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Graphical Abstract

Abstract

Computer models of cardiac electro-mechanics (EM) show promise as an effective means for the quantitative analysis
f clinical data and, potentially, for predicting therapeutic responses. To realize such advanced applications methodological
ey challenges must be addressed. Enhanced computational efficiency and robustness is crucial to facilitate, within tractable
ime frames, model personalization, the simulation of prolonged observation periods under a broad range of conditions, and
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physiological completeness encompassing therapy-relevant mechanisms is needed to endow models with predictive capabilities
beyond the mere replication of observations.

Here, we introduce a universal feature-complete cardiac EM modeling framework that builds on a flexible method for
oupling a 3D model of bi-ventricular EM to the physiologically comprehensive 0D CircAdapt model representing atrial

mechanics and closed-loop circulation. A detailed mathematical description is given and efficiency, robustness, and accuracy
of numerical scheme and solver implementation are evaluated. After parameterization and stabilization of the coupled 3D–0D
model to a limit cycle under baseline conditions, the model’s ability to replicate physiological behaviors is demonstrated, by
simulating the transient response to alterations in loading conditions and contractility, as induced by experimental protocols
used for assessing systolic and diastolic ventricular properties. Mechanistic completeness and computational efficiency of this
novel model render advanced applications geared towards predicting acute outcomes of EM therapies feasible.
c⃝ 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

Keywords: Ventricular pressure–volume relation; Frank–Starling mechanism; Ventricular load

1. Introduction

Cardiovascular diseases (CVDs) are the primary cause of mortality and morbidity in industrialized nations,
osing a significant burden on health care systems worldwide [1–3]. Despite continuous diagnostic and therapeutic
dvances, their optimal treatment remains a challenge [4]. In no small part, this is due to the complex multiphysics
ature of cardiovascular function — the heart is an electrically controlled mechanical pump driving blood through
he circulatory system. Advanced clinical modalities provide a wealth of disparate data, but effective tools allowing
heir comprehensive quantitative analysis are lacking. Computer models able to capture mechanistic relations
etween clinical observations quantitatively show promise to fill this void. In recent single physics cardiac
lectrophysiology (EP) studies, the added value of models in improving therapy stratification [5] and planning [6,7]
as been demonstrated already.

Multiphysics models of cardiovascular EM are even more challenging to apply in a clinical context. Their
tility depends on the ability to comprehensively represent mechanisms underlying a broader range of physiological
unction, and to tailor these to approximate – with acceptable fidelity – anatomy and cardiovascular function of a
iven patient. Such models are complex as all major mechanisms governing a heart beat bidirectionally interact
ith each other and, thus, must be taken into account. These comprise models of cardiac EP producing electrical

ctivation and repolarization patterns that drive EM coupling to models of contractile function, cardiac mechanics
escribing deformation and stresses under given mechanical boundary and hemodynamic loading conditions
mposed by the intra-thoracic embedding of the heart and the circulatory system, respectively.

Pumping function is regulated through a bidirectional interaction between the heart and both the systemic and
ulmonary vascular systems. The circulatory system as an extracardiac factor imposes a pressure and volume load
pon the heart and, vice versa, pressure and flow in the circulatory system are determined by the mechanical state
f cardiac cavities. Optimal function depends on matching the coupling between these two systems [8]. From a
hysics point of view, coupling poses a fluid–structure interaction (FSI) problem, with pressure and blood flow
elocity fields as coupling variables [9,10]. These are relevant for investigating flow patterns or wall shear stresses,
ut are less suitable for systems level investigations. Simpler, computationally less costly 0D and 1D lumped models
ave been preferred to provide appropriate hemodynamic loading conditions to the heart [11,12].

Most EM modeling studies consider ventricular afterload only represented by lumped 0D Windkessel type
odels comprising 2-, 3- or 4-elements [13–19], or, less common, by 1D models derived from Navier–Stokes

quations [20–24]. The latter also account for pulse wave transmission and reflection, but identifying parameters
s more challenging than for 0D models [25]. A fundamental limitation of isolated models of pre- and afterload is
he lack of regulatory loops which respond to altered loading or contractility in one chamber by balancing preload
onditions in all chambers until a new stable limit cycle with common compatible stroke volumes is reached. Isolated
fterload models are thus best suited for approximating the immediate responses in a single beat [26], but less so
or predicting transient behaviors over multiple beats. Closed-loop circulatory systems [27–31] take into account
hese feedback mechanisms and ascertain the conservation of blood volume throughout the cardiovascular system.

Achieving a flexible, robust, and efficient coupling of 3D EM models of cardiac chambers to a 0D closed-loop
odel of the circulatory system remains challenging. Hydrostatic pressure, p, in cavities and blood flow, q , between
2
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cavities and circulatory system serve as coupling variables that act as pressure boundary condition and impose
volume constraints on the 3D cavity models. Previous studies addressed 3D solid–0D fluid coupling problems using
simpler partitioned [32–34] or more advanced strongly coupled monolithic approaches [35–38,25,39]. Yet, reports
on coupling of a closed-loop 0D to 3D solid models are sparse. Mostly simplified circuit models [37,33,38,40], were
used for simulating a single heart beat, where fixed compliances and 0D chambers based on time-varying elastance
models are used that do not account for pressure–volume relations or the Frank–Starling effect, respectively. Thus,
attempts to demonstrate agreement with known physiological principles – fundamental to cardiac pump function –
under experimental protocols requiring multibeat simulations have been limited.

Based on previous work on cardiac EM models [41–43] we report on the development of a monolithic 3D
olid–0D fluid coupling approach. Feasibility is demonstrated by building a 3D canine bi-ventricular EM PDE
odel coupled to the state-of-the art CircAdapt model [27,44] – a non-linear 0D closed-loop ODE model of

the cardiovascular system that implements dynamic adaptation processes based on physiological principles — to
represent physiologically realistic atrial EM as well as systemic and pulmonary circulation. A detailed description
of numerical underpinnings is given, including a complete mathematical description of the CircAdapt model in

single manuscript that has been lacking so far. Efficiency, robustness, and accuracy of numerical scheme and
olver implementation are evaluated. The coupled model is first parameterized and stabilized to a limit cycle
epresenting baseline conditions, and then rigorously tested by demonstrating its ability to predict physiological
ehaviors under experimental standard protocols altering loading conditions and contractility that are used for the
xperimental assessment of systolic and diastolic ventricular properties. Transient responses under these protocols
re simulated over prolonged observation periods, covering up to 25 beats. The presented framework can be
onsidered a first feature-complete realization of an universal cardiac EM simulator that can be applied, given
ppropriate parameterization and initialization, under a much broader range of protocols and conditions as any
reviously reported model.

. Methodology

.1. Experimental data acquisition

In a previous study, see [45], mongrel dog data were acquired to investigate the influence of different pacing
rotocols on cardiac mechanics, pump function and efficiency. The animals were handled according to the Dutch
aw on Animal Experimentation (WOD) and the European Directive for the Protection of Vertebrate Animals
sed for Experimental and Other Scientific Purposes (86/609/EU). The protocol was approved by the Maastricht
niversity Experimental Animal Committee. Anatomical Magnetic Resonance Images (MRI) were acquired on a
hilips Gyroscan 1.5 T (NT, Philips Medical Systems, Best, the Netherlands) using a standard synergy receiver coil
or thorax examinations. Images of seven short-axis cross-sections of slice thickness 8 mm with 0 mm inter-slice
istance were obtained to capture the whole heart. LV pressure and volume were determined using the conductance
atheter technique (CD-Leycom, The Netherlands), see [46], and the signals were digitized at 1 kHz.

.2. Biventricular finite element models

Multilabel segmentations of right ventricular (RV) (tag 36) and LV blood pool (tag 31) and of the LV myocardium
tag 1), see Fig. 1, were generated from seven MRI short axis slices using Seg3D [47]. Each slice was first segmented
emi-automatically using thresholding techniques with manual correction. Segmentations were upsampled to
sotropic resolution, followed by an automated iterative erosion and dilation smoothing scheme implemented in

eshtool [48]. The RV wall (tag 6) and lids representing the atrio-ventricular valves were automatically generated
y dilation of the adjacent blood pool (tags 41 and 46). Biventricular multilabel meshes were created then from
abeled segmentations [43] using the Computational Geometry Algorithms Library, CGAL (www.cgal.org) and
ubsequently smoothed with Meshtool [48]. A rule-based method according to [49] was applied to define fiber and
heet architecture, with fiber angles changing linearly from −60◦ at the epicardium to +60◦ at the endocardium [50].

Universal ventricular coordinates were computed [51] to support the flexible definition of stimulation sites and
mechanical boundary conditions. Two meshes of different resolution were generated, a coarse mesh to reduce
computational expenses and to facilitate the fast exploration of experimental protocols over prolonged observation

periods, and a higher resolution mesh for investigating potential inaccuracies introduced by the coarser spatial
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Fig. 1. Coarse (A) and fine (B) resolution meshes with domain labels and corresponding fiber fields. Note the difference in fiber angles due
to spatial resolution.

resolution. For the coarse mesh, average edge lengths of ∼ 3.4 mm and ∼ 2.4 mm, were chosen in LV and RV,
espectively, to ascertain that at least two elements were generated transmurally across the myocardial walls, as
llustrated in Fig. 1. For the finer mesh, average edge lengths of ∼1.3 mm and ∼1.2 mm, were chosen in LV and
V, respectively.

.3. Electromechanical PDE model

issue mechanics. Cardiac tissue is mechanically characterized as a hyperelastic, nearly incompressible, orthotropic
aterial with a nonlinear stress–strain relationship. The deformation gradient F describes the deformation u of a

ody from the reference configuration Ω0(X) to the current configuration Ωt (x),

Fi j =
∂xi

∂ X j
, i, j = 1, 2, 3. (1)

y convention, we denote J = det F > 0 and introduce the right Cauchy–Green tensor C = F⊤F. The nearly
incompressible behavior is modeled by a multiplicative decomposition of the deformation gradient [52] of the form

F = J 1/3F, C = J 2/3C, with det F = det C = 1. (2)

echanical deformation is described by Cauchy’s first equation of motion given as

ρ0ü(t, X) − Div [FS(u, X)] = 0 for X ∈ Ω0 × (0, T ), (3)

ith initial conditions

u(X, 0) = 0, u̇(X, 0) = 0.

ere, ρ0 is the density in reference configuration; ü are nodal accelerations; u̇ are nodal velocities; S(u, X) is the
econd Piola–Kirchhoff stress tensor; and Div denotes the divergence operator in the reference configuration.

The boundary of the bi-ventricular models was decomposed in three parts, ∂Ω0 = Γ endo,0 ∪Γ epi,0 ∪Γ base,0, with
Γ endo,0 the endocardium, Γ epi,0 the epicardium, and Γ base,0 the base of the ventricles.

Normal stress boundary conditions were imposed on the endocardium

FS(u, X) nout
0 (X) = −p(t)JF−⊤nout

0 (X) on Γendo,0 × (0, T ) (4)

with p(t) the pressure and nout
0 the outer normal vector; omni-directional spring type boundary conditions constrained

the ventricles at the basal cut plane Γ base,0 [53]; and to simulate the mechanical constrains imposed by the
pericardium spatially varying normal Robin boundary conditions were applied at the epicardium Γ [7].
epi,0

4
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Apart from external loads the deformation of cardiac tissue is in particular governed by active stresses intrinsically
enerated during contraction. To simulate both the active and passive properties of the tissue, the total stress S is

additively decomposed according to

S = Sp + Sa, (5)

here Sp and Sa refer to the passive and active stresses, respectively.

assive stress. Passive stresses are modeled based on the constitutive equation

Sp = 2
∂Ψ (C)

∂C
, (6)

here Ψ is a strain–energy function to model the orthotropic behavior of cardiac tissue. The prevailing orientation
f myocytes, referred to as fiber orientation, is denoted as f0. Individual myocytes are surrounded and interconnected
y collagen, forming sheets, which is described by the sheet orientation s0, perpendicular to f0. Together with the
heet-normal axis n0, orthogonal to the sheet and the fiber orientations, this forms a right-handed orthonormal set
f basis vectors.

Following Usyk et al. [54] the orthotropic constitutive relation is defined as

Ψ (C) =
κ

2
(log J )2

+
a
2

[
exp(Q) − 1

]
, (7)

where the first term is the volumetric energy with the bulk modulus κ ≫ 0 kPa which penalizes local volume
changes to enforce near incompressible behavior of the tissue, parameter a is a stress-like scaling parameter, and
the term in the exponent is

Q = bff E
2
ff + bss E

2
ss + bnn E

2
nn + bfs

(
E

2
fs + E

2
sf

)
+ bfn

(
E

2
fn + E

2
nf

)
+ bns

(
E

2
ns + E

2
sn

)
. (8)

Here, b• are dimensionless parameters and the directional strains read

E ff = f0 · Ef0, E ss = s0 · Es0, Enn = n0 · En0, E fs = f0 · Es0, E fn = f0 · En0,

Ens = n0 · Es0, E sf = s0 · Ef0, Enf = n0 · Ef0, E sn = s0 · En0,

ith E =
1
2 (C − I) the modified isochoric Green–Lagrange strain tensor. All passive material parameters are given

n Table 2.

ctive stress. Stresses due to active contraction are assumed to be orthotropic with full contractile force along the
yocyte fiber orientation f0 and 40 % contractile force along the sheet orientation s0 [55,56]. Thus, the active stress

ensor is defined as

Sa = Sa(f0 · Cf0)
−1f0 ⊗ f0 + 0.4 Sa(s0 · Cs0)

−1s0 ⊗ s0, (9)

here Sa is the scalar active stress describing the contractile force. A simplified phenomenological contractile model
as used to represent active stress generation [26]. Owing to its small number of parameters and its direct relation

o clinically measurable quantities such as peak pressure, and the maximum rate of rise of pressure this model is
airly easy to fit and thus very suitable for being used in clinical EM modeling studies. Briefly, the active stress
ransient is given by

Sa(t, λ) = Speak φ(λ) tanh2
(

ts
τc

)
tanh2

(
tdur − ts

τr

)
, for 0 < ts < tdur, (10)

ith

φ = tanh(ld(λ − λ0)), τc = τc0 + ldup(1 − φ), ts = t − ta − temd (11)

nd ts is the onset of contraction; φ(λ) is a non-linear length-dependent function in which λ is the fiber stretch and
0 is the lower limit of fiber stretch below where no further active tension is generated; ta is the local activation time
rom Eq. (12), defined when the local transmembrane potential passes the threshold voltage Vm,thresh; temd is the EM
elay between the onsets of electrical depolarization and active stress generation; Speak is the peak isometric tension;

dur is the duration of active stress transient; τc is time constant of contraction; τc0 is the baseline time constant of
ontraction; ld is the length-dependence of τ ; τ is the time constant of relaxation; and ld is the degree of length
up c r

5
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dependence. For the parameter values used in the simulations see Table 2. Note that active stresses in this simplified
model are only length-dependent, but dependence on fiber velocity, λ̇, is ignored.

Electrophysiology. A recently developed reaction-eikonal (R-E) model [57] was employed to generate electrical
activation sequences which serve as a trigger for active stress generation in cardiac tissue. The hybrid R-E model
combines a standard reaction–diffusion (R–D) model based on the monodomain equation with an eikonal model.
Briefly, the eikonal equation is given as{ √

∇Xt⊤
a V ∇Xta = 1 in Ω0,

ta = t0 on Γ ∗

0 ,
(12)

here (∇X) is the gradient with respect to the end-diastolic reference configuration Ω0; ta is a positive function
escribing the wavefront arrival time at location X ∈ Ω0; and t0 are initial activations at locations Γ ∗

0 ⊆ ΓN,0. The
ymmetric positive definite 3 × 3 tensor V(X) holds the squared velocities (vf(X), vs(X), vn(X)) associated to the
issue’s eigenaxes f0, s0, and n0. The arrival time function ta(X) was subsequently used in a modified monodomain
–D model given as

βCm
∂Vm

∂t
= ∇X · σ m∇XVm − β Iion + Ifoot, (13)

ith β the membrane surface-to-volume ratio; Cm the membrane capacitance; Vm the unknown transmembrane
oltage; σ m the monodomain conductivity tensor which holds the scalar conductivities (gf(X), gs(X), gn(X)) and
s coupled to V(X) proportionally [58]; and Iion the membrane ionic current density. Additionally, an arrival time
ependent foot current, Ifoot(ta), was added which is designed to mimic subthreshold electrotonic currents to produce
physiological foot of the action potential. The key advantage of the R-E model is its ability to compute activation

equences at coarser spatial resolutions that are not afflicted by the spatial undersampling artifacts leading to
onduction slowing or even numerical conduction block, as it is observed in standard R–D models [59]. Ventricular
P was represented by the ten Tusscher–Noble–Noble–Panfilov model of the human ventricular myocyte [60].

omputation of volumes. To compute the flow across the interface between 3D cavities and the 0D cardiovascular
ystem, the cavitary volume of each chamber that is described as a 3D PDE model has to be tracked as a function
f time: V PDE(x, t). A reduction in cavitary volume

∂V PDE(x, t)
∂t

< 0,

drives a positive flow into the circulatory system. In a pure EM simulation context where the fluid domain is not
modeled explicitly, the cavitary blood pool volume is not discretized, only the surface Γ enclosing the volume is
known. Assuming that the entire surface of the cavitary volume is available, that is, also the faces representing the
valves are explicitly discretized, the enclosed volume V PDE can be computed from this surface using the divergence
theorem

V PDE(u, t) = V PDE(x, t) =
1
3

∫
Γt

x · n dΓt . (14)

sing this approach, the volume V PDE(x, t) can be computed for each state of deformation at time t and the flow
an be derived by a numerical approximation using a difference quotient.

.4. Lumped ODE model of the circulatory system: the CircAdapt model

CircAdapt [27], as shown schematically in Fig. 2, is a lumped 0D model of heart and circulation. It enables real-
ime simulation of cardiovascular system dynamics under a wide variety of physiological and pathophysiological
ituations. The entire cardiovascular system is modeled as a concatenation of modules: a tube module representing
he systemic and pulmonary arteries and veins (Appendix A.1); a chamber module modeling actively contracting
hambers, i.e., left and right atria and ventricles (Appendix A.3), respectively, where myofiber mechanics and
ontraction is described by a sarcomere module (Appendix A.2); following Lumens et al. [61] this also includes
nter-ventricular mechanical interaction through the inter-ventricular septum (Appendix A.4); a valve module
epresenting the aortic, mitral, pulmonary, and tricuspid valves (Appendix A.8); a module representing systemic
6
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Fig. 2. Solution process of the lumped ODE model of the circulatory system. The CircAdapt model connects tubes (t), cavities (c), valves
(v), and pulmonary and systemic periphery (py). In each timestep the ODE system is solved using a Runge–Kutta–Fehlberg method,
see Appendix A.9, to update the ODE variables (in green), i.e., volumes of tubes (Vt ) and cavities (Vc); sarcomere contractility (Cc) and
sarcomere length (Lcont

c ) for each of the cavities and the septum; flow over valves (qv); and septal midwall volume (V mid
Sep ) and radius (ymid),

see Fig. A.9c. In the following steps the updated variables are used to compute current pressures (pc, pt ), cross sectional areas (Ac, At ), and
impedances (Zc, Z t ) for tubes and cavities; fiber strain (Efib

c ), fiber stiffness (κfib
c ), and fiber stress (σ fib

c ) for the sarcomeres of each cavity
and the septum; midwall curvature (Cmid

c ), midwall area (Amid
c ), and midwall tension (T mid

c ) for each cavity and the septum; pericardial
pressure pperi; and flow over the systemic and pulmonary periphery qpy .. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
Source: Based on [44].

and pulmonary peripheral microvasculatures (Appendix A.6); and a module accounting for effects of the peri-
cardium (Appendix A.5). The modules are connected by flows over valves and venous-atrial inlets (Appendix A.7).
The whole lumped model consists of 26 ordinary differential equations (ODEs) which are solved using an adaptive
Runge–Kutta–Fehlberg method (RKF45) (Appendix A.9).

In Appendix A the mathematical underpinnings of the CircAdapt model are outlined. Briefly, cavity pressures
and cavity volumes are interconnected as follows: volumes regulate cavity wall areas, which in turn determine strain
of the myofibers in the wall. Strain is used to calculate myofiber stress, (A.9), (A.10), which drives wall tension in
each cardiac wall (A.22). Using Laplace’s law, transmural pressure is calculated from wall tension and curvature
for each wall (A.23). Cavity pressures are found by adding the transmural pressures to the intra-pericardial pressure
surrounding the myocardial walls (A.31). Consecutively, cavity pressures are used to update flow over valves (A.43)
and thus intra-cavitary volumes (A.34).

A significant advantage of the modular setup of the model is that a simple 0D module can be straightforwardly
replaced by the more complicated finite element (FE) model in Section 2.2. In this setup CircAdapt provides realistic
boundary conditions to the FE problem, see Section 2.5.

The version of the CircAdapt model used for all simulations has been published previously [44] and can also be
downloaded from the CircAdapt website (http://www.circadapt.org).

2.5. PDE-ODE coupling

We introduce the set of cavities C = {LV, RV, LA, RA}, with the left ventricle (LV), the left atrium (LA), the
right ventricle (RV), and the right atrium (RA); the set of cavities CPDE

⊆ C that are modeled as a 3D PDE model;
and the set of cavities CODE

= C \ CPDE that are modeled as a 0D ODE model. Coupling between PDE and ODE

models can be achieved in various ways. Fundamentally, the problem is to find the new state of deformation un+1

7
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Fig. 3. Schematic showing the coupling of the 0D ODE model, represented by the electrical equivalent circuit, to the 3D PDE model,
epresented by the FE mesh. In this case the ventricles (LV, RV) in the lumped model are replaced by 3D PDEs, while the atria (LA, RA)
re modeled as lumped cavities in the CircAdapt model. Volume changes of the 3D cavities V̇LV, V̇RV are driven by flow q• of blood over
alves and outlets computed by the 0D model. In turn, updated pressures pLV and pRV are used as an input to the lumped model in the
ext time step tn+1. The opening and closure of valves is only modeled in the lumped model and in the 3D model triangulated membranes
re used to close the LV and RV cavities. Red colors indicate oxygenated and blue colors de-oxygenated blood. (For interpretation of the
eferences to color in this figure legend, the reader is referred to the web version of this article.)

s a function of the pressure pn+1 in a given cavity at time n + 1. The pressure pn+1 is applied as a Neumann
oundary condition at the cavitary surface, see Eq. (4). This pressure is not known and has to be determined in a
ay which depends on the current state of the cavity. Basically, two scenarios have to be considered: (i) when all
alves are closed, the cavity is in an isovolumetric state. That is, the muscle enclosing the cavity may deform, but
he volume has to remain constant. Therefore if active stresses vary over time during an isovolumetric phase, the
ressure pn+1 in the cavity has to vary as well to keep the cavitary volume constant; (ii) when at least one valve
s open or regurging, the cavitary volume is changing. In this case the pressure pn+1 is influenced by the state of
he circulatory system or of a connected cavity. Thus pn+1 has to be determined in a way that matches mechanical
eformation and state of the system. Pressure pn+1 in the cardiovascular system depends on flow and flow rate
hich are governed by cardiac deformation and as such the two models are tightly bidirectionally coupled.
The simplest approach for the PDE–ODE coupling is to determine pn+1 using a partitioned scheme [32–34].

uring ejection phases this is achieved by updating cavity volumes and flow based on the current prediction on the
hange in the state of deformation under the currently predicted pressure pn+1. In this scenario the pressure boundary
ondition in each non-linear solver step is modified within each Newton iteration k. The new prediction pk+1

n+1 is
hen prescribed explicitly as a Neumann boundary condition. While this partitioned approach is easy to implement
nd may be incorporated into an existing FE solver package without difficulty, it may introduce inaccuracies during
jection phases and its convergence may deteriorate during isovolumetric phases [38]. Instabilities are related to
he so-called balloon dilemma [62] and stem from the problem of estimating the change in pressure necessary
o maintain the volume. Inherently, this requires to know the pressure–volume (pV ) relation of the cavity at this
iven point in time. However, this knowledge on chamber elastance is not available and thus iterative estimates
re necessary to gradually inflate or deflate a cavity to its prescribed volume. As the elastance properties of the
avities are highly non-linear, an overestimation may induce oscillations and an underestimation may lead to very
low convergence and a punitively large numbers of Newton iterations.

A more elaborate approach is to treat pn+1 as an additional unknown in a monolithic scheme [33,63,38,64]. In
ddition to the equilibrium equations (3)–(4) this requires one further equation for each cavity c ∈ CPDE. Using this
pproach, we get Ncav =

⏐⏐CPDE
⏐⏐, the number of PDE cavities, additional equations of the form

V PDE
c (u, t) − V ODE

c (pc, t) = 0, c ∈ CPDE (15)

here V PDE
c (u, t) is the cavity volume computed as the integral over the current surface Γc,t , see Eq. (14),

nd V ODE
c (pc, t) is the cavity volumes as predicted by the CircAdapt model for the intra-cavitary pressure pc,
ee Section 2.4 and Appendix A.

8
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We write pC = [pc]c∈C for the vector of up to 1 ≤ Ncav ≤ 4 pressure unknowns. Then, linearization of the
ariational problem, see Appendix B.2, a Galerkin FE discretization, see Appendix B.3, and a time integration using
generalized-α scheme, see Appendix C, result in solving the block system to find δu ∈ R3N and δ pC ∈ RNcav

such that

K′(uk, pk
C)
(

δu
δ pC

)
= −K (uk, pk

C), K (uk, pk
C) :=

(
Rα(uk, pk

C)
Rp(uk, pk

C)

)
, (16)

ith the updates

uk+1
= uk

+ δu, (17)

pk+1
C = pk

C + δ pC . (18)

ere, uk
∈ R3N and pk

C ∈ RNcav are the solution vectors at the kth Newton step. The block tangent stiffness
atrix K′ is assembled according to Eqs. (B.20)–(B.24) and (C.12) and the right hand side vector Rα according

to Eqs. (B.25) and (B.26) and (C.9). The residual Rp which measures the accuracy of the current coupling is the
discrete version of (15), i.e.,

Rp(uk, pk
C) := V PDE(uk) − V ODE(pk

C). (19)

he whole procedure to perform the PDE–ODE coupling is given in Algorithm 1. In short, volume changes of
he 3D cavities are driven by flow of blood over valves and outlets computed by the 0D model. In turn, updated
ressures in the 3D cavities are used as an input to the lumped model in the next time step. Note that Eq. (16) is
block system with δ pC holding at most four unknowns. Hence, we can apply a Schur complement approach for
small number of constraints, as described in Appendix D, to simplify the numerical solution of this linearized

ystem, see Section 2.8. the cavitary volume of each chamber that is described as a 3D FE model has to be tracked
s a function of time: V PDE

c (x, t) for c ∈ C,
While the described approach works for any combination of 3D PDE chambers and 0D ODE chambers, we

onsider biventricular FE models for our numerical examples in Section 3. This is, the ventricles are modeled as 3D
DEs as in Section 2.2 and the atria are modeled as 0D ODEs described by the CircAdapt model as in Appendix A.3.
ee Fig. 3 for a schematic of this 3D solid–0D fluid coupling.

emporal synchronization of chamber contraction. In the lumped CircAdapt model contraction in individual
hambers is controlled by prescribed trigger events. Based on the measured heart rate (HR) of 103 beats per minute
ontraction of the RA was triggered at intervals corresponding to a basic cycle length of 1/HR = 0.585 s. In all
ther chambers contraction was triggered by prescribed delays relative to the instant of contraction of the RA. In a
ybrid coupled model contraction times used in 3D EM (10), (11) and in the lumped CircAdapt model (A.8) must
e synchronized accordingly. For this sake an interconnected event-driven finite-state machine (FSM) was used to
ontrol activation cycles in both 3D and 0D chamber models. Two types of FSMs were used, an autorhythmic FSM
o generated triggers at a prescribed cycle length independently of any input, and a reactive excitable FSM of two
ossible states, excitable or non-excitable. The excitable FSM reacts to external trigger input. If the machine is in
xcitable state a transition is initiated to the non-excitable state, otherwise, if in non-excitable state, the FSM does
ot accept the input and remains in a non-excitable state. The FSM returns to its excitable state automatically after
prescribed effective refractory period. A transition from an excitable to a non-excitable state sends out a trigger

vent to all interconnected FSMs. These interconnections are implemented as delays representing the travel time
eeded for depolarization wave fronts to propagate to all neighboring interconnected FSMs.

The triggers provided by the FSM can be flexibly linked to entities within both 3D and 0D model. Specifically,
he sino-atrial node is represented by an autorhythmic FSM that is directly interconnected to the RA. Both atrial
avities are implemented as a 0D model that initiate contraction in RA and LA based on FSM trigger events.
he RA FSM connects to the atrial entrance to the atrio-ventricular node that transduces excitation through the
trio-ventricular (AV) node with a given delay. The ventricular exit of the AV node is connected to the left and
ight His bundle that trigger electrical activation of LV and RV. In the LV excitation is initiated by antero-septal,
eptal and posterior fascicle, and in the RV by a septal and a moderator band fascicle in the RV. As the timing of all
ascicles was synchronous between all fascicles of a given chamber, fascicular timings were lumped together under

V and LV (see Fig. 4). RV and LV triggers prescribe fascicular activation times ta to the Eikonal equation that

9
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Algorithm 1 Coupling of the lumped ODE model to the 3D PDE model

1: Initialize time n = 0
2: Initialize the set of cavities C = {LV, RV, LA, RA}, the set of PDE cavities CPDE

⊆ C, and the set of ODE
cavities CODE

= C \ CPDE

3: Initial displacement u0 = 0
4: Initial cavity pressures pC,0

= [pc]c∈CPDE at time n = 0
5: Initialize final time point nmax and maximal number of Newton iterations kmax

6: Initialize Newton tolerance ϵ = 10−6

7: Compute initial cavity volumes V PDE(uk) = [V PDE
c (uk)]c∈CPDE

8: Run CircAdapt ODE system, see Fig. 2, until steady-state is found and get V ODE(pC,0
) = [V ODE

c (pc)]c∈CPDE

9: while n < nmax do
10: Initialize Newton iterator: k = 0
11: Initial guesses for Newton: u0

= un , p0
C = pC,n

12: while k < kmax do
13: Assemble block matrix ▷ Eqs. (B.20)–(B.24) and (C.12)

and right hand side. ▷ Eqs. (B.25)–(B.28) and (C.9)–(C.11)
14: Solve linearized system for δu and δ pC ▷ Eq. (B.17)
15: Update displacement uk+1

= uk
+ δu and cavity pressures pk+1

C = pk
C + δ pC

16: Update cavity volumes V PDE(uk+1) ▷ Eq. (14)
17: Update ODE system and get V ODE(pk+1

C ) ▷ Fig. 2

18: Convergence test:
19: if ∥Rα(uk+1, pk+1

C )∥L2 < ϵ and ∥Rp(uk+1, pk+1
C )∥∞ < ϵ then

20: Solution at time n + 1: un+1 = uk+1, pC,n+1
= pk+1

C
21: break ▷ Newton converged
22: else
23: k = k + 1 ▷ Next Newton step
24: end if
25: end while
26: n = n + 1 ▷ Next time step
27: end while

governs electrical activation of the ventricular cavities implemented as PDE model. Mechanical contraction of the
ventricles was initiated then within a prescribed EM delay, temd. The overall concept for synchronizing contraction
n the coupled model is illustrated in Fig. 4 and FSM input parameters are given in Table 1.

.6. Parameterization of the baseline model

For the sake of physiological validation the available experimental data were used to calibrate the model in terms
f stroke volume (SV) and peak systolic pressure in the LV ( p̂LV). Following [42], initial parameters of passive

biomechanics, characterized by the material model given in (8), were taken from [65]; the model was unloaded
using a backward displacement algorithm [66] and the material law’s scaling parameter a was determined then by
fitting the LV model to an empirical Klotz relation [67], using end-diastolic pressure (ped) and volume (Ved) as input.

ctive stress model parameters τc, Speak, τr and duration of the force transient, tdur were determined as described

reviously [25]. Initial values and parameters for the CircAdapt model were chosen following [68]. To replicate the

10
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Fig. 4. EM activation of the coupled 3D–0D model is steered by an event-driven interconnected FSM that provides triggers for electrical
activation of the 3D EM model and for mechanical activation of the 0D lumped atrial cavities. The sino-atrial node clock (SA) activates the
RA at a prescribed cycle length, SACL, starting at time SAt0 . The LA initiates contraction with a delay of AAdelay after the RA. The atrial
entrance into the AV node activates at AVa which triggers, after the AVdelay elapsed, the ventricular exit of the AV node that is connected
to the His bundle at AVv. Fascicles in the LV are activated then relative to the LV trigger to initiate electrical propagation in the EP model.
Similarly, the RV is activated with an interventricular delay of VVd before (VVd < 0) or after VVd > 0 the LV.

Table 1
FSM input parameters used for synchronizing electro-mechanical activity comprise heart rate (HR) or cycle
length (CL), right atrium (RA), left atrium (LA), intra-atrial (AA), atrio-ventricular (AV) and inter-ventricular
(VV) delays and effective refractory period (ERP).

HR CL RA AA delay AV delay VV delay ERP
[beats/min] [s] [s] [s] [s] [s] [s]

103 0.585 0.0 0.02 0.1 0.0 0.35

observed SV and p̂LV in the left ventricle, input parameters of the active stress model as well as CircAdapt model
parameters were iteratively adjusted. The final parameterized model beating at 103 bpm produced a cardiac output
of ≈2.1 L/min with a SV of 21 mL, in keeping with the experimental data.

2.7. Physiological testing

The coupled 3D–0D model was subjected to thorough physiological testing by evaluating its transient response to
alterations in loading conditions and contractile state. The model under baseline condition was used as a reference
working point relative to which the effect of perturbations in loading and contractility was compared. Standard
protocols for assessing of systolic and diastolic properties of the ventricles based on pV analysis [69] were
mplemented to qualitatively gauge the model’s ability to consistently predict known cardiovascular physiology.
or all perturbations in preload, afterload, or contractility, two points in time were considered, the immediate acute
esponse after perturbing the system and the new approximate limit cycle reached after 8 beats. For baseline and each
11
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limit cycle, the end-systolic pressure volume relation (ESPVR) of the LV was interrogated by imposing additional
step changes in afterload. For this sake, end-systolic pressure (pes) and volume (Ves) were determined in the pV
loops at the instant of end-systole, as determined by the cessation of flow out of the LV. Linear regression was used
then to determine end-systolic elastance, Ees, as the slope of the regression curve, and the volume intercept, Vd, of
the ESPVR. Step changes in preload, afterload, and contractility were implemented by varying the cross-sectional
area of the pulmonary veins, the systemic vascular resistance, Rsys, and the active peak stress Speak generated by the
myofilament model, respectively. Overall pump function was also assessed. Following [70], the heart as a pump can
be described by the pump function graph (PFG), the relation between mean ventricular pressure, i.e., the ventricular
pressure averaged over the entire cardiac cycle, and Cardiac Output. A PFG comprehensively describes cardiac pump
function similar to the characterization of industrial pumps and ventricular assist devices. To construct a PFG, data
were gathered under all protocols, including additional afterload variations over a wider range, between Ea ≈ 0 by
setting the system resistance Rsys ≈ 0 and Ea ≈ ∞, by closing the aortic valve, to obtain data points under extreme
conditions corresponding to the LV beating in absence of external loading and under isovolumetric conditions,
respectively.

2.8. Numerical framework

After discretization, at each Newton–Raphson step the block system (16) has to be solved. For this sake, we
applied a Schur complement approach, see Appendix D, to cast the problem in a pure displacement formulation,
to be able to reuse previously established solver methods [41]. In brief, we used the generalized minimal residual
method (GMRES) with an relative error reduction of ϵ = 10−8. Efficient preconditioning was based on PETSc [71]
nd the incorporated solver suite hypre/BoomerAMG [72].

The dynamic version of the mechanics equations (3) was also used in other recent studies on cardiac
M [73,74,38] and showed advantages in performance of the linear solver – compared to the more common quasi-
tatic approach – due to a more diagonal-dominant tangent stiffness matrix [75]. For the time integration we used
generalized-α scheme, see Appendix C, with spectral radius ρ∞ = 0 and damping parameters βmass = 0.1 ms−1,

stiff = 0.1 ms.
We implemented the coupling scheme in the FE framework Cardiac Arrhythmia Research Package (CAR-

entry) [76,57], built upon extensions of the openCARP EP framework (http://www.opencarp.org). Based on the
ATLAB code presented in [44], which is available on the CircAdapt website (http://www.circadapt.org), a C++

irculatory system module was implemented into CARPentry to achieve a computationally efficient and strongly
calable numerical scheme that allows fast simulation cycles.

Execution of the 3D–0D model was sped up by limiting the number of Newton steps to kmax = 1 for the initial
eries of heart beats that were simulated to stabilize the coupled 3D–0D model to a limit cycle. This corresponds
o a semi-implicit (linearly-implicit) discretization method [77] which worked very well in combination with the
eneralized-α scheme. Finally, after arriving at a stable limit cycle two further beats were simulated using a fully
onverging Newton method with kmax = 20 and an relative ℓ2 norm error reduction of the residual of ϵ = 10−6.

. Results

.1. Parameterization of the baseline model

The coupled 3D–0D model was fit to approximate the experimental observed data on peak pressure p̂LV and stroke
olume in the LV under baseline conditions. Electrical activation was driven by a tri- and bi-fascicular model in LV
nd RV, respectively, see Fig. 5(A). Conduction velocities were chosen for the given activation pattern to obtain a
otal ventricular activation time of ∼75 ms, compatible with the observed QRS duration of the ECG. Mechanical
oundary conditions were set to limit radial contraction of the model, thus leading to a heart beat where ejection was
ediated largely by atrio-ventricular plane displacement, i.e. long-axis shortening of the ventricles, and myocardial
all thickening. The resulting end-diastolic and end-systolic configuration of the model is shown in Fig. 5(A).
rains of 20 heart beats were simulated to arrive at an approximate stable limit cycle, as verified by inspecting

he slope of the envelope of key hemodynamic state variables, see Fig. 5(C). Corresponding hemodynamic data on
ressure, volume, and flows for all four chambers along with the corresponding pV loops over the last two beats
re shown in Fig. 5(B). Parameter values of the baseline model are given in Tables A.4 and A.5 and Table 2 for

he 0D CircAdapt and 3D PDE model, respectively.
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Fig. 5. Model parameterization under baseline conditions. (A) The top panels show ventricular sinus activation sequence induced by three
LV (fLV,a, fLV,s, fLV,p) and two RV fascicles (fmb). The bottom panels show the mechanical end-diastolic (red) and end-systolic (blue)
configuration. Note the minor change in epicardial shape due to the pericardial boundary conditions. (B) Simulated pressure traces in
LV (green) and RV (blue) are shown for the entire pacing protocol using a train of 20 beats. Envelopes (dotted traces) indicate that an
approximate limit cycle was reached after 3 beats. (C) Left panels show time traces of pressure p, flow q and volume V in lumped 0D
trial cavities and PDE-based ventricular cavities for the last two beats of the limit cycle pacing protocol. Variables traverse the state space
long limit cycle trajectories. Right panel shows pV loops in all four cavities. For PDE-based ventricular cavities EDPVR and ESPVR are
ndicated. Experimental data on peak LV pressure p̂LV and stroke volume used for fitting are indicated (dashed lines). (For interpretation of
he references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Differences between the coarse (wireframe, red solid line) and higher resolution (solid, blue solid line) model are shown for (A)
end-diastolic and (B) end-systolic configuration. (C) Dynamic behavior over the limit cycle protocol was comparable with minor difference
in the stroke volume (SV) and peak pressure. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

3.2. Effect of spatial resolution

The impact of the relatively coarse spatial resolution (∼3.4 mm and ∼2.4 mm for LV and RV, respectively) used
as evaluated first by repeating the baseline limit cycle protocol using a higher resolution mesh (∼ 1.3 mm and
1.2 mm for LV and RV, respectively). Both simulations used the exact same set of parameters and initial state

ectors. With regard to pV behavior that is governed by global deformation of the ventricles, end-diastolic and
nd-systolic configurations were compared, see Fig. 6. Observed discrepancies between coarse and higher resolution
odel were marginal and well below the limits of experimental data uncertainty. Differences in p̂LV and SV were

ess than 5.4% and 6.9%, respectively, suggesting that the computationally efficient coarse model is suitable for

erforming a physiological validation study.
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Table 2
Input parameters for the 3D PDE model of the left (LV) and right (RV) ventricle. Adjusted to match
subject-specific data.

Parameter Value Unit Description

Passive biomechanics
ρ0 1060.0 kg/m3 Tissue density
κ 650 kPa Bulk modulus
a 0.7 kPa Stiffness scaling
bff 5.0 [–] Fiber strain scaling
bss 6.0 [–] Cross-fiber in-plain strain scaling
bnn 3.0 [–] Radial strain scaling
bfs 10.0 [–] Shear strain in fiber-sheet plane scaling
bfn 2.0 [–] Shear strain in fiber-radial plane scaling
bns 2.0 [–] Shear strain in transverse plane scaling

Active biomechanics
λ0 0.7 ms Minimum fiber stretch
Vm,Thresh −60.0 mV Membrane potential threshold
temd 15.0 ms EM delay
Speak 100 (LV), 80 (RV) kPa Peak isometric tension
tdur 300.0 ms Duration of active contraction
τc0 100.0 ms Baseline time constant of contraction
ld 5.0 [–] Degree of length-dependence
ldup 500.0 ms Length-dependence of upstroke time
τr 100.0 ms Time constant of relaxation

Electrophysiology
tcycle 0.585 s Cycle time (= 1/heartrate)
AA delay 20.0 ms Inter-atrial conduction delay
AV delay 100.0 ms Atrioventricular conduction delay
VV delay 0.0 ms Inter-ventricular conduction delay
(vf, vs, vn) (1.02, 0.68, 0.34) m/s Conduction velocities
(gf, gs, gn) (0.44, 0.54, 0.54) m/s Conductivities in LV and RV
β 1/1400 cm−1 Membrane surface-to-volume ratio
Cm 1 µF/cm2 Membrane capacitance

3.3. Physiological testing

The response of the coupled 3D–0D system to changes in afterload was probed by altering Rsys in the range of
±65% around its nominal value of 6350 mmHg mL−1 ms−1 These maneuvers alter the slope of the arterial elastance
curve, Ea, pivoting Ea around the point Ved and p = 0 in the pV diagram. The initial response immediately after
step changes in afterload and the new limit cycle are shown in Fig. 7(A) and (D), respectively.

The response to altering LV preload was then probed by stepwise reducing blood flow from the lungs into the
LA by varying the cross sectional area of the pulmonary veins. Under such a walk down protocol the Ea curve is
shifted to the left towards smaller end-diastolic volumes Ved, without altering its slope, i.e. Ea = pes/SV ≈ const,
eading to lower pes. Stroke volumes under this protocol are assumed to gradually reduce due to the Frank–Starling

echanism, mediated by the length-dependence of active stress generation, Sa(λ). Initial and limit cycle response
nder this preload perturbation protocol are shown in Fig. 7(B) and (E), respectively. As contractile properties
emained unchanged, the same slope Ees of the ESPVR was obtained as before under step changes in afterload;
ompare estimated Ees between Fig. 7(D) and (E).

The effect of step changes in contractility was probed by altering peak active stresses Speak in the LV by ±20 %
around the LV nominal value of 100 kPa This maneuver steepened/flattened the ESPVR, see Fig. 7(C) and (F). In
the initial response Ves and pes were affected, with Ved remaining constant, this led to a change in stroke volume
and an apparent change in arterial elastance estimated by Ea ≈ pes/SV, with ≈ −13.09/ + 36.81% relative to
baseline. However, in the limit cycle response after readjustment of preload in all chambers, all Ea curves had the
same slope and were only shifted according to the new working Ved for the given contractile state. Transient pV

loops under this protocol are shown in Fig. 7(C) and (F).
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Fig. 7. Left ventricular pV loops showing the initial response (A–C) and 4 cycles (D–F) after applying a step change in loading conditions
nd contractility. (A) Altering afterload by increasing/decreasing the systemic vascular resistance, Rsys pivots arterial elastance Ea curve.

Endsystolic elastance, Ees and intercept Vd characterizing the ESPVR was determined by linear regression of end-systolic data points Ves
and pes, marked by solid circles. (B) Increasing/decreasing preload shifts Ea curve and increases/decreases stroke volume via the Starling
mechanism, mediated by the length-dependence of the active stress model. Determination of ESPVR was consistent with afterload protocol.
(C) Increasing/decreasing contractility increases/decreases stroke volume, LV peak pressure and pes. For each contractile state afterload was
also perturbed to determine end-systolic elastance Ees and Vd.

A PFG was constructed by combining data from all tested protocols with additional sampling of data within
more extreme ranges of ventriculo-arterial coupling. The models’ PFG is in agreement with known cardiovascular
physiology, see Fig. 8. Keeping contractility and preload constant, the PFG with mean ventricular pressure (MVP),
as a function of flow or stroke volume can be approximated by a quadratic function, MVP(q) = P̂iso

(
1 − (q/qmx)2

)
,

with P̂iso and qmx being the maximum MVP and maximum flow under isometric and unloaded conditions,
respectively. The MVP as a function of time is given by the integral

MVP(t) =
1

tcycle

∫ tcycle

0
pLV(t + s) ds (20)

ith a constant cycle length tcycle. Increasing preload shifts the PFG towards higher flows and pressures.
ncreasing/decreasing contractility pivots the PFG, leading to a steeper/flatter slope ∆MVP/∆q of the PFG.

.4. Numerical performance

Computational times for a single heart beat of the lower and higher resolution baseline models are given

n Table 3. Simulations were performed on the Vienna Scientific Cluster (VSC4) and we distinguish between

15



C.M. Augustin, M.A.F. Gsell, E. Karabelas et al. Computer Methods in Applied Mechanics and Engineering 386 (2021) 114092

a

w
l
f
a
a
a
1
d

4

fl
t
b
c
I

Fig. 8. Pump function graph (PFG) and Frank–Starling curve of the LV. (A) pV loops in LV under baseline conditions (green) and varying
fterload conditions, ranging between unloaded, Ea ≈ 0, and isometric, Ea ≈ ∞, conditions. Note that pV loops are plotted for the initial

beat after altering afterload such that the end-diastolic volume is the same for all conditions. Thus, the system is not in a steady state and
pV loops are therefore not closed. (B) PFG, plotting mean ventricular pressure (MVP), Eq. (20), against stroke volume (SV), constructed
from afterload variations with constant preload and contractility (solid circles), with increased preload (solid squares) shifting the PFG up
and left towards higher flow and pressure. For both cases contractility was also perturbed which pivots the PFG (empty circles and squares,
respectively), leading to a steeper/flatter slope MVP/∆SV for increased/decreased contractility. (C) Frank–Starling curve showing the relation
between stroke volume and end-diastolic pressure, SV (ped). (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Table 3
Summary of numerical metrics for coarse and fine model. Given are the number of compute cores used on VSC4; the average spatial
resolution in LV and RV, h̄LV and h̄RV; the number of elements and nodes spanning the mesh; as well as solver, assembly, and total times
for a single Newton iteration (ts,1, ta,1) and a fully converged Newton solution (ts,c , ta,c), and the total simulation time per heart beat for
single iteration and fully converged Newton scenarios, Tb,1 and Tb,c, respectively. Timings refer to a single heart beat lasting 0.585 s at
a time step size of 1 ms. In addition the cumulated solver (ts,ld) and assembly (ta,ld) times for the loading phase using 32 load steps are
presented.

Model Cores h̄LV/h̄RV Elems Nodes ts,1/ta,1 ts,c/ta,c Tb,1/Tb,c ts,ld/ta,ld
[–] [mm] [–] [–] [s] [s] [s] [s]

Coarse 24 3.4/2.4 45 686 11 850 91.4/42.1 620.2/299.0 135.1/920.8 5.5/14.6
Fine 256 1.3/1.2 557 316 111 234 165.6/62.8 1335.8/542.9 231.6/1881.9 12.7/20.6

solver-time, ts, which is the accumulated GMRES solver time over all loading/time steps; and assembly-time, ta,
hich is the time spent on the setup of boundary conditions and on the assembly of matrices and vectors of the

inearized system (16). In total, for a full simulation with loading, 18 initialization beats, and 2 final beats with a
ully converging Newton method the computational costs were 4534.38 s for the lower resolution model on 24 cores
nd 9393.73 s for the higher resolution model on 256 cores. Here, in addition to GMRES solver and assembly times,
lso the solution of the R-E model governing EP, postprocessing, CircAdapt ODE times, and input–output times
re taken into account. It is worth noting that the CircAdapt ODE solver alone is very efficient: for a simulation of
03 beats (i.e. 1 min with a cycle length of 0.585 s) computational costs were approximately 2 s on one core of a
esktop computer. Hence, CircAdapt ODE times carry almost no weight in the coupled 3D–0D model.

. Discussion

In this study, we report on the development of a monolithic 3D solid–0D fluid coupling method that allows to
exibly combine 3D PDE and non-linear 0D EM representations of cardiac cavities. The hybrid 3D–0D model of

he heart was coupled to a 0D closed-loop model of the cardiovascular system, where all 0D components were
ased on the CircAdapt model [44]. The combined model can be set up to represent one, two, three, or all four
avities as 3D PDE model and all other elements of the cardiovascular system as 0D models based on CircAdapt.
n this study feasibility of this approach is demonstrated by coupling a 3D PDE model of bi-ventricular EM to 0D
16
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model representations of atrial EM function and circulation based on the CircAdapt model. The combined model
was parameterized under baseline conditions and subjected to comprehensive physiological testing to demonstrate
the model’s ability to correctly predict known physiological behaviors. A broad range of experimental protocols
for altering loading conditions and contractility were simulated to interrogate the models’ transient responses to
these maneuvers [69]. Overall, pV analyses of the hemodynamic model output showed close agreement with
established knowledge on cardiovascular physiology. The underlying numerical scheme is also represented in detail,
including a comprehensive mathematical representation of the CircAdapt model. Robustness – in terms of stability
and convergence properties – and computational efficiency – in terms of execution times – are demonstrated. These
features combined render advanced EM modeling applications feasible. The model facilitates the efficient and robust
exploration of parameter spaces over prolonged observation periods which is pivotal for personalizing models to
closely match observations. Moreover, the model can be trusted to provide predictions of the acute transient response
to interventions or therapies altering loading conditions and contractility that are valid within a commonly accepted
physiological reference frame.

4.1. Physiological validation

Predictive modeling applications critically rely on the ability of models to encapsulate the most relevant
mechanisms governing the cardiovascular response to a given intervention that alters loading conditions or
contractility. In a closed-loop cardiovascular system as represented by CircAdapt, isolated changes to a single
parameter entail transient adaption processes in the system as a whole.

Validation aimed at replicating, overall, known well established behaviors and not at a 1:1 validation against
experimental data. For this sake, experimental standard protocols for altering afterload, preload and, contractility
were applied to the stabilized baseline model to study its response. Two scenarios were analyzed, the initial acute
response to a step change in a single parameter – afterload, preload, or contractility – where effects on other
unaltered parameters were minimal, see Fig. 7(A)–(C), and, the limit cycle response observed after a number of
beats where transients have largely subsided, but indirect effects led to alteration of other parameters due to the
systemic inter-dependencies between these, see Fig. 7(D)–(F).

Afterload was altered by varying the systemic resistance Rsys and, to mimick more extreme conditions closer to
isometric contraction, the resistance of the aortic valve. Increasing/decreasing afterload is reflected in pivoting the
arterial elastance curve Ea around the point of end-diastolic volume and zero pressure. This behavior is illustrated
in Fig. 7 and for the more extensive protocols used in constructing the PFG in Fig. 8(A). Ea was only marginally
affected in the initial response, but more significant changes were witnessed after stabilization to a new limit cycle.
As expected, changes in slope of Ea were proportional to changes in Rsys since, in absence of any regulatory
mechanisms, heart rate remained unaltered. Thus, Ea ≈ MAP/(SV·HR) ≈ Rsys holds. The phenomenological active
stress model as given in Eqs. (10)–(11) accounted for length-dependent tension, but not for velocity dependence.
Thus, afterload effects on the velocity of fiber shortening were ignored.

Altering Ved by changing the cross section of the pulmonary vein orifices to increase/reduce preload in-
creased/reduced SV. This was due to the Frank–Starling mechanism, as represented by the length–tension relation-
ship of the active stress model in Eq. (11). In the immediate response to a step change in preload the LV emptied
to almost the same Ves with only minor deviations due to changes in arterial pressure induced by the change in SV.
After transients subsided, ESPVR and arterial elastance were the same as under baseline conditions, with Ea being
shifted according to the changed Ved. In the new limit cycle pes and MAP were increased, but changes in SV were
rather small. This could be attributed to a rather flat slope of the Frank–Starling curve SV(ped) (not shown) that
is related to the significant heterogeneity in fiber stretch in end-diastolic state. Such heterogeneity inevitably arises
in biventricular EM models that do not account for residual strains in the unpressurized configuration. As fiber
stretch in the reference configuration with p = 0 is assumed λ = 1, increasing the filling pressure to ped leads to a
significant spread in λ around its mean. Thus, while mean λ in our simulations increased with ped the increasing
spread of λ around its mean led to low fiber stretch λ < λ0 in various regions, particularly in antero-septal and
postero-septal segments of the LV. These regions contributed increasingly less to contraction with increasing ped
due to the length-dependence of Sa(λ) ≈ 0, thus, leading to an overall attenuation of the Frank–Starling effect.

Altering contractility by increasing/reducing the peak active stress Sa led to an increase/decrease in SV and
systolic pressures in terms of p̂ and p . Correspondingly, the ESPVR, as sampled by perturbing LV afterload,
es
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was steepened/flattened as expected, see Fig. 7(C). In the initial response the slope of Ea was affected, but after
stabilization Ea was the same for all contractile states. For the given parameterization ventriculo-arterial coupling
Ees/Ea fell outside the optimal range of 1–2, where external work is maximized around Ees/Ea ≈ 1 and optimal
fficiency is achieved at Ees/Ea ≈ 2. Since p̂ and SV and as such Ea ≈ pes/SV were used to parameterize the
odel the resulting slope of the ESPVR was too flat for the LV to operate within this optimal range. Reasons

re multifactorial and include the absence of velocity-dependence and, potentially, also the role of mechanical
oundary conditions. The main culprit to blame for the limited slope of Ees is the impairment of the Frank–
tarling mechanisms due to fiber stretch heterogeneity. Our model deviates here from the general physiology-based
ssumption of uniform fiber-stretch to be in place in an end-diastolic state [78–81].

The constructed PFG was qualitatively in keeping with physiological expectations, see Fig. 8. Data points
btained from varying afterload between close to unloaded and isometric conditions agreed well with an assumed
uadratic relation between MVP and flow or SV. Increasing preload shifted the PFG up and left towards higher
ows and pressures, with the opposite trend being observed for decreasing preload. Altering contractility rotated

he PFG.

.2. Numerical aspects

The computational cost imposed by higher resolution EM models requires efficient numerical solvers. Strong
caling characteristics of our numerical framework were reported in detail previously [41,82]. The compute times
eported in Section 3.4 indicate that setup and assembly time were the dominating factors during the initial passive
nflation (loading) phase while for the subsequent coupled 3D–0D EM simulations of a heart beat solver time was
he predominant part of total CPU time. This is due to the Schur complement, see Appendix D, that needs to be
olved during the 3D–0D active EM phase. This involved – in our case of a bi-ventricular model comprising two
DE cavities – three applications of the GMRES solver while matrices were only assembled once per Newton step.

Further, significant savings in compute time could be achieved using a semi-implicit approach, see Section 2.6,
ntil a limit cycle was reached. A heartbeat using a fully converging Newton was about five times more expensive
ompared to a heartbeat in the initialization phase. As the deviations of the semi-implicit method from the implicit
cheme were negligible and the final two beats of the limit cycle protocol were then computed using a fully
onverging Newton method this gain in performance had no quantitative impact on any of the primary simulation
utcomes.

Reducing spatial resolution down to 2.4 millimeter and 3.4 millimeter in RV and LV, respectively, allowed for
ultibeat simulations within tractable time frames using a desktop computer. The impact of this reduction on the

emodynamic output variables was very minor, particularly when viewed in context of the significant observational
ncertainties the type of measured data used for model calibration are afflicted with. While probing only two
esolutions by far cannot be considered a rigorous convergence study, our results suggest that the use of relatively
oarse meshes, with resolutions in the range between 2 to 4 mm is adequate. Indeed, this appears to fall within
he range of resolutions used in other recent cardiac mechanics simulation studies. For instance, meshes comprising
08 561 [83] and 167 323 [74] tetrahedral elements were used to represent human-sized hearts with all four chambers
hereas our coarse model used 45 686 of the same elements only for the ventricles of a much smaller sized canine
eart. While our study cannot offer any conclusive recommendations on choosing an appropriate spatial resolution
ur results suggest that for solving cardiac mechanics problems significantly less spatial resolution is necessary
o achieve acceptable accuracy [84] relative to solving EP problems where spatial resolution is critical to resolve
he steep propagating depolarization wavefronts [59]. The reaction-Eikonal model we used to represent electrical
ctivation and repolarization is not sensitive to spatial resolution, as shown previously [57], and yields accurate
ctivation patterns on coarse meshes, allowing to use the same grid for both EP and mechanics, without the need
or projection of data between the physical grids.

Overall, the total simulation time incurring for 20 heart beats of the coarse model was well below 90 min
n 24 cores. Similar performance was achieved on a standard desktop computer (AMD Ryzen Threadripper
990X), demonstrating that realistic multi-beat simulations of the presented 3D–0D cardiac models deliver sufficient
erformance for advanced physiological simulation scenarios, even on a small number of cores. This is of paramount
mportance for future parameterization studies where numerous simulations have to be carried out to personalize

odels to patient data. With around 2 and a half hours on 256 cores for 20 beats also the higher resolution model

ould be executed within a tractable time frame.
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4.3. Relation to previous work

The holistic framework described in this study constitutes a major step towards a universal cardiac electro-
echanics simulation engine that can be applied, in principle and after appropriate parameterization, to a very

road range of applications. Our study builds on and further advances various concepts that have been reported
reviously in a number of excellent studies [35,33,37,38]. While coupling 3D PDE models to a closed loop
irculatory system is important to ensure consistency, by allowing blood to redistribute between compliances in
he system, only a few have been reported [37,33,38,40]. However, these were limited in some of the following
egards which restricted their universal applicability. For instance, models were discretized with a small number
f cubic Hermite elements which led to anatomically stylized representations of the ventricles [85,33,26,86], with
n artificially chopped base and a hole or collapsed elements [87] in the apex, owing to their limited ability to
ccurately accommodate more complex anatomical shapes without greatly increasing computational times [88].
ften, artificial boundary conditions were used that fixed the motion of the base [37,89] and, thus, enforced a

ero atrio-ventricular plane displacement. These studies, with only a few exceptions [35,74,90], were unable to
eplicate a physiological kinematics characterized by the reciprocal filling properties of the heart by maintaining a
onstant pericardial shape. In other studies EP was not modeled at all, assuming that contraction in the ventricles
s initiated simultaneously [38,40,74], or non-physiological activation sequences were used to trigger contraction,
oth of which impair length-dependent tension mechanisms [37]. Computational cost of numerical methods is not
ddressed in most previous works; notable exceptions include [37,90,38,74,89] where compute times for one heart
eat range between 1.8 and 24 h. This is considerably less efficient compared to compute times presented in this
tudy in Section 3.4. Mostly simplified circuit models were used [37,33,38,40] for simulating a single heart beat
r the simulated PV loops featured unphysiological edgy morphologies due to the usage of (i) simple diode valve
odels not accounting for inertia, Bernoulli effects and flow resistance between compartments and (ii) time-varying

lastance models for compliances such as the atria that yield fixed pressure–volume relations and cannot contract
n a load-dependent manner as the sarcomere-based contractile 0D chambers used in the CircAdapt model.

None of these methodological limitations apply to the modeling framework presented in here.

.4. Limitations

Computational modeling relies on assumptions and approximations, especially multiphysics simulations on organ
cale level as presented in this study. While the accuracy of most individual model components was already assessed
n previous studies, all these components have limitations and were chosen (i) to achieve great computational
erformance while preserving almost the full biophysical details of possibly more accurate, computationally costly
odels; and (ii) to ease parameterization, i.e., to achieve physiological results even with a smaller amount of

arameters compared to more accurate but also more complex models. Dependent on the clinical application it
ight be required to consider other individual components than those chosen in this study.
Efforts to parameterize the combined model were limited, only a small subset of available data were used for

odel fitting. A generic five-fascicular representation of the cardiac conduction system was used to drive ventricular
ctivation, without attempting to match the recorded ECG [91]. More comprehensive and efficient procedures
re required to further enhance compatibility of the high dimensional combined 3D–0D model with all available
bservations. Building on strategies for fitting the standalone CircAdapt model to hemodynamic data [92,93], a
ybrid parameterization approach appears a pragmatic solution where the 0D model is fitted first to observed data
nd in a subsequent parameterization step the 3D cavities are fit to the pV characteristics of the corresponding

0D cavities. However, for the sake of demonstrating overall compatibility with known cardiovascular physiology a
high fidelity match with experimental data, while desirable, is not crucial. Future more advanced applications that
attempt to predict therapeutic responses in a patient-specific manner will critically depend, beyond a comprehensive
representation of the most relevant therapy mechanisms, on the fidelity of personalization. Given the large number
of model parameters this is not a trivial task that will require the development of dedicated parameter identification
strategies. In this regard the outstanding computational performance of the model is essential to facilitate a detailed
model personalization which requires a large amount of forward simulations.

While the framework used in this study can be considered universal and feature complete, two important aspects

remained unaccounted for. First, active stresses generated by the phenomenological model featured length- but no
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velocity dependence. However, a velocity-dependent term could be incorporated, as methods that avoid numerical
instabilities due to velocity dependence have been reported [73], or a biophysically highly detailed model of
excitation–contraction coupling could be used instead as in our previous work [41]. Secondly, residual stresses
in the unpressurized ventricles were ignored which impairs, to some extent, the length-dependent Starling effect.

Inflation of the unpressurized configuration to ped without considering residual stresses, inevitably introduces a
significant spatial heterogeneity in fiber stretch. This is in contrast to the common assumption of homogeneous fiber
stretch in the end-diastolic state [78–81]. This was reflected in a rather flat slope of the Starling curve SV(ped). As
shown in Fig. 8C, for the given inotropic state and afterload, the Starling curve was close to linear, with a slope of
≈ 1.3 mL/mmHg. In humans, slopes in the range between ≈ 2.7–5.5mL/mmHg were measured for non-athletes
and athletes, respectively [94].

For the sake of saving computational costs, a coarse spatial resolution was used for discretizing the bi-ventricular
model. Thus, models were lightweight enough to carry out the larger number of simulations that were needed for
parameterization, the determination of a limit cycle as well as the fine grained testing of physiological maneuvers.
The use of such coarse spatial resolutions introduces inaccuracies with regard to fibers and sheet arrangements
which are defined on a per element basis. As parts of the model such as the RV wall were composed only of two
element layers, transmural fiber rotation was essentially reduced to two fiber families. These were mostly aligned
with the endocardial and epicardial fiber orientations as prescribed on a per rule basis, see Fig. 1. Thus, the model’s
predictions of motion, strains and stresses may deviate quantitatively from models discretized at higher resolution.
However, comparing between two models of different resolution revealed that quantitative differences were minor
and, qualitatively, models showed essentially the same behavior. Most differences stemmed from differences in
stiffness of the simple P1–P0 element types used which tended to be more compliant for higher resolutions.
Nonetheless, errors in simulated hemodynamic outcomes were small enough to be considered negligible when put
in context to observational uncertainties clinical or experimental data are afflicted with.

Finally, the presented model is not validated rigorously against experimental data. Typically, an independent
validation is performed by the comparison of displacement [95,74,96] and/or strain [55,97,40] to observations from
cine MRI or 3D tagged MRI data. However, an accurate cardiac motion and deformation field can be obtained
by tuning boundary conditions and in vivo MRI strain measurements have major caveats [98,99]. Further, clinical
validation can be conducted by comparing simulated ECG, pressure, and volume traces and derived quantities,
e.g., SV or ejection fraction, against clinically measured data [25,97,90]. However, commonly, these measurements
are all used for model calibration to optimize goodness of fit of simulated outputs to the data and, thus, these
cannot be used for the purpose of model validation. Overall, difficulty of proper model validation remains a point
of concern and in many cardiac modeling studies validation against actual patient data is limited [100]. In this work,
we focused on replicating known, well-established behaviors to show and prove a physiological predictive power
under a broad range of experimental protocols. Together with a rigorous, independent validation against image data
in future studies, this will set a new standard in cardiac modeling.

5. Conclusions

This study reports on a flexible monolithic 3D solid–0D fluid coupling method for integrated models of
cardiac EM and cardiovascular hemodynamics. Feasibility of the approach is demonstrated by coupling a 3D PDE
model of bi-ventricular EM to 0D model representations of atrial EM and circulation based on the CircAdapt
model. The coupled 3D–0D model is shown to be robust, computational efficient and able to correctly replicate
known physiological behaviors in response to experimental protocols for assessing systolic and diastolic ventricular
properties based on pV analysis. These features combined render advanced EM modeling applications feasible.
The model facilitates the exploration of parameter spaces over prolonged observation periods which is pivotal for
personalizing models to closely match observations.
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Appendix A. CircAdapt equations summary

A.1. CircAdapt tube module

The tube module represents the entrance of a compliant blood vessel capable of propagating a pressure-flow wave
component added to a constant flow, see [27]. Vessels directly attached to the heart, aorta (AO), arteria pulmonalis
(AP), venae cavae (VC), and venae pulmonales (VP) are modeled in a similar fashion in CircAdapt and for the
whole section we define the iterator t ∈ {AO, AP, VC, VP}.

The current lumen cross sectional area is computed by

At =
Vt

lt
, (A.1)

with Vt the cavity volume and lt the length of the vessel segment.
Using a model of a tube with a fibrous wall, see [101], gives the average extension, λt , of the fibers in the wall

by

λt =
(
1 + 2Vt/V wall

t

)1/3
=
(
1 + 2At/Awall

t

)1/3
,

with Awall
t the wall cross-sectional area and V wall

t = Awall
t lt the wall volume. Cavity pressure depends on λt

pt = σt (λt ) λ−3
t ,

with the mean Cauchy fiber stress σt that is modeled by the constitutive equation

σt (λt ) = σ ref
t ·

(
λt/λ

ref
t

)kt
,

see Arts et al. [101]. Here, kt a stiffness exponent; λref
t =

(
1 + 2V ref

t /V wall
t

)1/3 and σ ref
t = pref

t

(
λref

t

)3 are the fiber
extension and fiber state at normal physiological reference state, respectively; and pref

t is the reference tube pressure.
By combining above results the current tube pressure is computed as

pt = pref
t

(
λ

λref
t

)k

λ−3
t

(
λref

t

)3
= pref

t

(
λt

λref
t

)k−3

= pref
t

(
V wall

t + 2Vt

V wall
t + 2V ref

t

) k−3
3

= pref
t

(
Awall

t + 2At

Awall
t + 2Aref

t

) k−3
3

, (A.2)

ith Aref
t the initial cross sectional area and V ref

t = Aref
t lt the initial vessel volume. The compliance is

1
Ct

=
dpt

dVt
=

d
dVt

⎡⎣pref
t

(
V wall

t + 2Vt

V wall
t + 2V ref

t

) k−3
3

⎤⎦
= pref

t
k − 3

3

(
V wall

t + 2Vt

V wall
t + 2V ref

t

)( k−3
3 −1

)
2

V wall
t + 2V ref

t

=
2pt (k − 3)

3
(
V wall

t + 2Vt
) =

2pt (k − 3)
3lt
(

Awall
t + 2At

) .
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Finally, the basic relation between characteristic wave impedance Z t compliance Ct , and inertance It

Z2
t =

It

Ct
=

ρblt

At Ct
(A.3)

yields

Z t =

√
2ρb pt l2

t (k − 3)
3Vt

(
V wall

t + 2Vt
) =

√
2ρb pt (k − 3)

3At
(

Awall
t + 2At

) (A.4)

with ρb the blood density.

A.2. Sarcomere mechanics

In the following a sarcomere contraction model is described that is based on a modified Hill model, see [61,44],
for all tissue patches in the wall of the cavity: c ∈ {LV, RV, Sep, LA, RA}, with the left (LV) and right (RV) ventricle,
the septum (Sep), and the left (LA) and right (RA) atrium. Natural strain Efib

c of the myofiber is estimated as

Efib
c = ln

(
Ls

c

Ls,ref

)
(A.5)

and from this the total sarcomere length Ls
c can be computed as

Ls
c = Ls,ref exp

(
Efib

c

)
, (A.6)

with Ls,ref
c a constant describing the reference sarcomere length. The sarcomere is supposed to be made up of a

contractile element of length Lcont
c in series with an elastic element of length Lelast

c = Ls
c − Lcont

c .

Sarcomere active stress

Sarcomere contracting length Lcont
c varies over time according to

L̇cont
c :=

dLcont
c

dt
= vmax

[
Ls

c − Lcont
c

Lelast,iso − 1
]

, (A.7)

where the constant Lelast,iso is the length of the series elastic element during isovolumetric contraction and the
constant vmax is the maximum velocity of contraction.

The governing equation for the contractility Cc, describing the density of cross bridge formation within the fibers
of the patch, is

Ċc :=
dCc

dt
= f rise

c (t)C s
c

(
Lcont

c

)
− f decay

c (t)Cc. (A.8)

n Eq. (A.8) sarcomere contractility rises according to the function f rise
c , a phenomenological representation of the

ate of cross bridge formation within the patch,

f rise
c (t) =

1
t rise
c

0.02x3
c (8 − xc)2 exp(−xc),

xc(t) = min
(

8, max
(

0,
t − tact

c

t rise
c

))
,

epending on the time of onset of activation of the patch, tact
c , and the rising time

t rise
c = 0.55τRtact,ref

c .

Here, τR a constant and tact,ref
c is the reference duration of contraction for initial fiber length.

Sarcomere contractility in (A.8) decays according to the function f decay
c

f decay
c (t) =

1
decay

[
1 + sin

(
sign(yc) min

(π
, |yc|

))]
,

2tc 2
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yc(t) =
t − tact

c − tact,dur
c

tdecay
c

,

epending on the decay time

tdecay
c = 0.33τDtact,ref

c ,

ith τD a constant and tact,dur
c is the duration of contraction of the fiber that lengthens with sarcomere length

tact,dur
c =

(
0.65 + 1.0570Lnorm

c

)
tact,ref
c .

Here, Lnorm
c is the normalized sarcomere length for active contraction

Lnorm
c = max

(
0.0001, Lcont

c /Lact0,ref
− 1

)
,

where Lact0,ref is the zero active stress sarcomere length.
C s

c in (A.8) describes the increase in cross bridge formation with intrinsic sarcomere length due to an increase
in available binding sites,

C s
c

(
Lcont

c

)
= tanh

(
0.75 ∗ 9.1204

(
Lnorm

c

)2
)

.

Contractility Cc (A.8) and sarcomere contracting length Lcont
c (A.7) are used to compute the actively generated fiber

stress

σ fib,act
c = Lact0,refσ act,maxCc Lnorm

c
Ls

c − Lcont
c

Lelast,iso , (A.9)

with constants Lact0,ref, σ act,max, Lelast,iso, see Table A.5.

Sarcomere passive stress

Passive stress σ
fib,pas
c is considered to contain two components,

σ fib,pas
c = σ fib,tit

c + σ fib,ecm
c , (A.10)

first the stress arising from cellular structures such as titin, a highly abundant structural protein of the sarcomere,
anchoring to the Z-disc, σ fib,tit

c , and second the stress arising from the extracellular matrix (ECM), σ fib,ecm
c . Both

epend on the passive fiber stretch which is computed as

λpas
c =

Ls
c

Lpas0,ref ,

here Lpas0,ref is sarcomere length with zero passive stress and Ls
c the total sarcomere length, see above. Using that

e compute

σ fib,tit
c = 0.01σ act,max

([
λpas

c

]ktit
− 1

)
,

ith σ act,max the maximal isometric stress and the constant exponent

k tit
= 2

Ls,ref

dLs,pas .

he ECM is modeled as being stiffer than the myocyte contribution using

σ fib,ecm
c = 0.0349σ pas,max

((
λpas

c

)10
− 1

)
,

where σ pas,max is an empirical parameter.

Sarcomere total stress

Total myofiber stress σ fib
c is the sum of an active (A.9) and a passive (A.10) stress component

σ fib
= σ fib,act

+ σ fib,pas. (A.11)
c c c
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Sarcomere stiffness κfib
c is now computed as the derivative of total fiber stress (A.11) with respect to fiber strain (A.5)

κfib
c =

∂σ fib
c

∂ Efib
c

=
∂σ fib,act

c

∂ Efib
c

+
∂σ

fib,pas
c

∂ Efib
c

, (A.12)

with
∂σ fib,act

c

∂ Efib
c

= Lact0,refσ act,maxCc Lnorm
c

Ls
c

Lelast,iso ,

∂σ
fib,pas
c

∂ Efib
c

= 0.01k titσ act,max
c

(
λpas

c

)ktit
+ 0.0349 ∗ 10σ pas,max(λpas

c

)10
.

A.3. CircAdapt chamber module

An actively contracting chamber c ∈ {LV, RV, LA, RA} is modeled using the state variables volume Vc, length
of the contractile element of the sarcomere Lcont

c (A.7), and contractility Cc (A.8). Volume changes driven by inflow
and outflow of blood induce changes in midwall volume V mid

c and area Amid
c .

Sphere mechanics

Note that in CircAdapt ventricles are usually modeled using the TriSeg formulation, see Appendix A.4. If TriSeg
is turned on, the calculations in this chapter are only used for the atria while ventricular values are computed as
in Appendix A.4.

Midwall volume V mid
c is estimated as

V mid
c = Vc +

1
2

V wall
c , (A.13)

where V wall
c is constant wall volume. If not set to a specific value the wall volume is estimated by extruding the

sphere enclosing the cavity volume Vc by a constant wall thickness hwall
c , see Table A.4. Chambers are modeled as

closed spheres, thus, the following equations result from volume and surface formulas for spheres

Cmid
c =

(
4π

3V mid
c

)1/3

, (A.14)

Amid,tot
c =

4π(
Cmid

c

)2 , (A.15)

Amid
c = Amid,tot

c − Amid,dead
c , (A.16)

where Cmid
c is midwall curvature, i.e., the inverse of radius; and Amid,dead

c is non-contractile area, i.e., valve openings
and orifices.

Update fiber strain

Natural fiber strain Efib
c is calculated by

Efib
c =

1
2

ln
(

Amid
c

Amid,ref
c

)
(A.17)

with Amid,ref
c the surface area in the reference state, see [44]. Note that this updated fiber strain is used in the place

of (A.5) to update values in the sarcomere module Appendix A.2.
Cross-sectional area Ac of chambers is estimated as

Ac =
Vc + 0.1V wall

c

lc
, (A.18)

lc = 2
(
V mid

c

)1/3
,

with lc the long-axis length of the cavity.
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The characteristic wave impedance Zc is approximated according to (A.3), see also [27], and by applying the
chain rule

Zc =
1

5Ac

√
ρblc

⏐⏐κmid
c

⏐⏐, (A.19)

with the sheet stiffness

κmid
c =

∂T mid
c

∂ Amid
c

=
V wall

c

4
(

Amid
c

)2

(
∂σ fib

c

∂ Efib
c

− 2σ fib
c

)
=

V wall
c

4
(

Amid
c

)2

(
κfib

c − 2σ fib
c

)
(A.20)

and the updated fiber stiffness κfib
c , see Eq. (A.12).

Conservation of energy

CircAdapt connects midwall tension T mid
c and midwall area Amid

c to fiber stress σ fib
c and strain Efib

c through the
law of conservation of energy. With the law of Laplace we get

T mid
c dAmid

c = σ fib
c V wall

c dEfib
c (A.21)

and with (A.17) we get for the midwall tension

T mid
c =

σ fib
c V wall

c

2Amid
c

. (A.22)

Transmural pressure ptrans
c is finally computed as follows

ptrans
c = 2T mid

c Cmid
c . (A.23)

Since at the moment external pressures are assumed to be zero, the transmural pressure coincides with the internal
pressure of the contracting chamber

pc = ptrans
c .

.4. TriSeg model of ventricular interaction

In case that one ODE and one PDE cavity is included in the model, ventricles are modeled as atria above.
therwise, ventricular and septal midwall volumes are modeled as a ventricular composite [61] which is defined
y the common radius ymid of the wall junction and the enclosed midwall cap volumes, see Fig. A.9c. Midwall cap
olumes of the right and the left ventricle are computed as

V mid
LV = −VLV + V mid

Sep −
1
2

(
V wall

LV + V wall
Sep

)
,

V mid
RV = VRV + V mid

Sep +
1
2

(
V wall

RV + V wall
Sep

)
.

Here, the wall volumes of the left, V wall
LV , and right, V wall

RV , ventricle are constants. The blood pool volumes of the
eft, VLV, and right, VRV, ventricle are ODE variables as well as the radius ymid and the septal midwall volume
V mid

Sep . Note that the sign of midwall volume V mid
c is positive if wall curvature is convex to the positive x-direction

and negative otherwise.
Distance xmid

c , see Fig. A.9c, is then computed by the relation

V mid
c =

π

6
xmid

c

(
(xmid

c )
2
+ 3(ymid)

2
)

, for c ∈ {LV, RV, Sep},

hence

xmid
c = qc −

(ymid)2

q
, with qc =

3

√√( 3
π

V mid
c

)2

+
(
ymid

)6
+

3
π

V mid
c .
c
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Fig. A.9. TriSeg model of septal (Sep) and left (LV) and right ventricular (RV) mechanics. (a) The TriSeg model (gray shading) incorporated
in the modular CircAdapt model of the systemic (Syst) and pulmonary (Pulm) circulations. (b) Cross-section of the ventricular composite.
(c) Cross-section of a single wall segment (c ∈ {LV, RV, Sep}) through the axis of rotational symmetry.
Source: Adapted with permission from [61].

Midwall area and curvature are consequently computed

Amid
c = π

(
(xmid

c )
2
+ (ymid)

2
)

, for c ∈ {LV, RV, Sep},

Cmid
c =

2xmid
c

(xmid
c )2

+ (ymid)2 , for c ∈ {LV, RV, Sep},

and used to calculate midwall tension T mid
c (A.22).

Axial T x
c and radial T y

c tension components are computed using laws of trigonometry

T x
c = T mid

c sin α, with sin α =
2xmid

c ymid

(xmid
c )2

+ (ymid)2 , for c ∈ {LV, RV, Sep},

T y
c = T mid

c cos α, with cos α =
−(xmid

c )2
+ (ymid)2

(xmid
c )2

+ (ymid)2 , for c ∈ {LV, RV, Sep}.

It is required that the total midwall tension at junctions is zero, i.e.,

f (ymid, V mid
Sep ) :=

(
T x

LV + T x
RV + T x

Sep
T y

LV + T y
RV + T y

Sep

)
!
= 0. (A.24)

Eq. (A.24) is solved by an iterative Newton scheme

f ′(ymid, V mid )
(
∆ymid,∆V mid

)⊤

= − f (ymid, V mid ), k = 1, 2, . . . (A.25)
k k,Sep k k,Sep k k,Sep
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and increments ∆ymid
k and ∆V mid

k,Sep are added to ymid
k and V mid

k,Sep. The solution of (A.25) in the first step, i.e., for
= 0 is used to define the ODE updates for the septum

V̇ mid
Sep =

1
τSep

∆V mid
0,Sep, ẏmid

=
1

τSep
∆ymid

0 , (A.26)

where τSep is a time constant.
Consequently, the values for the tensions discussed above are updated and the scheme is iterated until

convergence. Midwall volumes are updated by

V mid
c = Vc +

1
2

(
V wall

c + V wall
Sep

)
,

ong-axis length lc and cross-sectional area Ac and of the cavity are computed by

lc = 2
(

V mid
c +

1
2

(
V wall

c + V wall
Sep

))1/3

, (A.27)

Ac =

V mid
c +

1
20

(
V wall

c + V wall
Sep

)
lc

. (A.28)

Finally, wave impedance Zc is computed according to Eq. (A.19) and transmural pressure ptrans
c is computed as

otal axial force

ptrans
c = 2

T x
c

ymid , for c ∈ {LV, RV, Sep}.

Assuming the pressure surrounding the ventricular composite to be zero, internal chamber pressure for the ventricles
is now found as

pLV = −ptrans
LV ,

pRV = ptrans
RV .

.5. Pericardial mechanics

The four cardiac chambers are supposed to have an additional pressure component due to the pericardium.
ressure pperi exerted by the pericardial sack on atria and ventricles was computed as a non-linear function of
ericardial volume Vperi, computed as the sum of blood pool and wall volumes of the four cardiac chambers:

Vperi = VLV + VRV + VLA + VRA + V wall
LV + V wall

RV + V wall
LA + V wall

RA (A.29)

pperi = pref
peri

(
Vperi

V ref
peri

)kperi

, (A.30)

where pref
peri and V ref

peri are constant reference pressure and volume, respectively, and kperi defines the degree of
non-linearity of the pressure–volume relation.

Cavity pressures are updated according to

pc = pc + pperi, for c ∈ {LV, RV, LA, RA}. (A.31)

.6. Periphery

Pulmonary (pulm) and systemic (sys) periphery are modeled as resistances. The current pressure drop ∆ppy , for
py ∈ {pulm, sys}, is computed as the difference of the pressures in the inflow artery pprox

t and the outflow vein
pdist

t :

∆p = pprox
− pdist.
py t t
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q

Using this, the current flow over the periphery is

qpy = q ref
py

(
rpy

∆ppy

∆pref
py

)k py

, (A.32)

where ∆pref
py is the reference arteriovenous pressure drop; q ref

py is the reference flow over the periphery; rpy is a scaling
factor of the arteriovenous resistances; and kpy is a factor that accounts for the nonlinearity of the arteriovenous
resistances, see Tables A.4 and A.5.

A.7. Connect modules

Volume change of inflow arteries V̇ prox
t and outflow veins V̇ dist

t is now updated by

V̇ dist
t += qpy

V̇ prox
t += qpy

(A.33)

Computation of time derivative of flow across valves and venous-atrial inlet requires as input the cross-sectional
area of proximal and distal elements to the channel.

V̇ dist
c,t += qv

V̇ prox
c,t += qv

(A.34)

pprox
c,t += V̇ prox

c,t Zprox
c,t

pdist
c,t += V̇ dist

c,t Zdist
c,t

(A.35)

A.8. Valve dynamics

The pressure drop (∆pv) across a valve is the sum of the effects of inertia due to acceleration in time and the
Bernoulli effect, see [102]

∆pv = ρb
lv
Av

q̇v +
ρb

2

(
(vout

v )2
− (vin

v )
2
)

, (A.36)

where ρb is the density of blood, Av is the current cross-sectional area of the valve, and lv is the length of the
channel with inertia. If not mentioned otherwise this value is estimated as

lv =

√
Aopen

v ,

with Aopen
v the given cross-sectional area of the open valve, see Table A.4. For qv ≥ 0, vin

v is the velocity proximal
to the valve v

prox
v . vout

v is the maximum of the blood velocities in the valve region vmax
v = max(vdist

v , vv, v
prox
v ). For

v < 0 which indicates that the valve is leaking vin
v is the velocity distal to the valve vdist

v and the outflow velocity
is the maximum of the blood velocities in the valve region vout

v = vmax
v . Using vv = qv/Av we can write

∆pv = pprox
v − pdist

v = αvq̇v + βvq2
v (A.37)

with

αv = ρb
lv
Av

(A.38)

the inertia of the channel. The open/closed status of the valve is a function of pressure drop and flow. Valves are
clearly open/closed if both pressure drop and flow point in the same direction. With forward pressure drop, the
valve opens immediately. With backward pressure and forward flow, the valve is closing softly by a continuous
function

Aclosing
v =

√
xv

x2
v + ∆p2

v

(
Aopen

v − Aleak
v

)
+ Aleak

v (A.39)

xv =
40ρb qv |qv|( open)2 ,
Av
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Table A.4
Input parameters for the CircAdapt model. Adjusted to match patient-specific data.

Parameter Value Unit Description

General

ρb 1050.0 kg/m3 Blood density
tcycle 0.585 s Cycle time (= 1/heartrate)

Tubes: aorta (AO), arteria pulmonalis (AP), venae cavae (VC), and venae pulmonales (VP)

Awall
t 274 (AO), 141 (AP), 58 (VC), 85 (VP) mm2 Cross-sectional wall area

lt 500 (AO), 400 (VC), 200 (AP, VP) mm Length of vessel
Aref

t Adjacent valve area mm2 Initial cross sectional area
kt 5 (AO), 8 (AP), 10 (VC, VP) [–] Stiffness exponent

Chambers: left (LV) and right (RV) ventricle; left (LA) and right atrium (RA)

Vc 57.0 (LV), 75.3 (RV), 44.2 (LA), 54.4 (RA) mL Cavity volume
hwall

c 15.0 (LV), 4.0 (RV), 2.0 (LA), 2.0 (RA) mm Constant wall thickness
∆tact

c 0.1 (LV), 0.1 (RV), 0.02 (LA), 0.0 (RA) s Delays of onset of activation in each beat starting at tbt;
tact
c = tbt

+ ∆tact
c

Valves: aortic (AV), pulmonary (PV), mitral (MV), and tricuspid (TV) valve; pulmonary (PO) and systemic (SO) outlet

Aopen
v 500 (MV, TV) 400 (AV, PV, SO, PO) mm2 Valve cross-sectional area

Aleak
v 0 (AV, PV, MV, TV) Aopen

v (SO, PO) mm2 Cross-sectional area of closed/regurging valve

Periphery: systemic (sys) and pulmonary (pulm) circulation

∆pref
py 1.5 (pulm) 10.0 (sys) kPa Blood pressure drop in pulmonary/systemic circulation

q ref
py 85 (pulm, sys) mL/s Reference pulmonary/systemic flow

rpy 1 (pulm) 2 (sys) [–] Resistance scaling factor

where Aleak
v is the given valve cross-sectional areas of the closed (regurging) valve. Using this the current cross

sectional area of the valve is

Av =

⎧⎪⎨⎪⎩
Aopen

v for ∆pv > 0,

Aleak
v for ∆pv < 0 and qv < 0,

Aclosing
v for ∆pv < 0 and qv > 0.

(A.40)

e define

Amin
v = min

(
Aprox

v , Av, Adist
v

)
, (A.41)

ith Aprox
v and Adist

v the cross-sectional area of the proximal and distal cavities or tubes respectively, see
A.1), (A.18), (A.28) and Fig. A.10. Using this βv is given as

βv =

⎧⎪⎪⎨⎪⎪⎩
1
2ρb

[(
1

Amin
v

)2
−

(
1

Aprox
v

)2
]

for qv ≥ 0,

1
2ρb

[(
1

Adist
v

)2
−

(
1

Amin
v

)2
]

for qv < 0.

(A.42)

low over the valve is finally updated using (A.37) by

q̇v =
∆pv − βvq2

v

αv

. (A.43)

A.9. Solve ODE system

A Runge–Kutta–Fehlberg method (RKF45), see, e.g., [104], is used to solve the system of 26 ordinary differential
equations (ODEs):

8 ODEs: for each of the four tubes and the four cavities we get an ODE to update the volume using Eqs. (A.33)

and (A.34).
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Fig. A.10. Schematic of the (a) open and (b) regurging valve.
Source: Based on [103].

Table A.5
Default parameters for the CircAdapt model, fitted to general experimental data in [44].

Parameter Value Unit Description

Tubes: aorta (AO), arteria pulmonalis (AP), venae cavae (VC), and venae pulmonales (VP)

pref
t 12.0 (AO) 0.5 (VP)

0.12 (VC) 1.8 (AP)
kPa reference tube pressure

Sarcomeres in left (LV) and right (RV) ventricle; left (LA) and right atrium (RA)

Ls,ref 2.00 µm Reference sarcomere length
Lelast,iso 0.04 µm Length of isometrically stressed series elastic element
vmax 7 (LV, RV) 14 (LA, RA) µm/s Reference shortening velocity
tact,ref
c 0.5 tcycle (LV, RV) 0.15 tcycle (LA, RA) s Reference duration of contraction
τR 0.25 (LV, RV) 0.4 (LA, RA) [–] Ratio rise time to tact,ref

c
τD 0.25 (LV, RV) 0.4 (LA, RA) [–] Ratio decay time to tact,ref

c
Lact0,ref 1.51 µm Contractile element length with zero active stress
Lpas0,ref 1.80 µm Sarcomere length with zero passive stress
σ act,max 120 (LV, RV) 84 (LA, RA) kPa Maximal isometric stress
σ pas,max 22 (LV, RV) 50 (LA, RA) kPa Maximal passive stress
dLs,pas 0.6 µm

TriSeg module

τSep 0.005 [–] Time constant

Pericardium

pref
peri 0.005 [–] Constant reference pressure

V ref
peri 0.005 [–] Constant reference volume

Periphery: systemic (sys) and pulmonary (pulm) circulation

kpy 2 (pulm) 1 (sys) [–] Nonlinearity exponent

2 ODEs: for the septum we update midwall volume and the radius according to (A.26).
10 ODEs: for the sarcomeres of each cavity and the septum we update sarcomere contracting length and

contractility using (A.7)–(A.8).
6 ODEs: for each of the four valves and the two outlets we update flow by (A.43).

Appendix B. Finite element formulation

B.1. Variational formulation

We first ignore the acceleration term in (3) and look at the stationary version of the boundary value problem
(3)–(4) and (15). For the full nonlinear elastodynamics problem see Appendix C. The stationary boundary value
problem is formally equivalent to the equations

⟨A0(u), v⟩Ω0 − ⟨F0(u, pc), v⟩Ω0 = 0, (B.1)
PDE ODE
⟨Vc (u), q⟩Ω0 − ⟨Vc (pc), q⟩Ω0 = 0, (B.2)
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which is valid for all smooth enough vector fields v vanishing on the Dirichlet boundary Γ0,D, testfunctions q that
are 1 for the cavity c and 0 otherwise, the duality pairing ⟨·, ·⟩Ω0 , and cavities c ∈ {LV, RV, LA, RA}. The second
term on the left hand side of the variational equation (B.1) has the physical interpretation of the rate of internal
mechanical work and is given by

⟨A0(u), v⟩Ω0 :=

∫
Ω0

S(u) : Σ (u, v) dX, (B.3)

with the second Piola–Kirchhoff stress tensor S, see (5), and the directional derivative of the Green–Lagrange strain
tensor Σ (u, v), see [41,105]. The weak form of the contribution of pressure loads (B.1), right term, is computed
using (4)

⟨F0(u, pc), v⟩Ω0 = −pc

∫
Γ0,N

J F−⊤(u) nout
0 · v dsX. (B.4)

The first term of the coupling equation (B.2) is computed from (14) using Nanson’s formula and x = X + u by

⟨V PDE
c (u), q⟩Ω0 =

1
3

∫
Γ0,N

(X + u) · JF−⊤nout
0 q dsX, (B.5)

The second term of (B.2) is computed using the lumped CircAdapt model, see Section 2.4, for c ∈ {LV, RV, LA, RA}.

B.2. Consistent linearization

To solve the nonlinear variational equations (B.1)–(B.2), with a FE approach we first apply a Newton–Raphson
scheme, see [77]. Given a nonlinear and continuously differentiable operator F : X → Y a solution to F(x) = 0
can be approximated by

xk+1
= xk

+ ∆x,

∂ F
∂x

⏐⏐⏐⏐
x=xk

∆x = −F(xk),

which is looped until convergence. In our case, we have X =
[
H 1(Ω0,Γ0,D)

]3
× R, Y = R2, ∆x = (∆u,∆pc)⊤,

xk
= (uk, pk

c )⊤, and F = (Ru, Rp)⊤. We obtain the following linearized saddle-point problem for each (uk, pk
c ) ∈

H 1(Ω0,Γ0,D)
]3

× R, find (∆u,∆pc) ∈
[
H 1

0 (Ω0)
]3

× R such that

⟨∆u, A′

0(uk) v⟩Ω0 + ⟨∆u,F ′

0(uk, pk
c ) v⟩Ω0

+ ⟨∆pc,F ′

0(uk, pk
c ) v⟩Ω0 = −⟨Ru(uk, pk

c ), v⟩Ω0 , (B.6)
⟨∆u, V PDE

c (uk) q⟩Ω0 − ⟨∆pc, V ODE
c (pk

c ) q⟩Ω0 = −⟨Rp(uk, pk
c ), q⟩Ω0 , (B.7)

ith the updates

uk+1
= uk

+ ∆u, (B.8)
pk+1

c = pk
c + ∆pc, (B.9)

nd the particular terms are introduced below. The Gâteaux derivative of (B.1) with respect to the displacement
hange update ∆u yields the first

⟨∆u, A′

0(uk) v⟩Ω0 : = D∆u⟨A0(u), v⟩Ω0

⏐⏐
u=uk

=

∫
Ω0

Sk : Σ (∆u, v) dX +

∫
Ω0

Σ (uk,∆u) : Ck : Σ (uk, v) dX, (B.10)

nd second term of (B.6)

⟨∆u,F ′

0(uk, pk
c ) v⟩Ω0 : = D∆u⟨F0(u, pc), v⟩Ω0

⏐⏐
u=uk ,pc=pk

c

= pk
c

∫
Γ0,N

JkF−⊤

k Grad⊤∆u F−⊤

k nout
0 · v dsX

− pk
c

∫
Jk(F−⊤

k : Grad∆u) F−⊤

k nout
0 · v dsX, (B.11)
Γ0,N
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with abbreviations

Fk := F(uk), Jk := det(Fk), Sk := S|u=uk , Ck := C|u=uk .

The Gâteaux derivative of (B.1) with respect to the pressure change update ∆pc yields the third term of (B.6)

⟨∆pc,F ′

0(uk, pk
c ) v⟩Ω0 : = D∆pc ⟨F0(u, pc), v⟩Ω0

⏐⏐
u=uk ,pc=pk

c

= −∆pc

∫
Γ0,N

Jk F−⊤

k nout
0 · v dsX. (B.12)

he residual Ru, i.e., the right hand side of (B.6), is computed as

⟨Ru(uk, pk
c ), v⟩Ω0 := ⟨A0(uk), v⟩Ω0 − ⟨F0(uk, pk

c ), v⟩Ω0 . (B.13)

rom (B.5), using the known relations, see, e.g., [105],
∂ J
∂F

: Grad∆u = JF−⊤
: Grad∆u

∂F−⊤

∂F
: Grad∆u = −F−⊤(Grad∆u)⊤F−⊤

we can calculate the first term of (B.7) as the Gâteaux derivative with respect to the update ∆u

⟨∆u, V PDE
c (uk) q⟩Ω0 : = D∆u⟨V PDE

c (u), q⟩Ω0

⏐⏐
u=uk

= D∆u
1
3

∫
Γ0,N

(
X + uk)

· JkF−⊤

k nout
0 q dsX

=
1
3

∫
Γ0,N

Jk(F−⊤

k : Grad∆u)x · F−⊤

k nout
0 q dsX

−
1
3

∫
Γ0,N

Jkx · F−⊤

k (Grad∆u)⊤F−⊤

k nout
0 q dsX

+
1
3

∫
Γ0,N

Jk∆u · F−⊤

k nout
0 q dsX, (B.14)

with q a testfunction that is 1 for the surface of cavity c, Γ0,c, and 0 otherwise.
The second term of (B.7) is computed as a numerical derivative

⟨∆pc, V ODE
c (pk

c ) q⟩Ω0 : = D∆pc ⟨V
ODE

c (pc) q⟩Ω0

⏐⏐
pc=pk

c

=
1
ϵ

(
V ODE

c (pk
c + ϵ) − V ODE

c (pk
c )
)

q, (B.15)

here ϵ = pk
c
√

ϵm is chosen according to [106, Chapter 5.7] with ϵm = 2−52
≈ 2.2 ∗ 10−16 the machine accuracy.

Finally, the residual Rp, i.e., the right hand side of (B.7), is computed as

⟨Rp(uk, pk
c ), q⟩Ω0 := ⟨V PDE

c (u), q⟩Ω0 − ⟨V ODE
c (pc), q⟩Ω0 . (B.16)

.3. Assembling of the block matrices

To apply the finite element method (FEM) we consider an admissible decomposition of the computational domain
⊂ R3 into M tetrahedral elements τ j and introduce a conformal finite element space

Xh ⊂ H 1(Ω0), N = dim Xh

f piecewise polynomial continuous basis functions ϕi . The linearized variational problem (B.6)–(B.7) and a
alerkin FE discretization result in solving the block system to find δu ∈ R3N and δ pC ∈ RNcav such that

K′(uk, pk
C)
(

δu
δ p

)
= −K (uk, pk

C), K (uk, pk
C) := −

(
Ru(uk, pk

C)

R (uk, pk )

)
,

C p C
32
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w

a

s

w

s

w

F

a

A

i.e., (
(A′

− M′)(uk, pk
C) B′

p(uk)
B′

u(uk) C′(pk
C)

)(
δu
δ pC

)
= −

(
A(uk) − Bp(uk, pk

C)

V PDE
c (uk) − V ODE

c (pk
C)

)
, (B.17)

uk+1
= uk

+ δu, (B.18)

pk+1
C = pk

C + δ pC (B.19)

ith the solution vectors uk
∈ R3N and pk

C ∈ RNcav at the kth Newton step. The tangent stiffness matrix A′
∈ R3N×3N

is calculated from (B.10) according to

A′(uk)[ j, i] := ⟨ϕi ,A′

0(uk) ϕ j ⟩Ω0 (B.20)

nd the mass matrix M′
∈ R3N×3N is calculated from (B.11) according to

M′(uk, pk
C)[ j, i] := ⟨ϕi ,F ′

0(uk, pk
c ) ϕ j ⟩Ω0 , (B.21)

ee also [41,105].
The off-diagonal matrices B′

u ∈ R3N×Ncav and B′
p ∈ RNcav×3N in (B.17) are assembled using (B.14)

B′

u(uk, pk
C)[i, j] = ⟨ϕ j , V PDE

c (uk)ϕ̂i ⟩Ω0 , i = 1, . . . , Ncav (B.22)

and using (B.12)

B′

p(uk, pk
C)[i, j] = ⟨ϕ̂ j ,F ′

0(uk, pk
c )ϕi ⟩Ω0 , j = 1, . . . , Ncav, (B.23)

ith the constant shape function ϕ̂ j = 1 if τ j ∈ Γ0,c and ϕ̂ j = 0 if τ j /∈ Γ0,c for c ∈ {LV, RV, LA, RA}.
Using a technique as described in [64, Sect. 4.2] this assembling procedure can be simplified for closed cavities

uch that

B′

p(uk, pk
C) =

[
B′

u(uk, pk
C)
]⊤

.

The circulatory compliance matrix C′(pk
C) ∈ RNcav×Ncav is computed from (B.15) as

C′(pk
C)[i, j] = ⟨ϕ̂ j , V ODE

c (pk
c ) ϕ̂i ⟩Ω0 , i, j = 1, . . . , Ncav, (B.24)

ith the constant shape function ϕ̂i , ϕ̂ j = 1 for cavity c and 0 otherwise, leading to a diagonal matrix.
The terms on the upper right hand side A ∈ R3N , Bp ∈ R3N are constructed using (B.13) resulting in

Ru(uk, pk
C) = A(uk) − Bp(uk, pk

C) with

A(uk)[i] := ⟨A0(uk), ϕi ⟩Ω0 (B.25)

and

Bp(uk, pk
C)[i] := ⟨F0(uk, pk

c ), ϕi ⟩Ω0 . (B.26)

inally, the lower right hand side in (B.17), R p(uk, pk
c
) = V PDE(uk) − V ODE(pk

c
) ∈ RNcav , is assembled from (B.16)

with

V PDE(uk)[i] = ⟨V PDE
c (u), ϕ̂i ⟩Ω0 , i = 1, . . . , Ncav, (B.27)

nd

V ODE(pk
c
)[i] = ⟨V ODE

c (pc), ϕ̂i ⟩Ω0 , i = 1, . . . , Ncav. (B.28)

ppendix C. Generalized-α scheme

After standard discretization we rewrite Eq. (3) using Eqs. (B.25) and (B.26) as a nonlinear ODE reading

ρ0Mα ü(t) + Ru(u, t) = 0, (C.1)

with the mass matrix

Mα[i, j] :=

∫
ϕi (X) · ϕ j (X) dX.
Ω0
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Following [107] we reformulate Eq. (C.1) as a first order ODE system by introducing the velocity v

ρ0Mα v̇(t) + Ru(u, t) = 0, (C.2)

Mα u̇(t) − Mαv(t) = 0 (C.3)

and apply a generalized-α approach [108]. To this end we define three parameters

αf :=
1

1 + ρ∞

, αm :=
3 − ρ∞

2(1 + ρ∞)
, γ :=

1
2

+ αm − αf,

here the spectral radius ρ∞ is a parameter between 0 and 1. With this we introduce

v̇n+αm
:= αmv̇n+1 + (1 − αm)v̇n,

u̇n+αm
:= αmu̇n+1 + (1 − αm)u̇n,

vn+αf
:= αf vn+1 + (1 − αf) vn,

un+αf
:= αf un+1 + (1 − αf) un,

and reformulate Eq. (C.2) as

ρ0Mα v̇n+αm
+ Ru(un+αf

) = 0, (C.4)

Mα u̇n+αm
− Mαvn+αf

= 0. (C.5)

Here, the second equation gives us

u̇n+αm
= vn+αf

and we get for the velocity update

vn+1 =
αm

αfγ∆t

(
un+1 − un

)
+

γ − αm

γαf
u̇n +

αf − 1
αf

vn. (C.6)

From this and the relationship by Newmark [109]

un+1 = un + ∆t
(
γ u̇n+1 + (1 − γ )u̇n

)
,

vn+1 = vn + ∆t
(
γ v̇n+1 + (1 − γ )v̇n

)
,

e obtain

v̇n+1 =
αm

αfγ 2∆t2

(
un+1 − un

)
−

1
αfγ∆t

vn +
γ − 1

γ
v̇n +

γ − αm

αfγ 2∆t
. (C.7)

Hence, we can rewrite the whole first order system only dependent on the unknowns un+1.

ewton’s method for the generalized-α scheme. For the implementation of Newton’s method we compute

∂v̇n+αm

∂un+1
=

α2
m

αfγ 2∆t2 ,
∂vn+αf

∂un+1
=

αfαm

αfγ∆t
=

αm

γ∆t
,

∂un+αf

∂un+1
= αf. (C.8)

To calculate the solution at the current timestep we assume that we know un , u̇n , vn and v̇n from the previous time
tep n and get from Eq. (C.4) for the residual

Rα(uk
n+1) := −ρ0Mα v̇k

n+αm
− Ru(uk

n+αf
), (C.9)

with v̇k
n+αm

:= v̇n+αm
(uk

n+1) and uk
n+αf

:= un+αf
(uk

n+1). To increase stability we consider Rayleigh damping by adding
the two matrices

Dmass(uk
n+1) = ρ0 βmassMα vk

n+αf
, (C.10)

Dstiff(uk
n+1) =βstiff A′(un)vk

n+αf
, (C.11)

o the residual (C.9) with vk
:= v (uk ) and Rayleigh damping parameters β ≥ 0 ms−1, β ≥ 0 ms.
n+αf n+αf n+1 mass stiff

34
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The tangent stiffness matrix is now calculated using (C.8) as

A′

α(uk
n+1, pk

C,n+1
) := ρ0

∂v̇n+αm

∂un+1
Mα +

∂un+αf

∂un+1

(
A′(uk

n+αf
) − M′(uk

n+αf
, pk

C,n+1
)
)

= ρ0
α2

m

αfγ 2∆t2 Mα + αf

(
A′(uk

n+αf
) − M′(uk

n+αf
, pk

C,n+1
)
)

, (C.12)

with A′, and M′ being the known tangent stiffness matrices from the quasi-stationary elasticity case, see Eqs. (B.20)
and (B.21). When using a coupling with the circulatory system we compute the off diagonal matrices and lower
right hand side, see Eqs. (B.22), (B.23) and (B.27), in terms of uk

n+αf
.

Appendix D. Direct Schur complement solver for a small number of constraints

Given the block system A ∈ Rn×n , D ∈ Rm×m(
A B
C D

)(
x
y

)
= −

(
f
g

)
ith

B =
(
b1 | · · · | bm

)
∈ Rn×m, C =

(
c1 | · · · | cm

)⊤
∈ Rm×n,

we can write the Schur complement system as

(CA−1B − D)y = g − CA−1 f

x = A−1 f − A−1By.

With

r = A−1 f , S = A−1B =
(
s1 | · · · | sm

)
∈ Rn×m, si = A−1bi , i = 1, . . . , m (D.1)

we get

(CS − D)y = g − Cr

x = r − Sy. (D.2)

The realization of (D.2) involves m + 1 solves and the inversion of an m × m matrix. Since m is generally small
his can be done symbolically.

[CS]i j = ci · s j , for i, j = 1, . . . , m.
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