosome occupancy. Indeed, limited single-cell profiling of nucleosome occupancy 

around the PHO5 promoter demonstrated variability in nucleosome position upon stress 

induction. Additionally in the non-stressed environment, a small fraction of cells still exhibit 

nucleosome-free regions at the promoter, which can explain the variable expression of PHO5 
51. These findings contribute to a general theme: apparently repressed promoters can be 

associated with variable levels of expression across a cell population14.

Transcriptional level—Transcription is initiated by TFs binding to specific regulatory 

DNA sequences, followed by recruitment of RNAPII and RNA synthesis (Fig. 1). As 

discussed above, promoter architecture, namely the location and accessibility of TFBS and 

RNAPII binding sites, controls mean expression and shapes noise. The assembly of RNAPII 

complexes has previously been linked to modulating transcriptional variability. An early 

study identified the connection between paused RNAPII and synchronous expression of 

target genes in Drosophila, with genes without pre-loaded RNAPII showing more stochastic 

activation patterns5. This finding was later confirmed using scRNA-Seq data for genes 

transcribed across the full range of expression levels. However, the genes with pre-loaded 

RNAPII also have a higher CpG content and are depleted for TATA-box elements52. 

Once again, the correlation between genomic factors and their individual associations with 

variation creates a challenge to disentangle the underlying sources of molecular phenotypic 

heterogeneity.

Post-transcriptional and translational level—After synthesis, pre-mRNAs are 

polyadenylated and spliced to form mature mRNAs that relocate from the nucleus to the 

cytoplasm where translation occurs. On the post-transcriptional and translational level, 

nuclear export, degradation and the efficiency of translation have been shown to influence 

cell-to-cell variation in mRNA and protein abundance.

Previous studies proposed that the active export of mRNAs into the cytoplasm functions as 

a buffering mechanism to reduce cell-to-cell variation in transcript abundance53. Concordant 

with a role for nuclear export as a mechanism for modulating variation, Bahar Halpern 

et al. demonstrated, for two genes expressed in the liver, lower variation of transcripts in 

the cytoplasm compared to transcripts localised to the nucleus. They proposed that this 

could be a regulatory mechanism active across a range of metabolic tissues54. Conversely, 

Hansen et al. recently proposed that nuclear export amplifies transcript variability in the 

cytoplasm compared to the nucleus55. This study used the theoretically correct assumption 

that the Fano factor (variance/mean expression) does not scale with mean expression. 

However, in practice and as discussed by Grün et al. when using scRNA-Seq data56 or 

Sanchez and Golding when using smFISH data29, this assumption does not hold when 

technical or biological effects influence the global variation in transcript counts (see section 

“De-convoluting molecular phenotypic variability”). Therefore, the comparison of the Fano 

factor might still be confounded by changes in mean transcript abundance. Another potential 

explanation of this discordance is that Battich et al. 53 profiled HeLa cells that were 
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stimulated with EGF, where the buffering effect of nuclear export might not be comparable 

to the steady-state system used by Hansen et al. 55

Other mechanisms to control cytoplasmic variations in transcript abundance include 

accelerated mRNA degradation driven by microRNAs (miRNAs). This process has been 

shown to preferentially reduce variation in transcript abundance for lowly expressed genes in 

mESCs, possibly to maintain cellular identity57.

Ribosomes binding to mRNA and subsequent translation to a peptide sequence are 

also biochemical processes, and so may be subject to stochastic fluctuations, i.e. noise. 

Therefore, it is difficult to disentangle variation in translation from noise that propagates 

from all previous layers of the central dogma of molecular biology, i.e. transcription, 

splicing and mRNA export. To specifically study the contribution of noise at the level of 

translation, Ozbudak et al. mutated the ribosomal binding site (RBS) of a GFP reporter 

gene transfected into Bacillus subtilis. This revealed an impact on translational efficiency 

and fluctuations in protein abundance3, highlighting that translational noise also influences 

molecular phenotypic variation.

Molecular phenotypic variability at the cell population level—As we discuss 

above, molecular phenotypic variability of mRNA, protein, or other biological molecules, 

results from a combination of stochastic and deterministic influences (Fig. 2). Classically, 

time-resolved single gene measurements were used to study the effect of noise, and the 

influences of specific regulatory layers were inferred from perturbation experiments. The 

recent advent and adoption of high-throughput single-cell technologies, which we discuss 

below, endows us with the ability to assay molecular phenotypic variability genome-wide. 

Therefore, using these modalities, we can measure variability at different scales, from a 

single gene to large gene regulatory networks in a single experiment.

Co-variation between genes across a population of cells can provide information about 

the underlying sources of molecular phenotypic variability (Fig. 2). Extensive co-variation 

between genes is indicative of the presence of distinct cell types. We do not discuss the 

challenges associated with resolving this structure, and we refer the reader to Kiselev et 
al. 58. More subtle co-variation may arise due to other deterministic biological processes, 

such as fluctuations in metabolic states8, cell cycle stage6,59,60, volume61–63, and cellular 

signalling7,21. In otherwise homogeneous populations of cells, these fluctuations were 

previously referred to as extrinsic noise64. When inferring the contribution of noise to 

molecular phenotypic variability, processes that introduce co-variation were treated as 

sources of unwanted variability and can be corrected for. For example, in the case of the 

cell cycle, computational approaches can be used to assign a cell to a distinct phase of the 

cell cycle and this effect can be regressed out in subsequent analyses65. Experimentally, the 

volume or cell cycle stage of cells can be identified by profiling marker gene expression 

and DNA content. Therefore, cells can either be sorted or overall protein levels can be 

normalized based on these features66,67.
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Measuring phenotypic variability

In the last ten years, the scale of single-cell assays increased from measuring few to 

hundreds of thousands of genomic, epigenetic, transcriptomic or proteomic features. These 

technologies can be used to measure molecular phenotypic variability, as well as to gain 

an understanding of the regulatory features that modulate it. The ability to study noise 

using technologies that destroy the cell is formulated on the basis that a cross-sectional 

measurement over a population of cells is representative of the time-resolved noise profile 

of any given cell3. While the in-depth technical details of single-cell assays are explained 

elsewhere68–70, we will highlight how current state-of-the-art technologies have been used to 

understand phenotypic variability (also discussed by Patange et al. 71).

Single-cell whole genome sequencing (scDNA-Seq) has previously been used to identify 

copy number variations (CNVs) and single nucleotide variations (SNVs) between single 

cells72. Recently, Vitak et al. introduced single-cell combinatorial indexed sequencing (sci­

Seq), which allows the generation of thousands of single-cell genomes for sequencing. 

By so doing, CNVs of over 15,000 cells can be assessed73. Consequently, while bulk 

measures have previously been used to link mutations to changes in transcriptional 

variations74,75, scDNA-Seq with high read-depth can potentially be used to ask whether 

a heterogeneous mutational pattern (somatic mutations) drives observed fluctuations in 

phenotypic variability.

Single-cell epigenomic methods capture the chromatin state, histone modifications and 

DNA methylation of individual cells and allow quantification of epigenetic variability across 

a population of cells70. Similar to scRNA-Seq and scDNA-Seq, the scale of single-cell 

epigenomic technologies has recently been increased by applying combinatorial indexing 

approaches76,77. This will potentially allow variable patterns of histone modifications or 

nucleosome positioning to be linked with gene expression variability51.

Single-cell RNA sequencing (scRNA-Seq) quantifies poly(A)-tagged mRNA abundance 

in individual cells. The throughput of scRNA-Seq has increased from tens or hundreds, 

to thousands and hundreds of thousands of cells, largely driven by the application of 

microfluidic78,79 and combinatorial index sequencing approaches80,81. The cost efficient 

and genome-wide nature of scRNA-Seq makes it the ideal method to study genome-wide 

variability in molecular phenotypes. Thus, it is ideally suited to linking genomic features to 

phenotype variability14, study changes in expression variability during development15, and 

to investigate responses to perturbations (such as ageing23,24).

Single-cell proteomics approaches have been developed to quantify a selected set of 

proteins in individual cells. High-throughput approaches to measure protein abundance from 

tens of thousands of cells include fluorescence-activated cell sorting (FACS) and cytometry 

by time-of-flight (CyTOF). FACS is restricted by the use of a limited set of antibodies 

with conjugated fluorophores that emit light in different spectra, whilst CyTOF allows a 

larger number of proteins to be quantified using antibodies that are labelled with transition 

element isotopes82. More recently, conjugation of antibodies with oligonucleotides allows 

protein quantification for a number of targets by next-generation sequencing83. While these 

approaches are restricted to a relatively small set of proteins, a larger number of cells can 
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be profiled compared to scRNA-Seq. Additionally, these approaches are able to capture 

post-translational modifications indicative of intra-cellular signalling that are unobserved 

when profiling variability in mRNA abundance.

Spatial approaches allow the quantification of molecular variation in biological systems by 

recording the position of RNAs or proteins in individual cells. These approaches include the 

expression of fluorescent proteins controlled by promoters of interest (reporter assays) or 

immunocytochemistry, single-molecule fluorescence in situ hybridization33,53,84 (smFISH), 

and the MS2 stem loop system26,27. Historically these approaches have only been able to 

assay a handful of transcripts or proteins. However, the recent advent of multiplexed FISH, 

such as MERFISH and Seq-FISH, combine super-resolution microscopy and multiplexed 

imaging to detect hundreds of mRNA species per cell10,85. The development of imaging 

mass cytometry86 and highly multiplexed protein imaging enables spatially-resolved 

measurement of around 40 proteins across thousands of cells87. Spatially resolved methods 

connect variability to location, thus allowing the inference and prediction of cell states53, 

that would otherwise appear to be random.

Single-cell multi-omics approaches combine some of the described techniques to measure 

transcriptomic, genomic, epigenomic and proteomic (“multi-omic”) features of single cells 

in parallel12. DR-Seq and G&T-Seq perform combinatorial genome and transcriptome 

sequencing from the same cell88,89. scM&T-Seq was initially developed to quantify the 

methylome and transcriptome from single cells90, and has been extended to additionally 

capture accessible chromatin regions91. In recent years, different protocols have been 

developed to capture a selected set of proteins and mRNAs in combination within individual 

cells92,93. These approaches can now be used to understand how genomic features control 

molecular variability, and how it propagates from one molecular level to another.

De-convoluting molecular phenotypic variability—The technologies described 

above generate single-cell read-outs of mRNA or protein abundance. However, the 

quantification of molecular variability presents particular analytical challenges. Commonly, 

variability is quantified using one of a number of different point estimates. For example, 

the variance, σ2, either calculated across all cells or across all cells in which a gene’s 

expression is detected18, captures variability in RNA or protein abundance. Assuming an 

underlying Poisson generative process for mRNA and protein production, the variance scales 

linearly with mean expression (μ)94 (Fig. 3). A more widely used alternative for measuring 

heterogeneous RNA53,95 or protein expression96 is the (squared) coefficient of variation 

(CV2, σ2/μ2). However, the CV2 decreases as a function of mean expression, which is 

expected from an over-dispersed Poisson generative process, leading to the observation that 

lowly expressed genes show higher levels of noise compared to highly expressed genes95,96 

(Fig. 3). To theoretically avoid this mean-variability dependence, numerous studies have 

quantified variability using the ratio of the variance to the mean (σ2/μ), called the Fano 

factor3,55,97. This statistic assumes that the over-dispersion is equal across the entire range of 

mean expression values. However, in practise and as discussed by Grün et al., and Sanchez 

and Golding, this assumption is violated in single-cell measurements when technical or 

biological constraints influence the global cell-to-cell differences in transcript abundance, 

leading to a lower limit of variability29,56,98 (Fig. 3). Consequently, to compare variability 
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measures for a given gene across different biological conditions, where the gene’s mean 

expression changes, regression approaches have been used to correct for the mean-variability 

relationship60,99.

Alternatively, several mechanistic-based approaches have been proposed to infer the specific 

kinetics of transcription from scRNA-Seq. For instance, Kim and Marioni proposed a 

hierarchical Beta-Poisson formulation to infer the parameters of transcription100. This 

telegraph-based model estimates the switching dynamics of promoters between the "ON" 

and the "OFF" state (kON, kOFF) as well as the transcription rate s and the decay rate d:

X s,p ∼ Poisson sp
p kON, kOFF ∼ Beta kON, kOFF

where X is the transcript count per cell, and p is a random effect dictated by promoter 

switching. Applying the model to a small population of mESCs indicated that RNAPII 

binding and histone modifications modulate burst size and burst frequency100.

Complementing these strategies, Vallejos et al. modelled expression counts from scRNA­

Seq data using a Bayesian framework where statistical uncertainty in parameter estimates 

was propagated into downstream analyses. Here, biological variability (after accounting 

for technical noise) was directly modelled101. Similar to the CV2 95 this over-dispersion 

measure decreases with increasing mean expression101, which has to be corrected for when 

testing changes in expression variability between cell populations102 or when comparing 

variability measures across sets of genes.

The role of molecular phenotypic variability

All cellular systems display phenotypic variability and employ strategies to make use of 

or cope with this variation. Early research focused on studying variability in viral103–105, 

prokaryotic1,3 and unicellular eukaryotic systems106,107 (for extensive summaries of these 

systems see Raj et al. and Balázsi et al. 108,109). For example, biological noise was originally 

thought to trigger the decision between latency and replication in the λ-phage. Infected 

cells either reside in a lysogenic state where the genetic material of the virus is transmitted 

to daughter cells without inducing cell death, or a lytic state where the virus destroys the 

host cell110. Arkin et al. modelled the lysis-lysogeny switch based on stochastic chemical 

kinetics and expression dynamics103. An alternative explanation by St-Pierre and Endy 

described a more deterministic model where the heterogeneity in decision events depended 

on heterogeneity in cellular volume105. This conflict between stochastic and deterministic 

mechanisms was recently resolved by Zeng et al. who proposed that the lysis-lysogeny 

switch does not depend on a single noise-driven decision but on a single unanimous, 

noise-free vote across all phages per cell104. Building on this notion of communication, 

in unicellular organisms, noise contributes to bet-hedging, a survival strategy where a sub­

optimal fitness landscape is tolerated across a population of cells in order to facilitate an 

effective response to environmental changes. For example, Bacillus subtilis either commits 

to sporulation or competence upon starvation or DNA damage111. The probabilistic and 

transient activation of competence in a sub-population of B. subtilis cells is modulated by 
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fluctuations in the competence regulators ComK and ComS. As with the lambda-phage 

phenomenon described above, fluctuations of these regulators have both stochastic and 

deterministic sources. On one hand, a system of feedback loops has been proposed to control 

the number of cells that commit to competence while other cells irreversibly sporulate112. 

On the other hand, noise in transferring phosphoryl groups across a cascade of regulators 

maintains a constant probability of cells committing to sporulation113.

While the role of molecular phenotypic variability in unicellular systems has been 

extensively profiled, its impact and function in multi-cellular systems is largely unclear. 

Here we highlight recent studies using high-throughput “omics” techniques to characterise 

how higher eukaryotic systems exploit and buffer variability.

A role for variability in multi-cellular organisms?—Similar to bet-hedging strategies 

in unicellular organisms, noise can facilitate the switch between cell states and the 

probabilistic induction of differentiation114,115. It has been shown that cell-to-cell variability 

in expression increases throughout Dictyostelium development38 and as hematopoietic 

progenitor cells differentiate116,117. Once cells are committed to a fate, variability collapses 

at the population level as these cells become terminally differentiated116,117. However, 

and as we further discuss below, it is not clear if these observed changes in variability 

drive differentiation and further, how transcriptional variability progresses through to the 

protein level. For example, Baser et al. recently highlighted that the translation of stem cell 

identity factors is post-transcriptionally repressed by decreased mTOR activity upon cell 

cycle exit118. These finding exemplify a post-transcriptional layer of regulation, which can 

induce differentiation independently of transcriptional variability – it is important to bear 

this in mind when considering the role of mRNA expression variability in determining cell 

fate.

One example of a study that has linked gene expression noise with cell fate proposed that 

variability in expression contributes to early (pre-gastrulation) embryonic development119. 

As early as the 4-cell stage embryo, targets of the master pluripotency factors Oct4 and 

Sox2 are heterogeneously expressed (Fig. 4). This is caused by heterogeneous methylation 

patterns of histone H3 Arg26 (H3R26) induced by Carm1, which in turn facilitates the 

binding of Oct4 and Sox2, biasing cells towards a pluripotent fate, and formation of the 

inner cell mass. Conversely, cells with unmethylated H3R26 are biased towards the extra­

embryonic trophoectoderm15. At embryonic day (E)3.5, cells of the inner cell mass (ICM) 

continue to display variable gene expression (Fig. 4). Fgf4-driven signal reinforcement 

controls this heterogeneity, forming a spatial salt-and-pepper like distribution of primitive 

endoderm and epiblast cells. By E4.5, the establishment of gene regulatory networks 

facilitates the positional segregation of the epiblast and primitive endoderm lineage17 

(Fig. 4). In line with these observations, scRNA-Seq reveals high levels of transcriptional 

variability in the ICM at E3.5 compared to cells of the E4.5 epiblast16. Transcriptional 

variability, however, is not the only explanation for cell fate commitment during early 

embryonic development120. In the transition from an 8-cell to 16-cell embryo, cell polarity, 

position and orientation during cell division cause differences between cells (symmetry 

breaking)120. Maître et al. proposed that cells may self-organise within the embryo due to 
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differences in contractility, leading to the internalization of the more contractile cells at the 

16 cell stage121.

These alternative explanations for symmetry breaking and cell fate decision making beg the 

question of whether variability plays a role in these processes at all: expression variability 

may arise due to an inability to pinpoint the true decision event as cells have already begun 

to diverge, giving the impression that variability precedes fate choice. Ergo, variability may 

be a consequence, rather than a cause of cell fate decision-making.

Although controversy over the role of variability in cell fate decision-making is apparent, it 

is much clearer that animal systems utilize variability to allow robust population responses 

to environmental changes. Fast and flexible immune responses are observed within cell 

populations that are highly plastic, and react to a broad spectrum of stimuli. It has been 

previously proposed that stochastic cytokine expression leads to phenotypic variability in T 

helper (Th) subtypes, increasing their ability to respond to immune stimuli122. For example, 

fluctuating expression of the lineage defining cytokines Ifnγ (Th1) and Il4 (Th2) in small 

populations of CD4+ Th cells facilitates the rapid commitment towards either a Th1 or 

Th2 cell fate123,124. These observations are concordant with the notion that variability in 

an external signal, such as a cytokine, dictates the lineage commitment, rather than the 

stochastic expression of transcription factors125.

In line with these ideas, Hagai et al. show that variability in expression of cytokines within 

immune cell populations corresponds to immune response divergence between species. 

Their up-stream regulators (such as transcription factors) on the other hand tend to show 

lower variability and higher conservation in expression between species126. Furthermore, 

Shalek et al. have shown that upon lipopolysaccharide (LPS) stimulation a small subset 

of dendritic cells that express Ifnβ become activated much earlier than the rest of the 

cell population. These early responders support the activation of late responding cells via 

paracrine and autocrine signalling18 (Fig. 4). Similar phenomena have been observed with 

Il2 and NFκB signalling127,128. For example, Il2 demonstrates a digital (on/off) expression 

pattern in Th cells following immunization, where the number of Il2 expressing cells is 

proportional to the signal strength127. This allows an organism to generate an immune 

response that is directly proportional to the magnitude of the external challenge.

Regulating variation in cellular systems—While cell-fate decision-making and 

immune plasticity is linked to increased molecular phenotypic variability, cells have evolved 

numerous mechanisms to regulate and attenuate its impact in other settings. For example, 

increases in expression variability during Zebrafish development can be counteracted 

by temporal averaging across noisy transcription events to achieve coordinated tissue 

responses129. Furthermore, at the whole organism level, redundancy in the Caenorhabditis 
elegans intestinal gene regulatory network has been proposed to buffer variability in the 

down-stream master regulator elt-2. Once highly connected regulators of this network 

are removed, phenotypic variation in intestinal differentiation arises from the bimodal 

expression of elt-2 28. The cooperation of positive and negative feedback loops in these 

highly connected regulatory networks ensure robust expression of key developmental 

genes130. Recently, Hansen et al. highlighted a system in which transcript variability is 
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enhanced prior to and attenuated after fate commitment: Transcriptional variability in 

the human immunodeficiency virus type 1 (HIV) is amplified by positive feedback and 

facilitates cell fate commitment; subsequently, cell fate is stabilized by auto-depletion of 

precursor RNAs, reducing transcript variability in a negative feedback fashion97. These 

findings indicate that low and high variability regimes, with specific functions, can be 

specifically controlled in single cells.

In sum, biological systems employ mechanisms to exploit and control molecular variability, 

which may be influenced by noise, to create a properly functioning ensemble of cells 

that respond to environmental signals. Loss of these control mechanisms leads to 

greater instability, and an increase in molecular variability, with potentially detrimental 

consequences.

Losing control: destabilizing biological systems—As described above, biological 

noise needs to be controlled to ensure consistent tissue wide responses. This also applies 

to the immune system: Even though immune cells display highly variable molecular 

phenotypes, once activated, transcriptional responses are synchronised. Perturbations of 

this system, which have been observed during ageing, destabilise this synchronisation 

and increase molecular variability23,131. Increased variability in the expression of immune 

response genes, identified by genome-wide transcriptional profiling of single cells, has 

been proposed to destabilise the immune activation program in CD4+ T cells23. Similarly, 

transcriptional variability increases with age in the human pancreas and is correlated with 

an increased stress signature and atypical hormone expression24. Whilst these studies have 

demonstrated a relationship between variability and ageing, they are limited in the scope 

of the cell types and tissues profiled. More recently, the connection between age and 

molecular variability has been expanded to encompass additional peripheral immune cell­

types and ageing lung tissue132,133. Increased molecular phenotypic variability can therefore 

be regarded as a biomarker for ageing and a quantitative trait, which can be compared across 

individuals134.

Onset and progression of cancer is also correlated with a loss of control over phenotypic 

variability. Gene mutations induce transitions from healthy cells towards a cancerous state20 

(see Fig. 1). Cancer cells then occupy stable transcriptional states that are inaccessible 

under healthy conditions135. Whilst cancer is characterised by genetic heterogeneity, non­

genetic heterogeneity supports the accessibility and phenotypic adaptation to alternative 

cellular states136. Epigenetic dysregulation and increased epigenetic variability further 

support the emergence and reinforcement of non-genetic heterogeneity in tumours22. This is 

supported by evidence of increased genome wide DNA methylation heterogeneity in chronic 

lymphocytic leukaemia, which increases cancer cell plasticity137. Increased non-genetic 

heterogeneity at the epigenetic or transcriptional level, induced by either a spontaneous or 

instructed loss of noise control, can therefore have a detrimental effect on healthy tissue 

function.

Another important consequence of phenotypic heterogeneity in cancer cells relates to the 

fractional killing of cell populations upon drug treatment138 (Fig. 4). Variability in proteins 

mediating apoptosis leads to the survival of small fractions of cells after treatment21, 

Eling et al. Page 12

Nat Rev Genet. Author manuscript; available in PMC 2021 August 17.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



which could consequently repopulate the tumour. Similarly, the stochastic acquisition of 

DNA damage upon cisplatin exposure introduces heterogeneity in the up-regulation of 

p53. Slow up-regulation leads to cell cycle arrest and inhibits apoptosis with only rapid up­

regulation leading to cell death139. In patient-derived melanoma cells, sporadic expression 

of resistance markers forms a rare cell population that grows into resistant colonies after 

vemurafenib treatment. While pre-resistant cells do not display distinct epigenetic marks 

and are therefore close to the non-resistant ground state, treatment induces large epigenetic 

reprogramming, forming stable resistant cancer colonies22. To surmount this problem, 

combinatorial therapies have been proposed to reduce variability and fractional killing in 

cancer cell populations139,140.

These studies highlight the observation that cellular systems control the effect of variability 

and that once this control is lost increased variability can lead to destabilised cell responses.

Challenges

While technological and computational advances have facilitated the quantification of 

mRNA and protein variability across a range of cell types and tissues, major challenges 

remain regarding robust measurement, statistical analysis and experimental validation.

Computational and experimental concerns

Fundamentally, a Poisson process describes the underlying generative process of 

transcription. However, transcriptional bursting introduces additional variation in mRNA 

levels greater than expected by a Poisson process; referred to as over-dispersion. Sequencing 

count data generated by scRNA-Seq for studying variability are usually modelled using a 

negative binomial distribution, which incorporates this over-dispersion. The natural measure 

of variability in this setting is either the CV2 or Fano factor, which both scale with the 

mean expression level. This relationship must be accounted for to decouple any confounding 

effects between mean expression and variability. Previously, this has been achieved using 

either parametric13,95 or non-parametric approaches14,102. Whilst smFISH is considered a 

gold standard for the quantification of molecular variability, its limited throughput does not 

allow an in-depth understanding of the mean-variability relationship.

Additionally, the ability to study molecular variability relies on obtaining a “homogeneous” 

population of cells. However, current challenges remain in defining such a population, due to 

insufficient resolution of subtle structured heterogeneity. Potential solutions include sensitive 

and robust clustering algorithms (see Kiselev et al. 58), as well as methods to estimate 

correlated sources of variability in an unbiased manner65.

As well as the issues noted above, scRNA-Seq is prone to high technical noise due to 

the low amount of biological input material: typically, only 10%-20% of all transcripts are 

captured in a given cell. Furthermore, amplification biases exponentially enhance noise 

introduced by differences in capture efficiency. Initially, spike-in RNAs were used to 

decompose the overall variability into biological and technical components95,101. More 

recently these biases have been minimised by the introduction of unique molecular 

identifiers (UMIs) that allow the direct quantification of transcript abundance141. However, 
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newly developed, high-throughput scRNA-Seq approaches come at the price of reduced 

sequencing depth, the inability to quantify technical noise via RNA spike-ins and oft­

reduced replication. Recently, new approaches have been developed to multiplex samples 

using these technologies that enable the appropriate use of replicates142. Experimental 

designs for single-cell studies with replication are needed to correctly estimate the technical 

contributions to variability where spike-ins are not available102.

Experimental perturbations to study the role of variability

One of the main experimental challenges when attempting to validate the hypothesised role 

of variability is resolving whether or not it is a cause or consequence of the system being 

studied. To address these issues, one needs to perturb the molecular source, the magnitude 

and the consequences of variability.

Classically, unicellular systems have been employed to study the sources of transcriptional 

variability. In these systems, genetic alterations allowed the direct modulation 

of transcriptional and translational variability2,3,75. Specifically, changing promoter 

architecture can strongly alter expression variability45,143. By contrast, in vivo editing in 

multicellular organisms has only recently become achievable due to the development of 

CRISPR/Cas9 approaches144.

Furthermore, multiple correlated regulatory factors influence transcriptional variability, 

making it challenging to specifically dissect the influence of individual factors. To 

circumvent this challenge, direct manipulation of molecular variability by orthogonal means 

can reveal the role of variability without altering the source. For instance, modulation 

of miRNA-dependent mRNA degradation can be used to reduce variability in mRNA 

levels for specific target genes, as proposed by Schmiedel et al. 57. Furthermore, other 

perturbations of the mRNA degradation machinery could be used to directly modulate 

variability independent of its source.

Finally, where direct manipulation of variability or its underlying generative process is 

infeasible, its impact can still potentially be assessed by perturbing downstream effects. 

For example, transcriptional variability in bone marrow-derived dendritic cells establishes a 

paracrine signalling network to create a robust population response to immune challenge18. 

Blocking the paracrine signalling therefore highlights the role of phenotypic variability in 

immune responses.

Currently, high-throughput “-omics” methods are used to measure and describe correlations 

with variability, without seeking to resolve causality from consequence13,23. Moving 

forwards, similar experiments using the design principles described above can be used to 

help establish the contribution of variability to biological processes, and separate cause from 

consequence.

Interpreting differences in variability

The exact role of variability in biological systems remains controversial. Studying variability 

in a steady-state system can lead to conflicting conclusions about the role and impact of 

variability compared to studies in the context of fluctuating environments. In particular, this 

Eling et al. Page 14

Nat Rev Genet. Author manuscript; available in PMC 2021 August 17.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



conflict becomes apparent when interpreting the role of variability from an evolutionary 

perspective. In stable environments, variability in gene expression can be deleterious by 

leading to suboptimal growth conditions for many cells74,145. Lehner discussed how natural 

selection minimises variability in genes that show harmful phenotypic effects upon over- 

or under-expression ("dosage-sensitive genes"). These genes showed lower expression 

variability, thus constraining the range of possible expression levels146. In contrast, in 

fluctuating environments where the average protein abundance across cells is far from 

the level that achieves optimal fitness, increased variability leads to some cells that are 

capable of expressing protein levels closer to the optimum in the altered environment114,147. 

This demonstrates the critical importance of studying the role of variability through an 

evolutionary lens where adaptation to fluctuating environments is key to organism fitness.

Outlook

The existence of variability in biological systems is undeniable. However, as laid out in this 

review, the exact role and impact of variability remains controversial. Specific cases have 

highlighted that variability may alter the plasticity of cellular behaviour while others have 

demonstrated the detrimental effects associated with increased variability. Moving forwards, 

as molecular biology tools become more refined and increase in throughput, they can be 

applied to resolve some of the controversies in the field.

For instance, high variability is correlated with promoter bivalency. It is still unclear if these 

conflicting histone modifications occur at the same promoter in the same cell. Single-cell 

multi-omics can profile the exact promoter state in combination with the transcriptome 

of individual cells. Furthermore, combining high-throughput, multi-omic and spatially­

resolved read-outs with intelligently designed perturbation experiments will unravel how 

the multitude of stochastic interactions within cells can result in deterministic behaviour at 

the population level.

Akin to the benefits of combining human and animal quantitative genetics, there is huge 

scope for driving forward a deeper understanding of human disease by merging these 

fields with single-cell omics. In particular, harmonising human genetics with functional 

experiments that probe the roles of molecular variability will reap dividends for human 

health.
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Box 1

Display items (seven max)

Defining and measuring noise

Noise is defined as the stochastic effects in biochemical processes such as transcription 

and translation that contributes to cell-to-cell phenotypic differences. Classically, noise 

was separated into intrinsic and extrinsic noise1. In this definition, intrinsic noise 

originates from stochastic biochemical effects that directly influence mRNA and protein 

expression in a gene-specific manner by (for example) transcription factor binding 

dynamics64. Extrinsic noise, on the other hand, introduces co-variation across multiple 

genes (also in a pathway specific manner148) and may arise due to fluctuations in 

cell-specific factors such as stress response, mitochondrial maintenance, amino-acid 

synthesis149 or cell cycle6. However, we would argue that this binary classification is too 

simplistic, as the relative contribution of stochastic and deterministic factors to extrinsic 

noise are not well understood. Here, we use the term “noise” to describe truly stochastic 

effects in biochemical reactions.

Time-resolved measurements of individual genes across cells were initially used to study 

noise in unicellular organisms1,26,27. More recently, single-cell technologies have been 

used to study noise13,14, and other sources of cell-to-cell phenotypic variability. However, 

in reality we are not able to delineate between stochastic and deterministic influences on 

variability, leading to a composite measurement that we define as “molecular phenotypic 

variability” (also referred to as “non-genetic heterogeneity”150).
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Glossary

Bivalent promoters: Gene promoters with both repressive and activating chromatin marks

Symmetry breaking: Emergence of asymmetry regarding the distribution of factors 

influencing developmental potency

Paracrine and autocrine signalling: Autocrine hormone signalling affects the hormone 

producing cell while paracrine hormone signalling affects nearby cells.

Auto-depletion: Depletion of precursor RNAs by their protein product

Technical noise: Variation in measured components (e.g. mRNA, proteins) that arise 

during data acquisition.

Sporulation: A process during which the cell’s vegetative growth ends, leading to the 

formation of endospores that survive the altered environment.

Competence: Competent bacteria have the ability to take up DNA from the environment.
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Fig. 1. Regulatory features controlling noise
Promoter sequence, number of transcription factor (TF) binding sites (TFBS), number of 

transcriptional start sites (TSS), enhancer elements, RNA polymerase II (RNAPII) loading, 

DNA methylation, nucleosome positioning, histone modifications, Polycomb repressive 

complex binding, miRNAs, nuclear export of mRNA and ribosome binding are features 

that modulate noise.
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Fig. 2. Regulation of noise forms single gene and coupled variability.
Left hand side: Noise and regulatory mechanisms that control noise lead to molecular 

phenotypic variability in mRNA and protein abundance. Right hand side: Structured 

variability can be detected across multiple levels of co-variation between genes.
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Fig. 3. Variability versus mean expression relationship.
Gene expression was profiled in serum grown mESCs using (A) scRNA-Seq and (B) 

smFISH of selected genes56. The blue line indicates the variability versus mean expression 

relationship as expected from a Poisson generative process. The red points in (A) represent 

gene-specific variability and mean expression measures calculated across single mESCs. 

Black points indicate these measures calculated across pool-and-split technical control 

samples, where variability is purely technical. Variability is plotted versus mean expression 

using a log-log scale. While genes in the technical samples approximately follow a Poisson 

trend (black points), biological cell-to-cell variability induces over-dispersion in the single­

cell samples (red points). The measures of variability are: variance (first column), Fano 

factor (variance/mean expression, second column) and CV2 (variance/mean expression 

squared, third column).
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Fig. 4. The role of biological noise in cellular systems
(Top) From left to right: schematic of mouse embryonic development from the 4-cell stage 

to E4.5. Cell colours indicate gene expression strength. Heterogeneous expression at the 

4-cell stage induces commitment to form extra-embryonic lineages or pluripotent cells. 

These pluripotent cells at E3.5 show high expression heterogeneity forming the inner cell 

mass (ICM). Cells rearrange to form the epiblast and primitive endoderm at E4.5.

(Middle) Within a population of immune cells (e.g. dendritic cells, Th cells), a sub­

population either shows higher response strength or induces the production of cytokines 
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such as Il2 or Ifnβ. These early responders induce activation of surrounding cells via 

paracrine signalling and self-stimulation via autocrine signalling.

(Bottom) Stochasticity in expression introduces non-genetic heterogeneity that supports 

the adaptation of cancerous cells. Cancer progresses to form a collection of cells with 

divergent expression patterns. This phenotypic heterogeneity leads to fractional killing 

during treatment and cancer recurrence.
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