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Abstract

Organ development is orchestrated by cell- and time-specific gene regulatory networks. In 

this study, we investigated the regulatory basis of mouse cerebellum development from early 

neurogenesis to adulthood. By acquiring snATAC-seq profiles for ~90,000 cells spanning eleven 

stages, we mapped cerebellar cell types and identified candidate cis-regulatory elements (CREs). 

We detected extensive spatiotemporal heterogeneity among progenitor cells and a gradual 

divergence in the regulatory programs of cerebellar neurons during differentiation. Comparisons 
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to vertebrate genomes and snATAC-seq profiles for ~20,000 cerebellar cells from the marsupial 

opossum revealed a shared decrease in CRE conservation during development and differentiation, 

but also differences in constraint between cell types. Our work delineates the developmental and 

evolutionary dynamics of gene regulation in cerebellar cells and provides insights into mammalian 

organ development.

The cerebellum, known for its role in motor control, also contributes to other complex 

functions, such as language and memory (1–3). During development, two germinal zones – 

the ventricular zone and the rhombic lip – give rise to distinct neuronal and glial populations 

(2, 3). Cell type specification and differentiation processes are controlled by cis-regulatory 

elements (CREs), such as enhancers and promoters, and the transcription factors (TFs) 

that bind to them (4, 5). Although most CREs evolve rapidly (6–8), some, enriched near 

developmental genes, are conserved across vertebrates (9, 10). Studies of bulk CRE activity 

have explored gene regulation in the hindbrain and postnatal cerebellum (11, 12), as well 

as CRE evolutionary dynamics during organ development (13, 14). Single-cell approaches 

have been employed to study gene regulation in adult mouse organs (15), including the 

brain (16), and in a limited number of cells or stages for the developing mouse (17, 18) 

and human brain (19, 20), but a comprehensive characterization of the entire development 

of a mammalian organ has been lacking. In this study, we used single-nucleus Assay for 

Transposase Accessible Chromatin (snATAC-seq) (21) to profile the landscape of chromatin 

accessibility – a proxy for CRE activity – of ~90,000 cells across pre- and postnatal 

development of the mouse cerebellum and ~20,000 cerebellar cells from the marsupial 

opossum (https://apps.kaessmannlab.org/mouse_cereb_atac/). We leveraged this dataset to 

assess the developmental and evolutionary dynamics of gene regulation in the cerebellum.

Results

A snATAC-seq atlas of mouse cerebellum development

We generated snATAC-seq data for male and female mouse cerebella from eleven stages 

ranging from early neurogenesis (embryonic day 10 [E10]) to adulthood (postnatal day 63 

[P63]; Fig. 1A, fig. S1, table S1). After applying quality controls (22), we acquired single­

cell chromatin accessibility profiles for 91,922 cells with a median of 20,558 fragments 

per cell (Fig. 1B; table S2 and fig. S2A-D). We projected cells into a low dimensional 

embedding (excluding sex chromosomes) and identified clusters (22). Biological replicates 

show high similarity in this embedding (Fig. 1B), distribute evenly across clusters (fig. S2E), 

and have the highest correlations in the accessibility of autosomal CREs at the library level, 

followed by correlations between samples from adjacent developmental stages (fig. S2F).

Using iterative clustering (fig. S3) and approximating gene expression by the aggregated 

accessibility across a gene’s regulatory region (gene score) (22), we identified 12 broad 

cell types and 42 subtypes and cell states (Fig. 1C-E, fig. S4; table S2). To assess the use 

of gene scores as a proxy for gene expression and the quality of our cell type annotation, 

we reprocessed the data by developmental stage (fig. S5) and integrated with a single-cell 

RNA sequencing (scRNA-seq) atlas of the developing mouse hindbrain and cerebellum 

(23), transferring labels and imputing RNA expression for cells in our snATAC-seq atlas. 
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Despite differences in sampling, we observed good correlations between gene scores and 

imputed RNA expression values (fig. S6A), and a concordance between cell type labels 

(fig. S6B-C). Discrepancies between the two annotations are explained by some scRNA-seq 

clusters containing mixtures of cell types (fig. S6D-E).

The earliest developmental stages in our dataset (E10-E11) are dominated by neural 

progenitors (key marker genes: Notch1, Cyp26b1; Fig. 1C-E). We also detected midbrain­

originating cells (Isl1) and parabrachial neurons (Lmx1b), which later migrate out of the 

cerebellum (24, 25), as well as differentiating GABAergic deep nuclei neurons (Zfhx3, 
Sox14) and glutamatergic neurons (Meis2, Neurod6) of the nuclear transitory zone. From 

E12 onwards, the latter could be further resolved into posterior (Lmx1a) and ventral (Lmo3) 

populations of glutamatergic deep nuclei neurons, and into anteriorly located isthmic nuclei 

neurons (Pax5) (24). The same developmental window is marked by the generation of 

Purkinje cells (Skor2, Foxp2), which are the most abundant neuron type until E15. During 

the E10-E15 period the relative abundance of progenitor cells (excluding granule cell 

progenitors) decreases from 83% to 17% (Fig. 1D).

The next stages (E17-P4) are marked by the emergence of GABAergic interneurons (Pax2) 

and unipolar brush cells (UBC; Lmx1a, Eomes), and the rapid expansion of the proliferating 

(Atoh1, Gli2) and differentiating (Neurod1, Grin2b) granule cell populations (Fig. 1C-E). 

Small numbers of microglia (Ccr1, Hexb) and oligodendrocytes (Sox10), most of which are 

of extracerebellar origin (2), are detectable from E17 onwards. The last two stages (P14, 

P63) are dominated by mature granule cells (Etv1, Cbln3), with additional neuronal and 

glial populations being traceable, including mature astroglia such as Bergmann glia (Gdf10) 

and parenchymal astrocytes (Aqp4, Scl6a11). Throughout this study, we use the term 

astroglia to refer to cells transitioning along the lineage of neuroepithelial progenitors, radial 

glial progenitors and mature astrocytes (Fig. 1C-E), in agreement with their overlapping 

functions and molecular features (26). Overall, the developmental dynamics of cerebellar 

cell abundances observed in this study resemble those from scRNA-seq atlases (fig. 

S6F) (23, 27). However, some cell types, such as early-born neurons (GABAergic and 

glutamatergic deep nuclei, isthmic nuclei and parabrachial neurons) are better resolved in 

our snATAC-seq atlas.

The cis-regulatory landscape of cerebellar cell types

To characterize the regulatory profiles of cerebellar cell types we employed a cluster-specific 

and replicate-aware peak calling approach (22). We identified 261,643 high-confidence 

putative CREs (Fig. 2A and fig. S7A-B), most of which are intronic (51%) or intergenic 

(26%) (herein collectively referred to as distal). These putative CREs cover ~80% of 

enhancers active during hindbrain development (11), including 97% of experimentally 

validated elements in the E11.5 hindbrain (28), and 82% of enhancer RNAs (eRNAs) 

transcribed in the developing cerebellum (29), a significant enrichment compared to 

heterochromatin or enhancers active in non-neuronal tissues (fig. S7C-G). Comparisons with 

a single-cell ATAC-seq atlas of adult mouse organs (15) revealed the highest activity of the 

putative CREs in cells from the cerebellum (fig. S7H).
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We assigned 32,792 distal CREs to 5,766 putative target genes based on correlations with 

promoter accessibility and gene scores (fig. S8A, table S3). The CRE-gene pairs share 

more often the same topologically associating domain (TAD) in neural progenitors (30), 

are enriched for enhancer activity in the hindbrain (11, 28), and show higher correlations 

between promoter transcripts and eRNAs in the developing cerebellum (29) (fig. S8B-E). 

Although most genes were associated with a single distal CRE, 1,001 protein-coding 

genes were assigned to ten or more elements (fig. S8F). These genes are enriched for 

developmental processes, including cell fate commitment and neuron differentiation, as well 

as mature neuron functions like synapse organization and signaling (fig. S8G).

To describe patterns of CRE activity during cerebellum development, we used an iterative 

clustering procedure (fig. S9A-B). The majority of the 26 CRE clusters are cell type- and 

time-specific, whereas one shows constitutive activity (cluster 12; Fig. 2B). Most (67%) of 

these constitutive CREs correspond to promoters (fig. S9C) and among the remaining distal 

CREs, more than 50% contain a CTCF motif (fig. S9D), suggesting architectural roles, in 

accord with observations in humans (20). We further observed groups of CREs active in 

multiple early-born neuron types (clusters 2, 11), glial populations (cluster 18), and late-born 

cell types (cluster 14), affirming that a sizeable fraction of CREs have pleiotropic activity 

(31, 32).

CREs in cell type-specific clusters are close to genes associated with relevant gene ontology 

terms (e.g., myelination for oligodendrocyte-specific CREs) and are enriched for motifs 

of TFs known to be active in the respective cell types (e.g., ATOH1 for granule cells, 

SOX family TFs for progenitors, PU.1 for microglia; Fig. 2B and fig. S9E-F). We refined 

this analysis by identifying 50,815 differentially accessible CREs with significantly higher 

activity in a cell type and state (fig. S10A). Some of the distinct states we discovered 

distinguish cells from the same cell type based on the developmental stage (e.g., pre- and 

postnatal granule cell progenitors, P14 and P63 mature granule cells). The high similarity 

between biological replicates (fig. S2E-F) argues against technical confounders as a source 

of this separation. Indeed, we detected 3,988 differentially accessible CREs between pre- 

and postnatal granule cell progenitors (fig. S10B-C). CREs with increasing accessibility 

after birth are enriched for motifs of NFI, known to specify late-born neurons (33), 

and GLI2, consistent with the SHH-mediated expansion of the granule cell progenitor 

pool after birth (2). CREs with decreasing accessibility are enriched for motifs marking 

embryonic progenitors (SOX, MEIS) (2). Altogether, our analyses provide a comprehensive 

characterization of CRE activity during cerebellum development and highlight the cell- and 

time-specificity of gene regulation.

Progenitor heterogeneity reflects cell fate decisions

Cerebellum development relies on a spatially and temporally restricted pattern of cell 

type specification. GABAergic deep nuclei neurons, Purkinje cells, interneurons, and 

astrocytes are sequentially derived from progenitors in the ventricular zone, whereas the 

emergence of glutamatergic deep nuclei neurons from rhombic lip progenitors is followed 

by the generation of granule cells and UBCs (2). We asked whether this mode of cell 

fate specification was associated with heterogeneity amongst cerebellar progenitors. We 
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subclustered cells from the astroglia lineage (progenitors and astrocytes) and identified 

progenitors from all germinal regions throughout cerebellum development, although without 

sharp boundaries within a given stage (Fig. 3A-C and fig. S11A-C). Early progenitors (E10­

E12) include isthmic (En1, Pax5), ventricular zone (Dll1, Ptf1a from E11), and rhombic lip 

(Cdon, Atoh1) populations, as well as progenitors with no apparent commitment towards a 

cell fate (Fig. 3A-C and fig. S11A-C), in accord with previous reports (34). We additionally 

identified a Gsx1+ population that we traced to the anterior ventricular zone (fig. S11A-B) 

(35). E13-E15 are marked by the appearance of two late progenitor populations (fig. S11C) 

that broadly correspond to the previously described bipotent (Gsx1, Wnt8b) and gliogenic 

(Slc1a3, Grm3) progenitors (2, 36). Previous studies suggest that the bipotent progenitors 

generate interneurons and white matter astrocytes, whereas the gliogenic progenitors give 

rise to Bergmann glia and granule cell layer astrocytes (2, 36). Consistently, we detected 

two groups of differentiating parenchymal astrocytes at perinatal stages (E15-P7): white 

matter (Slc6a11, Olig2, Kcnd2) and granule cell layer (Aqp4, Tekt5) astroblasts, with higher 

similarity in CRE activity to bipotent and gliogenic progenitors, respectively (Fig. 3A-C 

and fig. S11A-D). We then investigated the relationship of the two Gsx1+ populations, 

early anterior ventricular zone progenitors and late bipotent progenitors. Besides additional 

shared marker genes (Wnt8b, Ndnf, Robo1), E10-E12 anterior ventricular zone progenitors 

show the highest similarity in CRE activity with E13-E15 bipotent progenitors across 

stage-matched progenitor types (Fig. 3D and fig. S11E-F). Previously, Gsx1+ progenitors 

were shown to arise from a temporal transition of Purkinje cell-producing ventricular zone 

progenitors (35). Our data support the existence of an additional, molecularly distinct, 

anterior population of early progenitors that is already primed to acquire bipotent progenitor 

identity.

Despite our dense sampling and ability to identify the same germinal regions across 

consecutive stages, often based on the same marker genes (e.g., E10-E12 rhombic lip; 

Fig. S11A), progenitor cells primarily cluster by developmental stage and not by germinal 

zone (Fig. 3A-C, E), suggesting strong changes in their chromatin accessibility profiles 

during development. These temporal differences are strongest in early embryonic stages 

(E10-E12), a period coinciding with the sequential generation of distinct neuronal cell 

types (Fig. 3E and Fig. 1D). Unbiased clustering of CRE activity across progenitor 

groups and developmental stages revealed many temporally dynamic CREs that are shared 

between germinal zones (Fig. 3F), arguing for common factors in control of temporal 

transitions in progenitor competence (3, 33). These include a shift from CREs enriched 

for nuclear receptor and SOX motifs, and associated with chromatin silencing genes (E10­

E12; clusters 2-3), towards CREs enriched for NFI motifs and adjacent to genes involved 

in developmental processes (E12-E13; cluster 8), signaling and cell adhesion (E13-P7; 

cluster 5). From E15 onwards, coinciding with the protracted generation of interneurons and 

astrocytes, temporal differences become smaller and progenitors from adjacent stages group 

by germinal region (gliogenic and bipotent; Fig. 3E).

To assess whether these temporal differences in chromatin accessibility also lead to 

changes in gene expression, we systematically identified genes with higher variance across 

developmental stages than between germinal zones (fig. S12A-B). Reassuringly, marker 

genes such as Gsx1 and Gdf10 show higher variance across germinal zones. However, most 
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of the 2,000 highly variant genes in E10-E13 show higher variance across developmental 

stages, whereas variance by progenitor type is higher in E15-P0 (Fig. 3G), in agreement 

with our clustering analysis (Fig. 3E). Temporally-variant genes (310 in E10-E13 versus 

61 in E15-P0; table S4) include the pluripotency factor Lin28a, which is expressed in E10 

progenitors across all germinal zones, and Nfix (Fig. 3H), which increases in expression 

during development, in line with the enrichment of NFI motifs in late CRE clusters 

(Fig. 3F). We next clustered temporally-variant genes based on their activity profiles 

(decreasing, increasing; fig. S12C-D) and examined their expression in progenitor cells in 

a published scRNA-seq dataset (23). We observed significant temporal differences in the 

direction predicted by the snATAC-seq data (fig. S12E-F). Thus, although spatiotemporal 

heterogeneity among progenitors is prominent throughout cerebellum development, early 

stages are characterized by stronger temporal differences in CRE activity, which are often 

shared between germinal zones and lead to corresponding gene expression changes.

Regulatory activity during neuron differentiation

We next characterized the gene regulatory programs underlying the differentiation of 

the three most abundant neuron types in our dataset: granule cells, Purkinje cells, and 

interneurons. For each neuron type, we aligned cells from different developmental stages 

along their differentiation trajectories, which we modeled using diffusion pseudotime (fig. 

S13A-C). The observed differentiation dynamics ranged from stage-restricted (Purkinje 

cells, E12-E13) to protracted (granule cells, interneurons) (Fig. 4A-B and fig. S13D), 

consistent with the several week long generation of granule cells and interneurons (2). While 

granule cells form a homogeneous differentiating population (Fig. 4B), interneurons are 

stratified into distinct temporally-specified subtypes (fig. S13E-F): early-born interneurons 

(Zfhx4, Slit2) detected at E13-E15, mid-born Golgi cells (Chrm2), Purkinje layer 

interneurons (Nxph1, Klhl1) prevalent at E17-P7, and late-born molecular layer interneurons 

of type 1 (Sorcs3, Grm8) and 2 (MLI2; Nxph1, Pvalb), which are abundant at P14-P63 (2, 

37).

We used the modeled differentiation trajectories to characterize the gene regulatory 

dynamics in each neuron type. We identified TFs with dynamic activity during 

differentiation and correlated the accessibility of the respective binding motifs with their 

gene scores to classify TFs into putative activators and repressors (fig. S14A-C; table S5). 

These candidate TFs include known regulators, such as BARHL1 and ETV1 in granule cells, 

and OLIG2 and FOXP2 in Purkinje cells (Fig. 4C).

Across all three neuron types, we observed a gradual transition from CREs proximal to 

genes associated with embryonic development and cell fate commitment, towards genes with 

roles in neuron differentiation, migration and axon guidance, and eventually the formation 

of the synapse, neurotransmitter secretion and ion transport (Fig. 4D and fig. S14D-E). 

In support of this convergence in biological processes, 43% of protein-coding genes with 

dynamic activity across pseudotime are shared by at least two neuron types (fig. S14F), in 

accordance with observations in the developing neocortex (38). By contrast, only 20% of 

dynamic CREs are shared across neuron types (i.e., are pleiotropic), further highlighting the 

cell type-specificity of gene regulation compared to gene expression (fig. S14G). Pleiotropic 
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CREs show similar activity profiles across neuron types (Fig. 4E; early-early: P < 10-15, 

late-late: P < 10-15, early-late: P > 0.99, hypergeometric test) and, with the exception 

of interneurons, are more common in early stages of neuron differentiation (Fig. 4F-G, 

S14H-I). The higher similarity of the early stages is supported by a principal component 

analysis in which the chromatin accessibility profiles of the three neuron types gradually 

diverge during differentiation (Fig. 4H).

Evolutionary dynamics of CREs in cerebellum development

Motivated by the temporal dynamics in CRE activity during development (Fig. 2), cell 

type specification (Fig. 3), and differentiation (Fig. 4), we next investigated whether such 

differences are also reflected in the evolutionary histories of CREs. A decrease in gene 

regulatory (13) and expression (39, 40) conservation as development progresses has been 

reported for whole organs. Given the profound changes of cell type abundances during 

development, it remains unclear whether whole organ patterns emerge from the parallel 

decline of conservation across cell types or instead reflect the higher conservation of cell 

types that are more abundant in earlier stages, such as progenitors and early-born cells. 

Hence, we sought to test for differences in the evolutionary dynamics of CREs both across 

cell types and throughout development.

We assessed the selective (functional) constraints on CRE sequences using estimates of 

evolutionary conservation (phastCons scores) (41) and inferred their minimum age (i.e., 

when they first appeared) using syntenic sequence alignments between mouse and 16 

other vertebrates at various phylogenetic distances (fig. S15; table S6). We assessed these 

conservation metrics for intergenic CREs at the single-cell level, enabling comparisons 

between cell types and developmental stages. Across all cell types, both sequence 

constraints and the predicted ages of intergenic CREs decreased significantly during 

development (Fig. 5A and fig. S16A). Thus, previous observations for whole organs (13) 

are mostly explained by decreasing conservation within cell types rather than changes in the 

relative abundance of cell types with pronounced differences in evolutionary constraints. 

Ancient CREs, shared across or even beyond mammals, show higher activity during 

embryonic development, when cell types begin their differentiation (Fig. 5B). As cell 

types mature and activate their terminal effector genes, elements specific to eutherians and 

murid rodents (Muridae) gradually increase their activity, potentially contributing to species/

lineage-specific phenotypic innovations of ancestral cell types (Fig. 5B). Consistent with 

these observations, TF genes, which are central to cell type identity (42), are associated with 

older and more constrained CREs (Fig. 5C and fig. S16B).

Given the strong developmental signals in our dataset, we next assessed the contribution of 

cell type differentiation versus additional temporal differences, such as intrinsic patterning 

signals (33, 38) or interactions with morphogens and ligands (4), to the temporal decline 

in conservation. We focused on granule cells because these cells have a protracted 

differentiation trajectory (E13-P14) and, despite the different states observed in our data, 

are not known to form distinct temporally-specified subtypes (2). By stratifying granule cells 

based on their differentiation state (pseudotime) and developmental stage, we observed that 

both factors contribute to the decrease of intergenic CRE conservation during development, 
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with cells at early differentiation states and developmental stages showing the most 

conserved regulatory program (Fig. 5D, and fig. S16C-D). We validated this observation 

in a pseudotime-independent framework by focusing on prenatal granule cell progenitors, 

which formed a single cluster without any alignment across developmental stages (fig. 

S16E). Despite the overall high similarity of these cells, we identified CREs with significant 

temporal activity changes and clustered them into two groups that decrease (7,527) or 

increase (11,972) in accessibility across prenatal stages (fig. S16E). CREs with decreasing 

accessibility are more conserved and are enriched for motifs recognized by pluripotency 

TFs (e.g., SOX2), whereas CREs with increasing accessibility are enriched for motifs of 

TFs active in granule cell progenitors, including ATOH1 and GLI2 (fig. S16F-G). Using 

published scRNA-seq data (23), we observed similar developmental patterns for genes 

adjacent to temporally dynamic CREs (fig. S16H), suggesting that these differences in CRE 

accessibility affect gene expression.

Both CRE pleiotropy (Fig. 4F-H) and sequence conservation (Fig. 5A) decrease during 

differentiation. Given that pleiotropy imposes constraints on the evolution of regulatory 

sequences (31, 43), we asked whether it could explain the decrease in CRE conservation. 

We found that pleiotropic CREs are significantly more conserved than those dynamic in a 

single neuron type, and that these differences are larger than those between early and late 

acting CREs with similar pleiotropy status (Fig. 5E). Consistently, CREs with decreasing 

accessibility across developmental stages in granule cell progenitors are more conserved 

(fig. S16F) and active in other types of progenitor and early differentiating cells, whereas 

CREs with increasing accessibility are specific to granule cell progenitors (fig. S16I). Thus, 

as CRE pleiotropy decreases during development and differentiation, constraint on CRE 

sequences relaxes, consistent with previous observations for gene expression (39, 40).

Differences in CRE constraint across cell types

We also observed differences in the conservation of intergenic CREs between cell types. 

CREs active in microglia show a faster evolutionary turnover compared to all other 

cerebellar cell types (Fig. 5A and fig. S16A), consistent with the rapid divergence in 

gene expression and morphology of microglia (44). In agreement with their younger age 

and reduced sequence constraint, CREs active in microglia are also enriched for genomic 

repeats, in particular for recently expanded transposable elements in rodents, such as short 

interspersed nuclear elements (SINEs) B1, B2 and B4, endogenous retrovirus sequences 

(ERVs), and L1 elements (fig. S17A-B). By contrast, astroglial cells (progenitors and 

astrocytes) show the most conserved intergenic CREs in the mature cerebellum (Fig. 5A 

and fig. S16A). They are enriched for CREs that originated 160-177 million years ago 

(Mya) in common mammalian and therian (i.e., eutherian-marsupial) ancestors (Fig. 5B) and 

have since been preserved by purifying selection (fig. S17C). We confirmed and extended 

these observations using a single-cell chromatin accessibility atlas of adult mouse organs 

(15). We found that astrocytes have the most conserved intergenic CREs, not only in 

the adult cerebellum but also across all adult organs (Fig. 5F). Moreover, eight of the 

ten most conserved cell types across all organs were neural (Fig. 5F), highlighting the 

overall stronger evolutionary constraints in the brain (39, 45). Consistently, despite having 
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the fastest evolving regulatory landscape in the cerebellum, microglia constitute the most 

conserved immune cell type (Fig. 5F).

Differences among neurons are subtler than among glial cells (Fig. 5A and fig. S16A). 

Granule cells exhibit the lowest conservation levels compared with other stage-matched 

neuron types, especially during prenatal development (Fig. 5A and fig. S16A, E13: 

P < 10-15, Mann-Whitney U test). This difference might reflect the high turnover in 

developmental adaptations associated with granule cell amplification across vertebrates, 

including the emergence of the external granule cell layer, a secondary germinal zone 

specific to amniotes (3, 46). Collectively, our results reveal common temporal trends as well 

as cell type-specific differences in the evolutionary dynamics of CREs in the developing 

cerebellum.

CRE activity conservation across therian mammals

Although sequence constraint is a strong predictor of CRE activity conservation, 

comparative studies have shown that regulatory activity, especially for distal elements, 

evolves faster than DNA sequences (6–8, 43). To assess whether our observations on 

sequence constraints extend to CRE activity conservation, we examined the chromatin 

accessibility of cerebellar cells in the gray short-tailed opossum, a marsupial separated 

from mouse by ~160 million years of evolution. We profiled ~20,000 cells spanning 

two developmental stages: P21, which is transcriptionally similar to P4 in mouse (39), 

and adult (Fig. 6A). We detected the same cell types as in the mouse cerebellum at 

corresponding stages, with similar abundances, and with many shared marker genes (Fig. 

6B-C and fig. S18A-B). We identified 167,340 putative CREs and compared them to 

mouse CREs based on reciprocal syntenic alignments. Nearly 50% of mouse CREs with 

conserved sequences also show conserved activity, with distal CREs evolving faster than 

promoters (Fig. 6D), as previously described (6, 7). Despite this turnover, all homologous 

cell types (except for UBCs) show the highest similarity in accessibility profiles of shared 

intergenic CREs (Fig. 6E), suggesting that most CREs that have been preserved during 

mammalian evolution maintain similar specificity patterns. Indeed, orthologous intergenic 

CREs show significantly higher correlations in their activity across matched cell types 

and developmental stages than shuffled homology pairs (Fig. 6F; table S7). For example, 

a mouse CRE assigned to the astroglia marker Slc1a3 and located 100 kb downstream 

of the gene has maintained the same astroglia-specific activity in both species (Fig. 6G). 

Overall, our data suggest that despite the high turnover of regulatory activity in terms of 

the emergence and loss of CREs (6, 7), radical repurposing of spatiotemporal CRE activity 

appears to be rare, at least between cell types in the same tissue.

We next reexamined our evolutionary comparisons in the light of CRE activity conservation. 

In the adult mouse cerebellum, the fraction of intergenic CREs with a homolog active in 

the opossum cerebellum is the highest for astrocytes and the lowest for microglia (Fig. 6H), 

even when requiring the CRE to be active in the corresponding cell type and stage (fig. 

S18C). Except for astroglia, all cell types show higher conservation in P4 compared to the 

adult (Fig. 6I), confirming the temporal patterns observed based on sequence conservation 

(Fig. 5A). Finally, stratifying P4 granule cells according to their differentiation status 
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revealed a significant, albeit small, decline in the fraction of mouse CREs shared with 

opossum (fig. S18D). Collectively, our analyses of regulatory activity conservation across 

~160 million years of mammalian evolution reinforced our sequence-based conclusions 

regarding differences in CRE constraint across cell types and developmental stages.

Discussion

Our single-cell atlas of gene regulation in the mouse cerebellum spans development from the 

beginning of neurogenesis to adulthood, and is complemented with chromatin accessibility 

maps for the P21 and adult opossum cerebellum. We provide a comprehensive resource of 

the cis-regulatory profiles of cerebellar cell types, though not all cell types could be profiled 

at all stages due to low abundances. We detected extensive temporal differences in CRE 

activity between cells of the same cell type and even between matched differentiation states. 

Strong temporal differences in early progenitor cells are shared between germinal zones, 

suggesting that cell fates are induced through common temporal cues, which could be part 

of an intrinsic brain-wide temporal code (33) or involve common extrinsic signals, such as 

secreted factors (3).

Evolutionary comparisons revealed a decrease in sequence constraint and activity 

conservation of CREs during development across all cell types. This pattern is explained 

by both cell type differentiation and temporal differences between cells from matched 

differentiation states. The decrease in CRE evolutionary constraint parallels a decline in 

pleiotropy, as observed in gene expression studies (39, 40). Across cerebellar cell types, 

differences in regulatory conservation are most pronounced in the adult, where microglia 

– the immune cells of the brain – show the fastest evolutionary turnover. By contrast, 

mature astrocytes have the most conserved intergenic CREs, not only in the cerebellum 

but also across other adult mouse organs. This difference might be explained by astrocytes 

maintaining some of the properties of neural progenitors, including the ability to reactivate 

proliferation (47), and/or by pleiotropic constraints due to their bridging interactions with 

multiple cell types of the otherwise disconnected neuronal and vascular networks in the 

brain (48). Alternatively, higher sequence constraints could be associated with a more 

rigid motif grammar in the regulatory program of astrocytes (5). Collectively, our study 

illuminates how development and evolution shape the cis-regulatory profiles of cerebellar 

cells, and provides general insights into the dynamics of gene regulation during mammalian 

organ development.

Methods summary

Detailed information on materials and methods can be found in the supplement. In brief, 

snap-frozen cerebella samples from RjOrl:SWISS mice and grey short-tailed opossums were 

used for nuclei isolation and single cell library construction using the Chromium Single Cell 

ATAC Reagent kits (10x Genomics). Raw sequencing data were processed using cellranger­

atac (21). ArchR (22) was used for quality control, dimensionality reduction, clustering and 

identification of open chromatin regions (CREs). Chromosome Y was excluded from all 

analyses. Chromosome X was excluded from dimensionality reduction but considered for 

subsequent analyses. Cell type identification was performed based on ArchR’s estimates of 
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gene scores and comparison to known marker genes (2, 24) and in situ hybridization data 

from the Allen Brain Atlas resource (49).

Robust CREs were identified in a cluster-specific manner requiring reproducibility in at 

least two samples and accessibility in at least 5% of the cells of at least one cluster. Target 

gene assignment was performed based on promoter-peak co-accessibility and correlations 

with gene scores. CRE activity across groups (e.g., Fig. 2) was estimated by aggregating 

accessibility profiles across cells and scaling by sequencing depth (counts per million, 

CPM). For clustering of CRE activity, CPM values were standardized for each CRE as a 

fraction of its maximum CPM value across all groups and subjected to k-means clustering, 

followed by hierarchical clustering of the cluster means. For genes with temporal changes 

across progenitor types we estimated average gene scores in groups of cells from the same 

progenitor type, developmental stage and replicate. Time-variant genes were identified as 

those with a significantly higher standard deviation across stages compared to progenitor 

type and between replicates.

For modelling differentiation trajectories, we used Harmony (50) to align across 

developmental stages and diffusion pseudotime (51) to approximate differentiation. For 

CRE evolutionary dynamics, we estimated sequence constraint as the mean phastCons score 

(41) of the most conserved 100 bp region for each CRE. CRE minimum age was inferred 

based on the phylogenetic distance between mouse and the most distant vertebrate species 

for which a syntenic region could be detected. To estimate average values across cells we 

only used intergenic CREs to avoid biases from overlapping or adjacent protein-coding 

gene sequences. CREs conserved in mouse and opossum were identified based on syntenic 

alignments between the two species (minimum match of 10%) and requiring reciprocally 

best matches.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Data and code availability

All data generated in this study are freely accessible in ArrayExpress with the accession 

codes E-MTAB-9765 (mouse) and E-MTAB-10533 (opossum). All other data are in the 

main paper or the Supplement. All code used to analyze the data is available online 

at https://github.com/ioansarr/mouse-cerebellum-atac/. Processed data can be interactively 

explored at https://apps.kaessmannlab.org/mouse_cereb_atac/. Active CREs across cell types 

and stages (Methods) can be inspected as custom UCSC genome browser tracks at: http://

genome.ucsc.edu/s/ioansarr/Mouse%20cerebellum%20snATAC-seq%20cCREs.
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One Sentence Summary

A single-cell chromatin accessibility atlas of the developing mouse cerebellum.
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Fig. 1. A snATAC-seq atlas of mouse cerebellum development.
(A) Schematic overview of the dataset. Representative mouse silhouettes are shown for E11, 

E13, E17, P4 and P63 (brain in grey, cerebellum in cyan). The insets show the location of 

selected cell types in the cerebellum (colors are as in C). (B, C) UMAP projection of 91,922 

cells colored by developmental stage (B, left) or sex (B, right), or cell type and state (C). 

Barplots in B show the number of profiled cells per stage and sex (each sex corresponding 

to one sample). In C, cell states or subtypes (numbered circles) are grouped into broad cell 

types (rectangles). Further progenitor and interneuron subtypes are shown in Fig. 3, fig. 

S11 and S13. (D) Proportions of broad cell types across developmental stages. (E) Activity 
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scores of genes used for the annotation of broad cell types (Z-score, capped to 0-2). Broad 

cell type colors for D and E are as in C. Marker genes across subtypes and states in fig. S4.
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Fig. 2. CRE activity in cerebellum development.
(A) Genomic features of 261,642 putative CREs. Inner circle: genomic class; outer 

circle: biotype of the overlapping gene. (B) Clusters of CRE activity across cell types 

and developmental stages. CREs are grouped by activity cluster (k-means followed 

by hierarchical clustering) and genomic class (left). CRE clusters are arranged in 

decreasing order of pleiotropy (here: mean activity across rows) and then by cell type 

and developmental stage with maximum activity. Right: Representative enrichments (BH 

adjusted P < 0.05; hypergeometric test) for biological processes of adjacent genes (black) 

and motifs for TFs or TF families (red). 50,000 CREs confidently assigned to their cluster 

were chosen randomly for visualization.
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Fig. 3. Spatiotemporal heterogeneity in cerebellar progenitor populations.
(A, B, C) UMAP projections of 21,830 astroglia cells (progenitors and astrocytes) colored 

by subtype (A), developmental stage (B) and sex (C). (D) Comparison of bipotent 

progenitors to earlier populations. Top: Activity profiles (Z-score) of progenitor type­

specific CREs in E13-E15. Bottom: Fraction of fragments per cell in CREs specific to 

bipotent progenitors across progenitor types and developmental stages. (E) Hierarchical 

clustering based on Spearman’s correlation coefficients in CRE accessibility across 

progenitor types and developmental stages. Orange dots indicate nodes with approximately 
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unbiased (AU) probability values < 95%. (F) Clusters of CRE activity across progenitor 

types and developmental stages. CREs are grouped by activity cluster (k-means followed 

by hierarchical clustering). Right: Representative enrichments (BH adjusted P < 0.05; 

hypergeometric test) for biological processes of adjacent genes (black) and motifs for 

TFs or TF families (red). 25,000 CREs confidently assigned to their cluster were chosen 

randomly for visualization. (G) Density distributions for the log2-ratio of gene score 

standard deviation (SD) across developmental stages and progenitor types for the 2,000 

genes with the highest variance in early and late progenitor populations. (H) Gene scores 

(capped at 10th and 99th quantiles and log10 transformed) for genes with high variance 

across progenitor types (left) or developmental stages (right).
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Fig. 4. Gene regulation in neuronal differentiation.
(A, B) Left : UMAP projections of 13,214 Purkinje cells (A) and 35,153 granule cells (B) 

aligned across developmental stages, colored by pseudotime value. Red points indicate the 

pseudotime root. Right : Distribution of pseudotime values across developmental stages. 

(C) Z-score scaled values for gene and motif activity across ranked pseudotime bins for 

examples of activator and repressor TFs in Purkinje cells (top) and granule cells (bottom). 

Curves drawn using LOESS regression, gray areas indicate 95% confidence intervals. (D) 
Z-score scaled activity of dynamic CREs during granule cell differentiation, averaged across 

50 bins of increasing pseudotime ranks. Top: Contribution of developmental stages and 

mean pseudotime value for each bin. Right: Representative enrichments (BH adjusted P < 

0.05; hypergeometric test) for biological processes of adjacent genes (black) and TF motifs 

(red). (E) Overlap between activity clusters for CREs dynamic in two or more neurons 

(pleiotropic). For each neuron type (outer sector) CRE clusters (as in D and fig. S14) 

are ordered from early (orange) to late (violet) activity during differentiation. Each node 

connects the activity clusters of two different neuron types for the same CRE. (F) Fraction 

of CRE clusters (as in D) across CREs dynamic in a single neuron type (unique) or shared 

across two or three cell types. (G) Example of a pleiotropic intergenic CRE, assigned to 

Fgfr4. Accessibility profiles for each cell type and state (from Fig. 1C) were aggregated 
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across cells from all developmental stages and scaled by the total number of fragments 

in each group. (H) Principal component analysis of CRE accessibility during granule cell, 

Purkinje cell and interneuron differentiation. Percentage values show the proportion of 

variance explained by each component.
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Fig. 5. Evolutionary dynamics of CREs.
(A) Sequence constraint in intergenic CREs accessible per cell, averaged for each cell 

type and developmental stage. (B) Fraction of accessible intergenic CREs assigned to 

different age groups per cell, averaged for each cell type and developmental stage. Different 

y-ranges were used across age groups to facilitate comparisons between cell types and 

stages within each group, as the fraction depends on the number of CREs per group 

(indicated on top). The fraction of each age group across all intergenic CREs is marked 

by the dotted horizontal line. For A and B, Pearson’s r correlation coefficients between 

the estimates and development are shown (median across cell types; P<0.05*, P<0.01**, 

P<0.001***); vertical bars illustrate difference in average estimates between biological 

replicates. Only groups with at least 50 cells were considered. (C) Average sequence 

constraint of intergenic CREs per target gene for TFs and other genes. (D) Sequence 

constraint of intergenic CREs acessible per cell averaged for each developmental stage and 

pseudotime interval of differentiating granule cells (from Fig. 4B). Vertical bars illustrate 

the difference in average estimates between biological replicates. (E) Sequence constraint 
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(top) and abundance (bottom) of cell type-specific and pleiotropic intergenic CREs active 

in different stages of granule cell differentiation (from Fig. 4D, ordered from early to late 

activity during differentiation). (F) Sequence constraint of intergenic CREs accessible per 

cell across cell types in the adult mouse (data from (15)). The ten most conserved (left) and 

all immune (right) cell types are shown.
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Fig. 6. CRE activity conservation across therian mammals.
(A) Overview of opossum snATAC-seq dataset and correspondence to mouse developmental 

stages based on transcriptomic similarity (39). (B, C) UMAP projection of 19,204 opossum 

cells colored by sample (B) or cell type and state (C). (D) Distribution of genomic classes 

(left) and total number (right) for all mouse CREs, CREs active (≥ 5 CPM) in cell 

types and developmental stages corresponding to those sampled in opossum, and subsets 

showing conservation of sequence (CRE aligned to genome) and activity (CRE aligned 

to CRE) in opossum. (E) Spearman’s correlation of intergenic CRE activity between 

opossum and mouse corresponding cell types and stages. Stars mark the sample with 

the highest correlation for each row and column. (F) Pearson’s correlation coefficients 

of activity (in CPM) across corresponding cell types and stages for intergenic CRE pairs 

with true or shuffled orthology relationships. (G) Example of a shared intergenic CRE with 
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conserved cell type-specificity between mouse and opossum. Accessibility profiles for each 

broad cell type and stage were aggregated across cells and scaled by the total number of 

fragments in each group. (H) Fraction of mouse intergenic CREs accessible per cell with an 

ortholog CRE in opossum, grouped by cell type in the adult mouse. (I) Fraction of mouse 

intergenic CREs accessible per cell with an ortholog CRE in opossum, grouped by cell 

type and developmental stage for cell types with at least 100 cells in both stages. MLI/PLI: 

molecular/Purkinje cell layer interneurons.
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