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Abstract

Modern data linkage and technologies provide a way to reconstruct detailed longitudinal profiles 

of health outcomes and predictors at the individual or small-area level. While these rich data 

resources offer the possibility to address epidemiologic questions that could not be feasibly 

examined using traditional studies, they require innovative analytical approaches. Here we present 

a new study design, called case time series, for epidemiologic investigations of transient health 

risks associated with time-varying exposures. This design combines a longitudinal structure and 

flexible control of time-varying confounders, typical of aggregated time series, with individual

level analysis and control-by-design of time-invariant between-subject differences, typical of 

self-matched methods such as case–crossover and self-controlled case series. The modelling 

framework is highly adaptable to various outcome and exposure definitions, and it is based on 

efficient estimation and computational methods that make it suitable for the analysis of highly 

informative longitudinal data resources. We assess the methodology in a simulation study that 

demonstrates its validity under defined assumptions in a wide range of data settings. We then 

illustrate the design in real-data examples: a first case study replicates an analysis on influenza 

infections and the risk of myocardial infarction using linked clinical datasets, while a second 

case study assesses the association between environmental exposures and respiratory symptoms 

using real-time measurements from a smartphone study. The case time series design represents 

a general and flexible tool, applicable in different epidemiologic areas for investigating transient 

associations with environmental factors, clinical conditions, or medications.
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Background

Observational studies aim to discover and understand causal relationships between 

exposures and health outcomes through the analysis of epidemiologic data.1 Paramount 
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to this objective is removing biases due to the non-experimental setting, in the first place 

confounding. It is, therefore, no surprise that traditional approaches based on cohort and 

case–control methods have been complemented with, and extended by, alternative study 

designs and statistical techniques applicable in specific contexts. An active area of research 

is so-called self-matched studies, which investigate acute effects of intermittent exposures 

by comparing observations sampled at different times within the same unit. These include 

individual-level designs such as the case–crossover,2 the case-only,3 the case–time–control,4 

the exposure–crossover,5 and the self-controlled case series,6 among others. An alternative 

but related epidemiologic method for aggregated data is the time series design, applied 

in particular in environmental studies.7 A thorough overview of self-matched methods is 

provided in a recent publication by Mostofsky and colleagues.8

This landscape is likely to be transformed further by ongoing technologic and methodologic 

developments in data science, which offers unique opportunities for epidemiologic 

investigations, for instance through electronic health records linkage,9 exposure modelling,10 

and real-time measurements technologies.11,12 Ultimately, these data resources can be 

used to reconstruct detailed longitudinal profiles with repeated measures of health 

outcomes and various risk factors, offering the chance to investigate complex aetiological 

mechanisms and to test elaborate causal hypotheses. However, existing self-matched 

methods present limitations in this context, and new analytical techniques must be developed 

for epidemiologic investigations in these intensive longitudinal and big data settings.13

In this contribution, we present the case time series design, a novel self-matched method 

for the analysis of transient changes in risk of acute outcomes associated with time-varying 

exposures. This innovative design combines the longitudinal modelling structure of time 

series analysis with the individual-level setting of other self-matched methods, offering a 

flexible and generally applicable tool for modern epidemiologic studies. First, we introduce 

the case time series design and its features, including the design structure, modelling 

framework, estimation methods, and key assumptions. Later, we assess the methodology 

in a simulation study that evaluates its performance under various data generating scenarios. 

Then, we demonstrate its application through two real-data epidemiologic analyses. In a 

final discussion section, we describe the epidemiologic context, advantages, and limitations, 

and areas of further development. We add documents for reproducing real-data examples 

and the simulation study as eAppendix 1–3 in the online supplementary material, with an 

updated version complemented with and R scripts available at the personal website and 

GitHub webpage of the author (see ‘Data and Code’).

A Novel Self-Matched Design

The study design proposed here, called case time series, is a generally applicable tool for 

the analysis of transient health associations with time-varying risk factors. This novel design 

considers multiple observational units, defined as cases, for which data are longitudinally 

collected over a pre-defined follow-up period. The main design feature that defines the 

case time series methodology is the split of the follow-up period in equally spaced time 

intervals, which results in a set of multiple case-level time series. Data forming the series 

can originate from actual sequential observations or be reconstructed by aggregating or 
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averaging longitudinal measurements, but, eventually, they are assumed to represent a 

continuous temporal frame. A graphical representation is provided in Figure 1, showing 

case-specific time series data with various types of measurements of outcome and exposure 

collected for multiple subjects.

The case time series data setting provides a flexible framework that can be adapted for 

studying a wide range of epidemiologic associations. For instance, outcomes, exposures, and 

other predictors can be represented by either indicators for events, episodes, or continuous 

measurements that vary across units and times, as in Figure 1. The time intervals can be of 

any length (from seconds to years), depending on the temporal association between outcome 

and exposures and on practical design considerations. A case is a general definition, and 

it can represent a subject or other entities such as a geographic area to which observations 

are assigned, thus allowing analyses to be conducted either at individual level or with 

aggregated data. Eventually, the case time series structure combines characteristics of 

various other study designs: it allows individual-level analyses of transient risk associations 

as in traditional self-matched methods, but it retains the longitudinal temporal frame typical 

of time series data, with ordered repeated measures of outcomes, exposures, and other 

predictors. As discussed below, this flexible design setting offers important advantages.

Modelling Framework

A case time series model can be written in a regression form by defining the expectation 

of a given health outcome yit for case i at time t in relation to a series of predictor terms. 

Algebraically, the model can be written as:

g E yit = ξi(k) + f xit, ℓ + ∑
j = 1

J

sj(t) + ∑
p = 1

P

ℎp zipt (1)

The definition in Eq. (1) resembles a classic time series regression model traditionally 

used in environmental epidemiology, where the ordered and sequential nature of the data 

allows the application of cutting-edge analytical techniques.7 Specifically, the function 

f(x, ℓ) specifies the association with the exposure of interest x, defined either as a binary 

episode indicator or as a continuous variable, optionally allowing for non-linearity and 

complex temporal dependencies along the lag dimension ℓ. These complex relationships can 

be modelled through distributed lag linear and non-linear models (DLMs and DLNMs), 

which can flexibly define cumulative effects of multiple exposure episodes.14 The term(s) 

Sj represent functions expressed at different timescales to model temporal variations in 

risk associated to underlying trends or seasonality, among others.15 Other measurable time

varying confounders zp can be modelled through functions hp, and these can include for 

instance age or time since a specific intervention. The two sets of terms Sj and hp ensure 

a strict control of temporal variation in risks over multiple time axes. The outcome y can 

represent binary indicators, counts of rare or frequent events, or continuous measures. The 

analysis can be performed on multiple cases i = 1, …, n, with intercepts ξi(k) expressing 

baseline risks for different risk sets, optionally stratified further in time strata k = 1,…, Ki 
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nested within them, allowing an additional within-case control for temporal variations in 

risk.

Estimation

The estimation procedures in case time series analyses rely on estimators and efficient 

computational algorithms provided by the general framework of fixed-effects models.16 

These were developed in econometrics and often applied in panel studies with repeated 

observations.10,17 Fixed-effects methods allow the estimation of coefficients for the various 

functions in Eq. (1), without including the potentially high number of case/stratum-specific 

intercepts ξi(k), treated as nuisance (or incidental) parameters.16

Fixed-effects estimators are available for the three main types of outcomes and distributions 

within the extended exponential family of generalized linear models (GLMs). Specifically, 

for continuous outcomes with a Gaussian distribution, the estimation procedure involves 

mean-centring and a simple correction of the degrees of freedom. For event-type indicator or 

count outcomes following a Bernoulli and Poisson distribution, respectively, estimators for 

fixed-effects models with canonical logit and log links can be defined through conditional 

likelihoods for logistic and Poisson regression.18,19 These are forms of partial likelihoods 

that are derived by defining reduced sufficient statistics for ξi(k), obtained by conditioning 

on the total number of events within each of the n cases or n × K strata.

The main advantage of fixed-effects models is that the effect of any unmeasured predictor 

that does not vary within each risk set is absorbed by the intercept ξi(k), and therefore the 

related confounding effect is controlled for implicitly by design, as in other self-matched 

methods.8 In addition, the within-case design offers important computational advantages, 

especially from a big data perspective. First, the analysis is restricted to informative 

strata, i.e. cases and risk sets with variation in both outcome and exposure. Second, 

the estimators are based on efficient computational schemes, where the conditional or 

fixed-effect likelihood is defined by the sum of parts related to multiple risk sets, and the 

corresponding nuisance parameters ξi(k) are not directly estimated.

Key assumptions and threats to validity

As discussed above, the case time series framework has interesting design and modelling 

features that offer important advantages. On the other hand, its self-controlled structure, 

while appealing, only operates within an elementary causal framework and requires 

relatively strict assumptions to protect against key threats to validity. Specifically, the main 

requirements are the following:

1. Distributional assumptions on the outcome. The outcome yit must represent 

conditionally independent observations originating from one of the standard 

family distributions, for instance, Poisson counts, Bernoulli binary indicators, or 

Gaussian continuous measures.

2. Outcome-independent follow-up period. The period of observation for each case 

i must be independent of a given outcome, meaning that the follow-up period 

cannot be defined or modified by the outcome itself.
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3. Outcome-independent exposure distribution. The probability of the exposure 

xt must be independent of the outcome history prior to t, meaning that the 

occurrence of a given outcome must not modify the exposure distribution in the 

following period.

4. Constant baseline risk conditionally on measured time-varying predictors. The 

baseline risk along the (strata of) follow-up period of each case i must be 

constant, meaning that variations in risks must be fully explained by model 

covariates.

These requirements enable valid conditional comparison of observations at different times 

within the follow-up of each case. Departures from these assumptions can produce 

imbalances in the temporal distribution of the outcome, the exposure, or unmeasured risk 

factors, thus determining spurious associations.

Some of these assumptions have been separately described in the literature of self-matched 

designs and fixed-effects models.20–23 Specifically, Assumption 1 dictates that outcomes 

must occur independently, and in particular that the occurrence of a given outcome level 

or event must not modify the risk of following outcomes.24 This assumption indirectly 

implies that outcomes are recurrent, and non-recurrent events can only be analysed if rare 

in the population of interest.25,26 Assumptions 2 and 3 are those posing more limitations to 

the application of self-matched methods, as for many associations of interest an outcome 

can modify both the follow-up period and exposure distribution.27,28 These requirements 

often restrict the case time series designs to the analysis of exogenous exposures, which are 

by definition outcome-independent, and for which the observation period can be extended 

even beyond a terminal event, as in bi-directional case–crossover schemes.29 Assumption 4 

requires a constant baseline risk to ensure conditional exchangeability between observations 

within each risk sets,20,30,31 requiring that relevant time-varying confounders are included 

and all the terms in Eq. (1) are correctly specified.

Importantly, the design setting described above is not suited to represent complex causal 

scenarios characterised by dynamic mechanisms between time-varying terms. Specifically, 

feedback between outcomes and between outcome and exposure are forbidden by 

Assumptions 1 and 3, respectively, while more generally exposure–confounder feedback 

cannot be validly handled through traditional regression-based methods for longitudinal 

data.32

Simulation Study

We evaluated the performance of the case time series design in a set of simulated 

scenarios that involved various data-generating processes and assumptions (Table). Detailed 

information on the simulation settings, definitions, and additional results are provided in 

eAppendix 3 (online supplementary material). Briefly, we simulated and analysed data for 

500 subjects followed up for one year, testing the method in terms of relative bias, coverage, 

and relative root mean square error (RMSE) in 50,000 replications. The basic scenario 

involves an outcome represented by repeated event counts and binary indicators of exposure 

episodes associated with a constant increase in risk in the next 10 days.
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The first part of the simulation study (Scenarios 1-10) evaluates the performance of the 

new design in recovering the true association under increasingly complex data settings. 

Specifically, the scenarios depict different outcome and exposure types, the presence of 

common or subject-specific trends, time-invariant and time-dependent confounders, and 

more complex lag structures. Results in the Table indicate that the case time series design 

provides correct point estimates and confidence intervals in almost all ten scenarios. The 

small underestimation in Scenario 2 is consistent with the asymptotic bias of maximum 

likelihood estimators originating from the extreme unbalance of expected events between 

risk and control periods, previously described and defined analytically in the self-controlled 

case series literature.33 eFigure 1 (online supplementary material) shows that the case 

time series models can correctly recover the true association, both in the basic Scenario 1 

with constant risk and no confounding, and in the more complex Scenario 10 representing 

varying lag effects, strong temporal trends, and highly correlated confounders.

The second part of the simulation study (Scenarios 11-14) illustrates basic applications, 

but where each of the four assumptions, in turn, does not hold. Specifically, Scenario 11 

describes the case where the occurrence of an outcome can change the risk status of a 

subject and temporally reduce their underlying risk. This can occur for instance when the 

event results in the prescription of drugs or therapies. This induces a form of dependency 

in the outcome series that violates Assumption 1 and, in this example, results in a negative 

bias (Table). Scenarios 12 simulates a different situation, namely when the outcome event 

carries a risk of censoring the follow-up, for instance, if it increases the probability of death. 

This contravenes Assumption 2 and generates a bias in the opposite direction. In Scenario 

13, the outcome event reduces instead the probability of exposure episodes in the following 

two weeks, a situation that can occur for example if the event results in hospitalization or 

lifestyle changes. Here Assumption 3 does not hold, and the estimators are again biased 

upward. Finally, Scenario 14 illustrates the case of unobserved periods of lower baseline 

risk within the follow-up, for instance corresponding to holiday periods with a reduced 

probability of an outcome being reported. This undermines the conditional exchangeability 

requirements of Assumption 4 and induces a large positive bias.

Illustrative Examples

This section illustrates the application of the case time series design in two real-data 

examples. These case studies are described here only for illustrative purposes, and they 

are not meant to offer substantive epidemiological evidence on the associations under study. 

Detailed information on the setting and sources of data can be found in the cited references. 

Documents in the online supplementary material (eAppendix 1 and 2) provide notes and R 

code that reproduce the steps of these analyses using simulated data, and they offer details 

on the specific modelling choices.

Flu and Myocardial Infarction

The first example replicates a published analysis that assessed the role of influenza infection 

as a trigger for acute myocardial infarction (AMI).34 The data, retrieved by linking 

electronic health records from primary care and cohort databases for England and Wales, 
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include 3,927 acute MI cases with at least one flu episode in the period 2003-2009. A 

representation of a sub-interval of the follow-up for six subjects is reported in eFigure 2 

(online supplementary material). The original analysis relied on the self-controlled case 

series design to examine the association, using exposure windows in the 1-91 days after 

each flu episode and controlling for trends using 5-year age strata and trimester indicators. 

Limitations of this approach are the use of stratification to describe smooth continuous 

dependencies and the fact that multiple flu episodes experienced by some subjects resulted 

in the long exposure windows to overlap (see eFigure 2), requiring ad-hoc fixes that 

can generate biases.35 Conversely, the rarity of the exposure, with most of the subjects 

experiencing a single flu episode, prevents the application of the case–crossover design, as 

most control sampling schemes would generate non-discordant case–referent sets.

We replicated the analysis with a case time series design, splitting the follow-up period of 

each subject into daily time series (see eAppendix 1, online supplementary material). We 

fitted a fixed-effects Poisson model to estimate the flu–AMI association while controlling 

for underlying trends across multiple time scales. The model includes smooth functions to 

define the baseline risk, specifically using natural splines (with two knots at the interquartile 

range) for age and cyclic splines (with three degrees of freedom) for seasonality. More 

importantly, we applied DLMs defined by either splines (with knots at 3, 10, and 29 lags) or 

step functions (with strata 1-3, 4-7, 8-14, 15-28, and 29-91 lags) to describe temporal effects 

along with the exposure window.

Results are reported in Figure 2. The left and middle panels display the variation in risk of 

AMI by age and season, showing how the case time series design allows modelling baseline 

trends fluctuating smoothly across multiple time axes. The right panel illustrates the risk 

after a flu episode within the selected lag period, as estimated using a DLM with spline 

functions. The graph indicates a high risk in the first days after a flu episode, which then 

attenuates and disappears after approximately one month. The same panel also includes 

the fit of the alternative DLM defined by step functions, which assumes a constant risk 

within exposure windows (see also eFigure 3 in the online supplementary material). This 

specification matches the stratification approach in the original self-controlled case series 

analysis,34 although the case time series design with DLMs accounts for cumulative effects 

of potentially overlapping periods of flu episodes.

Environmental exposures and respiratory symptoms

The second example illustrates a preliminary analysis of the role of multiple environmental 

stressors in increasing the risk of respiratory symptoms using smartphone technology. Data 

were collected within AirRater, an integrated online platform operating in Tasmania that 

combines symptom surveillance, environmental monitoring, and real-time notifications.12 

A smartphone app allowed the self-reported recording of respiratory symptoms and the 

reconstruction of personalized exposure series by linking geo-located positions with high

resolution spatio-temporal maps derived from environmental monitors (see Figure 3). 

Standard cohort analyses based on between-subject comparisons are unsuitable in this 

complex study setting, characterized by continuous recruitment, high dropout rates, and 

intermittent participation (see eFigure4 in the online supplementary material). Similarly, the 
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frequent and highly seasonal outcome pose problems in adopting a case–crossover design, 

with issues in selecting control times and about the assumption of constant within-stratum 

risk. Finally, the presence of multiple continuous exposures prevents the application of the 

self-controlled case series design, either in its standard or extended forms.36,37

We, therefore, applied a case time series design (see eAppendix 2, online supplementary 

material). The analysis included 1,601 subjects followed between October 2015 and 

November 2018, with a total of 364,384 person–days. The event-type outcome was defined 

as daily indicators of reported respiratory symptoms and associated with individual exposure 

to pollen (grains/m3), fine particulate matter (PM2.5, μg/ m3), and temperature (°C) (Figure 

3). We modelled the relationships using a fixed-effects logistic regression over a lag 

period of 0-3 days, using an unconstrained DLM for the linear association with PM2.5, 

and bi-dimensional spline DLNMs for specifying non-linear dependencies with pollen and 

temperature.14,38 A strict temporal control was enforced by using subject/month strata 

intercepts, natural splines of time (with 8 df/year), and indicators of the day of the week, 

thus modelling individually varying baseline risks on top of shared long-term, seasonal, and 

weekly trends.

Figure 4 shows the preliminary results, with estimated associations reported as odds ratios 

(ORs) from the model that includes simultaneously the three environmental stressors. 

The graphs display the overall cumulative exposure-response relationships (top panels), 

interpreted as the net effects across lags, and the full bi-dimensional exposure-lag-response 

associations (bottom panels)14,38. The lefthand panels indicate a positive association 

between risk of allergic symptoms and pollen, with a step increase in risk that flattens out at 

high exposures, and a lagged effect up to 2 days. The middle panels suggest an independent 

association with PM2.5, where the risk is entirely limited to the same-day exposure. Finally, 

results in the righthand panels show a positive association with high ambient temperature, 

with the OR increasing above 1 beyond daily averages of 15°C.

Discussion

The novel case time series methodology offers a general modelling framework for the 

analysis of epidemiologic associations with time-varying exposures. The design is adaptable 

to various data settings for the analysis of highly informative longitudinal measurements, 

and it is particularly well-suited in applications with modern data resources such as 

individual-level exposure models and real-time technologies.

The main feature of methodology is a flexible scheme that embeds a longitudinal time series 

structure in a within-subject design, providing unique modelling advantages. For instance, 

the sequential order of observations offers the opportunity to assess complex temporal 

relationships with multiple exposures, where patterns of cumulative effects for linear or non

linear dependencies can be easily modelled. Furthermore, the time series and self-controlled 

features offer a structure that enables strict control for confounding: time-invariant and 

time-varying factors can be adjusted for by stratifying the baseline risk between and within 

subjects, respectively, while residual temporal variations can be directly modelled through 
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time-varying predictors that represent confounders or shared trends across multiple time 

axes.

The new design complements and extends the already rich set of self-matched methods for 

observational studies described in the epidemiological literature.8 Previous methodological 

contributions have highlighted links and similarities between various designs,18,21,29,30,39–41 

and ultimately these can be seen as alternative approaches to model the same risk 

associations. However, each method relies on different sets of assumptions and modelling 

choices, which explain in part their separate areas of application. The case time series 

methodology, nevertheless, offers a general framework that combines and extends features 

of existing designs, with important advantages. For example, it borrows flexible modelling 

tools from aggregated-data time series design, but it implements them in individual-level 

analyses that allow a finer reconstruction of outcomes, exposures, and other risk factors. It 

is applicable to assess associations with multiple continuous predictors as the case–crossover 

design, and it can model recurrent events, either common or rare, as the self-controlled 

case series analyses, but it can be extended to the analysis of outcomes represented by 

binary indicators or continuous measures, simply assuming different distributions. Finally, 

its time series structure allows the application of sophisticated techniques such as smoothing 

methods and distributed lag models, characterized by well-defined parameterizations, 

computational efficiency, and standard software implementations. A thorough and critical 

comparison of the case time series methodology with alternative approaches will be 

provided in future contributions.

Together with other self-matched methods, the new case time series design is based on 

strict assumptions to protect against key threats to validity. However, these conditions are 

not always met in practice, and their violations can lead to important biases. Specifically, 

the requirement that both exposures and follow-up periods are independent of the outcome 

poses severe limitations to the application of the method, in particular in clinical and 

pharmaco-epidemiologic studies. In fact, the temporal distribution of endogenous predictors 

such as behaviours, clinical therapies, or drug prescriptions are often modified by an 

outcome event. In contrast, the case time series and other self-controlled designs are well 

suited for the analysis of exogenous exposures such as environmental factors, as discussed 

before. Extension to test and relax these strong assumptions have been developed for the 

self-controlled case series design,27,28 but further research is needed to implement and 

assess their validity in case time series models. Conversely, the new design is well suited 

to control for temporal confounding that can invalidate the assumption of constant baseline 

risk, through the stratification of the follow-up period and the inclusion of lagged and 

smooth continuous terms in the model.

Other limitations and areas of current research must be discussed. First, as a method 

based on a within-subject comparison, the case time series design is ideal for investigating 

phenomena with short-term changes in risk relative to the study period, while it is less 

suitable for the analysis of long-term effects and chronic exposures. In fact, while it is in 

theory possible to extend indefinitely the lag period within the follow-up interval, there is 

a limit to which the model can disentangle long-lagged effects from seasonal and other 

trends.42 In addition, the splitting of the follow-up period in individual-level time series 
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produces a substantial data expansion, with considerable computational demand especially 

in the presence of a high number of subjects or long study periods. Schemes based on 

risk-set sampling, previously proposed for cohort and nested case–control studies,43–45 are 

currently under development to address this issue. Finally, the simulation study and the 

two real-data examples presented basic epidemiological relationships between time-varying 

variables. However, more complex causal dependencies, involving, for instance, dynamic 

feedback or multiple pathways, explicitly violate the strict assumptions underpinning the 

case time series design, and cannot be modelled in the proposed framework. The definition, 

limitations, and potential extensions of fixed-effects models and related designs within a 

general causal inference setting is an area of current research.23

In conclusion, the case time series design represents a novel epidemiologic method for the 

analysis of transient health associations with time-varying exposures. Its flexible modelling 

framework can be adapted to various contexts and research areas, for instance in clinical, 

environmental, and pharmaco-epidemiology, and it is suitable for the analysis of intensive 

longitudinal data provided by modern data technologies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Graphical representation of data configurations for the case time series design applied in 

the analysis of transient health risks of time-varying exposures. The figure represents three 

examples of data for three subjects (cases) followed for a period of time, with equally spaced 

measures of outcome and exposure that form case-level time series. This setting allows 

the definition of predictors and time axes as unique and sequential observations. The three 

examples illustrate different measures of outcome and exposure. The former is represented 

as counts (top), a binary indicator (middle), or a continuous measure (bottom). Similarly, 

exposure can be represented by a simple binary episode indicator (top), or continuous 

term (middle and bottom). Continuous variables are represented by shaded colours. The 

graphical representation demonstrates the potential of the case time series design to be 

applied in various research areas for modelling associations defined by different types of 

measurements.
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Figure 2. 
Results of the analysis on the association between influenza infection and acute myocardial 

infarction (AMI), as incident rate ratio (IRR) and 95% confidence intervals. The three 

panels show the AMI risk by age (left) and by season (middle), and the lag-response curve 

representing the risk in the 1-91 days after a flu episode (right). The latter is estimated in the 

main model using natural splines (continuous red line), with superimposed the results from 

an alternative model using step functions (dashed grey line).
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Figure 3. 
Graphical representation of the individual time series of a subject participating in the 

AirRater study on the association between environmental exposures and respiratory 

symptoms. The four panels (from top to bottom) display the daily series of indicators of 

allergic events and levels of the three environmental stressors, represented by pollen (grains/

m3), PM2.5 (μg/m3), and temperature (°C).
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Figure 4. 
Results of the analysis on the association between environmental exposures and respiratory 

symptoms, as odds ratio (OR) and 95% confidence intervals. The three columns of panels 

show estimated associations with pollen (left, grains/m3), PM2.5 (middle, μg/m3), and 

temperature (right, °C). The top row of panels displays the net risk cumulated in the lag 

period 0-3 days as overall cumulative exposure-response associations, assumed linear for 

PM2.5 and non-linear for pollen and temperature. The bottom row of panels shows instead 

the full exposure-lag-response associations, represented as the bi-dimensional risk surface 

for pollen and temperature or the lag-specific risks for a 10 μg/m3 increase in PM2.5.
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Table

Results of the simulation study, with ten scenarios representing increasingly complex data settings (Scenarios 

1-10), and four additional scenarios simulating data where the key design assumptions are violated (Scenarios 

11-14). The table reports empirical figures of relative bias (%), coverage, and relative root mean square error 

(RMSE, %) in 50,000 replications. A detailed description of the scenarios, definitions, and additional results 

and graphs are provided in the supplementary material [Appendix A].

SCENARIO RELATIVE BIAS COVERAGE RELATIVE RMSE

SCENARIO 1: BASIC 0.0% 0.951 8.8%

SCENARIO 2: RARE OUTCOME/EXPOSURE −4.5% 0.951 86.0%

SCENARIO 3: CONTINUOUS EXPOSURE −0.1% 0.950 15.2%

SCENARIO 4: BINARY OUTCOME 0.3% 0.949 9.1%

SCENARIO 5: CONTINUOUS OUTCOME 0.0% 0.950 14.7%

SCENARIO 6: COMMON TREND −0.1% 0.950 28.8%

SCENARIO 7: SUBJECT-SPECIFIC TREND 0.1% 0.948 35.2%

SCENARIO 8: UNOBSERVED BASELINE CONFOUNDER 0.2% 0.951 25.8%

SCENARIO 9: TIME-VARYING CONFOUNDER −0.2% 0.949 35.1%

SCENARIO 10: COMPLEX LAG STRUCTURE 0.0% 0.950 29.2%

SCENARIO 11: OUTCOME-DEPENDENT RISK −18.9% 0.738 24.7%

SCENARIO 12: OUTCOME-DEPENDENT FOLLOW-UP 16.8% 0.797 22.7%

SCENARIO 13: OUTCOME-DEPENDENT EXPOSURE 11.1% 0.744 14.4%

SCENARIO 14: VARIATION IN BASELINE RISK 40.7% 0.222 43.3%
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