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Abstract

Over the past years, advanced in vitro pulmonary platforms have witnessed exciting developments 

that are pushing beyond traditional preclinical cell culture methods. Here, we discuss ongoing 

efforts in bridging the gap between in vivo and in vitro interfaces and identify some of the 

bioengineering challenges that lie ahead in delivering new generations of human-relevant in vitro 
pulmonary platforms. Notably, in vitro strategies using foremost lung-on-chips and biocompatible 

“soft” membranes have focused on platforms that emphasize phenotypical endpoints recapitulating 

key physiological and cellular functions. We review some of the most recent in vitro studies 

underlining seminal therapeutic screens and translational applications and open our discussion to 

promising avenues of pulmonary therapeutic exploration focusing on liposomes. Undeniably, there 

still remains a recognized trade-off between the physiological and biological complexity of these 

novel in vitro lung models and their ability to deliver assays with throughput capabilities. The 

upcoming years are thus anticipated to see further developments in broadening the applicability of 

such in vitro systems and accelerating therapeutic exploration for drug discovery and translational 

medicine in treating respiratory disorders.
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Introduction

In recent years, preclinical research has witnessed substantial progress in delivering 

human-relevant in vitro models of the lungs (Figure 1). Such advances have been widely 

echoed by voices from the respiratory community at large, spanning academic [1–5] to 

pharmaceutical research [6–8]. Broadly speaking, there are two leading yet intertwined 
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factors at the forefront of such developments. First, and most significantly perhaps, 

respiratory diseases embody a worldwide healthcare burden associated with high morbidity 

and mortality [9,10]. Alone, chronic obstructive pulmonary disease (COPD) stands as one 

of the major leading causes of death [11–14], with over 3M deaths a year and 200M 

patients suffering from moderate to severe forms of it. The heterogeneous nature of 

COPD, an umbrella term relating diverse chronic respiratory disorders, is such that it is 

typically described but not defined; not only is COPD greatly underdiagnosed it is often 

diagnosed late [10]. With dire prognoses, there are to date still no curative treatments to 

reduce the progression of the disease, suppress airway inflammation or restore functional 

parenchyma lost in emphysematous lungs [15,16]. In turn, significant efforts have focused 

on strategies of disease prevention given the enduring lack of therapeutic treatment options 

in COPD [12,17]. Parallel to this, the severity of bacterial respiratory tract infections 

(e.g. staphylococci, P. aeruginosa) is known to initiate cell and tissue damage as well as 

the chronic formation of biofilms on the lung surface [18,19]. Notoriously, pneumonia 

stands as the global leading cause of death in children under the age of five [20]. All 

the while, bacterial infections are increasingly worsened by antimicrobial resistance to 

available antibiotics [21]. The dire reality of respiratory afflictions has only been further 

exacerbated with the outbreak of the current COVID-19 worldwide pandemic that can lead 

to acute respiratory distress syndrome (ARDS) in severe patients [22–24] as well as the 

perplexing manifestations of long-term respiratory morbidity following recovery from the 

SARS-CoV-2 virus [25–27]. Altogether, the overwhelming need for a broadened therapeutic 

arsenal cannot be sufficiently stressed in tackling the plethora of respiratory conditions.

In this sobering context, pulmonary medicine has witnessed significantly fewer drugs 

approved in the past decades [4]: a situation that coincides with less therapeutic candidates 

and a higher failure rate relative to other areas in medicine (e.g. cardiovascular and 

neurological diseases). One cause for such shortcomings lies in the challenging hurdles 

faced with animal experiments as to how these faithfully characterize human diseases; some 

questioning altogether the translational impact of in vivo findings [28]. Many respiratory 

drugs have demonstrated good performance in animal models but subsequently failed at the 

level of safety and/or efficacy in clinical trials, underscoring a call for better predictive 

human models [29]. Prevalent animal models (e.g. rodents) are limited by underlying 

differences with humans that constitute essential barriers to new drug development [3,4]. 

This includes important discrepancies in both innate and adaptive immunity between mice 

and humans [30], as well as differences in genomic responses highlighted in mouse models 

of human inflammatory diseases [31]. Turning an eye to anatomical differences, mice obtain 

their bronchial blood supply from the pulmonary rather than the systemic circulation; their 

respiratory tract is void of respiratory bronchioles such that their terminal bronchioles 

open directly into alveolar ducts [32]. Furthermore, the size of the largest intrapulmonary 

airways of murine lungs are comparable to small airways in humans, underlining major 

physiological and structural differences compared to human lungs [33]. Taken together, 

these prominent differences are acknowledged to result in 80% of failure on drug efficacy 

in human trials leveraging molecules previously screened in rodent lungs [34]. The thrust 

for advocating in vitro models has thus grown as a response to such hurdles in optimizing 

research in respiratory diseases [4].
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In what follows we review recent progress pertaining to advanced human-relevant in vitro 
pulmonary models that are pushing beyond traditional preclinical cell culture methods 

(Figure 1). We discuss ongoing efforts in bridging the gap between in vivo and in vitro 
interfaces and identify some of the bioengineering challenges that lie ahead in delivering 

new generations of in vitro pulmonary platforms. As the breadth of the respiratory organ 

both in scale and complexity imposes an essentially “compartmental” approach [8,35] to 

emulate some but not all of its vast biological (e.g. cellular and immunological makeup) 

and physiological (e.g. anatomy, morphology, respiratory airflows) characteristics [36], the 

in vitro quest to recreate exhaustively whole-organ functions is largely elusive. Indeed, 

the methodologies pursued to mimic the lungs in vitro [2,37] are distinct from other 

techniques based for example on leveraging whole-lung architectures of preserved acellular 

extracellular matrix (ECM) scaffolds [38–40]. Instead, in vitro strategies have focused 

principally on “small scale” models that pinpoint to a narrow window inside the lungs 

and deliver foremost phenotypical endpoints (Figure 2) recapitulating key physiological 

and cellular functions [41]; a philosophy that adheres somewhat more closely to the 

common aphorism “all models are wrong but some are useful”. Here, we dedicate the 

bulk of this review to in vitro bioengineering efforts pertaining to the respiratory regions 

of the lungs , i.e. the pulmonary acinus and parenchymal tissues [42–44] that are most 

relevant in ultimately addressing respiratory diseases such as, but not limited to, COPD, 

emphysema, cystic fibrosis, bacterial infections and now COVID-19. We review some of 

the most recent advanced in vitro studies underlining preclinical pulmonary research on 

therapeutic applications including for example anti-inflammatory actions. Lastly, we open 

our discussion to promising avenues of pulmonary therapeutic exploration focusing on 

liposomes and where preclinical in vitro research may accelerate new respiratory therapies.

2 State-of-the-art: in vitro lung models

In vitro cell-based assays are widely used for preclinical studies, despite criticism 

concerning their inability to model accurately complex interactions of human cells in vivo 
[45]. Traditionally, submerged airway epithelial cell cultures under immersed conditions 

have long acted as a gold standard (Figure 1); such platforms have been considered as cell 

systems that mimic in vitro key events known to occur in vivo. Yet, the lack of realism 

exhibited with submerged cellular assays contrasts starkly with the in situ lung environment 

as the cellular makeup in airways evolves at an air-liquid interface (ALI) [42–44]. This 

situation has thus frequently led to misinterpretations and false conclusions [36,46]. Hence, 

the adoption of transwell inserts with cell cultures grown on porous membranes [1,2,47,48], 

spanning typical pore sizes ~0.4 to 3 μm that allow the transport of nutrients, growth factors 

and cell signaling molecules (e.g., cytokines, chemokines) [49], has attempted to bridge 

some of this gap and design in vitro assays where polarized epithelial airway cells are 

directly exposed to air on the apical side of the membrane (Figure 1). A number of recent 

reviews has extensively discussed the breadth of ALI-based in vitro models [37,45,50–57], 

including amongst other the type (e.g. human alveolar epithelial cells, etc.) and the origin 

(e.g. immortalized or primary, cancerous or normal with/out transformation, etc.) of the lung 

cell population as well as the relevance of integrating co-cultures to recapitulate the rich 

diversity in the cellular makeup (e.g. epithelium, dendritic cells, fibroblasts, endothelium, 
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alveolar macrophages, etc.). Notably, ALI-based assays have been shown to contribute for 

instance to well-differentiated epithelial cellular populations [58], with stronger monolayer 

integrity and increased secretion of surfactant [59,60].

2.1 Recreating the alveolar barrier in vitro 

The alveolar epithelium is built of two predominant cell types: namely, type I (AEC I) 

and type II (AEC II) alveolar epithelial cells (Figure 1). AEC I are squamous cells that 

form the cobblestone-like structure in the deep respiratory regions, making up over 90% 

of the alveolar surface [61,62]. Meanwhile, AEC II are progenitors to AEC I and secrete 

pulmonary surfactant (PS) containing 80% (by weight) phospholipids, including 50% 1,2­

dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 10% phosphatidyl-glycerol (PG), 10% 

other neutral lipids (particularly cholesterol) and 10% surfactant protein-A to –D [63]. Not 

only is PS essential to reduce surface tension at the ALI and prevent collapse of the airspace 

at resting lung pressures [36,64], it contributes to innate defense mechanisms [36] and 

plays a role in maintaining alveolar structure [65]. The integrity of the alveolar epithelium 

is also known to correlate with barrier quality via the complex of belt-like proteins 

of the tight junctions (TJ) [66]; the best characterized TJs being occludin and zonula 

occludens (ZO)-1. As the first line of defense lies at the alveolar airway barrier, exposure 

to irritants triggers a pro-inflammatory response of AECs and alveolar macrophages (AM) 

via release of intracellular effector molecules (e.g. interleukins). This cascade results in 

the activation of an innate immune response, including neutrophil recruitment from blood 

capillaries, increased phagocytosis and additional infiltration of AM [32,67]. Notoriously, 

lung inflammation leads to increased epithelial permeability as TJs are disrupted [32], 

defective phagocytosis [68,69] and elevated oxidative stress [10,70], amongst other.

Hence, one critical characteristic concerns the establishment in vitro of confluent epithelial 

layers with barrier functionality; a property that is typically quantified using permeability 

assays (e.g. apparent permeation flux Japp or apparent permeability coefficient Papp) 

and transepithelial electrical resistance (TEER) measurements, with units spanning ~100 

to ~3’000 Ω·cm2 depending on the epithelial cell origin (e.g. A549, hAELVI, primary 

AECs, etc.). For therapeutic endpoints (Figure 2), recapitulating functional in vitro barrier 

properties is most pertinent in the context of lung absorption and disposition of inhaled 

drugs [71,72], as the lung epithelium constitutes the rate-limiting transport barrier for 

inhaled drugs and molecules [56,73,74]. In particular, the combination of co-cultures (e.g. 

AECs and endothelial cells) grown respectively on the apical and basal sides of a porous 

membrane has been shown to increase barrier tightness [75]. While exposure assays under 

submerged cell cultures have been traditionally conducted with liquid suspensions instilled 

directly onto the cellular model, the transition to ALI-based setups has led to more realistic 

exposure conditions. Indeed, the deposition of inhaled particulate matter (PM), e.g. via 

direct spraying [76–79], has underlined the importance of aerosolization, either liquid 

(e.g. nebulizer) or solid (e.g. dry powders), for various therapeutic and pharmacokinetic 

endpoints [80,81] (Figure 2); a point we will return to in our discussion below. For example, 

mimicking mechanisms of PM uptake at an ALI is not only critical but also known to 

significantly vary between mono- and co-cultures featuring immune cells, with preferential 

uptake by the latter relative to the airway epithelium itself [59,78,82].
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2.2 Lung-on-chips

Following the advent of ALI-based assays, organ-on-chips have arguably catalyzed the 

biggest leap in novel in vitro lung designs (Figure 1); a field first epitomized over a 

decade ago with the seminal lung-on-chip model emulating the alveolar-capillary barrier 

(ACB), separating epithelial and endothelial monolayers cultured respectively on the apical 

and basal sides of a porous membrane “sandwiched” inside a flexible straight airway 

channel [83]. Hence, much of the technical developments of lung-on-chips leveraging 

various microfabrication techniques (e.g. photo- and soft-lithography, etc.) arose initially 

from efforts underlining cytotoxicity endpoints [7,36,84,85] (Figure 2). Unlike traditional 

in vitro setups (i.e. transwell inserts) that are largely static when considering the exchange 

and/or collection of media (e.g. analytics of inflammation), microfluidic systems offer the 

integration of continuous perfusion (e.g. culture media, drugs, etc.), and thus replicating 

relevant fluid-induced shear stresses, from either the basal (i.e. fluid) and/or apical (i.e. air) 

side of the membrane [86].

In recent years, the breadth of in vitro applications featuring microfluidic-based technologies 

has drawn pertinent reviews discussing opportunities for disease modeling, drug discovery 

and translational endpoints that span nearly all body organs [5,8,87–95]. In the most recent 

debate, the growing maturity of human-relevant organ-on-chips has raised an overarching 

question as to whether preclinical in vitro research is ready to bypass altogether in vivo 
animal validation studies [96], concurrently underlining the call for alternatives to animal 

experiments in the respiratory community [97]. This latter point also ensues from ethical and 

political considerations in line with the application of the ‘3Rs principles’ (Refinement, 

Reduction, Replacement) toward the highest standards for humane experimentation on 

animals.

3 The quest for advanced in vitro lung platforms

Despite impressive progress and the integration of human-relevant lung cells, the majority 

of lung-on-chip platforms still overwhelmingly feature cells (i.e. mono- or co-cultures) 

grown on planar 2D substrates, oftentimes employing the same or similar commercial 

porous membranes used in transwell inserts (Figure 1). Such planar cell cultures 

still come short of mimicking the intrinsic physiological 3D acinar microenvironment 

evocative of the deep lungs [61,98,99]. This has largely followed as microfabrication 

techniques leveraging extruded 2D planar geometries from soft-lithography with hard 

elastomeric such as poly(dimethylsiloxane) (PDMS) molds do not deliver biomimetic 

3D lung microenvironments but rather integrate only some of the critical physiological 

and mechanical cues characteristic of the deep lungs [36,100]. We note that in the 

discussions that follow we do not include developments of in vitro organoids focusing 

on multicellular 3D cultures of stem cells and tumor cells with e.g. self-assembly 

capabilities that lie beyond the scope of our review but are the subject of extensive reviews 

elsewhere [94,95,101,102]. While bioengineering progress in the fields of angiogenesis and 

vascularization has successfully recreated fully-endothelialized in vitro lumens in 3D [103–

107], to the best of our knowledge the same is not yet available when envisioning fully­

epithelialized 3D lumens of the deep lung airways. There is thus a need to move beyond 
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the state-of-art and comprehensively recapitulate underlying traits of the 3D pulmonary 

acinar microenvironment (Figure 3). In the sub-sections below, we introduce these leading 

traits and discuss some of the most recent advancements in delivering advanced in vitro 
pulmonary platforms.

3.1 The 3D pulmonary acinar morphology

The pulmonary acinus embodies the branched complex of alveolated airways that first 

appear at the level of the respiratory bronchioles [98,108], approximately beyond the 15th 

bifurcating generation of the respiratory tract. Encompassing over 90% of total lung volume 

with a vast surface area ~100 m2 in an average human adult [62], the pulmonary acinus 

is designed for efficient oxygen and carbon-dioxide transfer across a very thin alveolar­

capillary barrier (~0.5-1 μm). Alveolar cavities form a densely-packed sleeve around the 

acinar ducts with typical dimensions of ~100-200 μm, where adjacent alveoli are separated 

by the thin inter-alveolar septum (i.e. alveolar wall) [42,99]. While the shapes of alveoli are 

intrinsically heterogeneous, the pulmonary acinus has often been compared to honeycomb­

like structures comprising hollow polyhedral-shaped cavities [109]. Here, incorporating 

morphological elements of the true scale 3D acinar airway topology (e.g. alveolar cavities) 

is crucial towards recapitulating in full 3D cellular functions at the ALI and across the ACB 

in vitro. In contrast to cellular monolayers grown on 2D substrates both with traditional 

assays and the majority of existing lung-on-chips, complex interactions between cells inside 

3D topologies are known to influence cell properties, protein secretion and gene expression 

amongst other [110].

A number of microfluidic models have highlighted anatomically-inspired designs of 

alveolated airway channels [111,112], culminating most recently in models reconstituting 

bifurcating acinar airway trees with functional epithelial barriers at an ALI [113]. Such 

structures are somewhat reminiscent of extruded 2D patterns of respiratory bronchioles 

with alveoli surrounding the main central airways but come short of exhibiting densely 

arranged alveolar cavities with shared intra-alveolar septa; a limitation of the leading 

microfabrication and molding techniques currently employed. By and large, most lung­
on-chips have generally focused on designs of individual isolated airway channels that 

forego the detailed acinar topology [5,7,36,114]. Undeniably, the branching 3D space-filling 

nature of the gas-exchange region remains technically challenging to recreate in vitro. 

Unlike bioprinting approaches that are increasingly used in a number of tissue engineering 

disciplines [115,116], the intricate anatomy of the acinar airways remains widely prohibitive 

to print directly the relevant cellular makeup in morphologically-faithful scaffolds [36]. 

Seminal 3D printing efforts in the field have been largely limited to depositing monolayer 

sheets reminiscent of transwell inserts [117]. Whether future solutions will revolve around 

advanced 3D printing techniques to recapitulate acinar designs in vitro, a space-filling 

topology becomes most relevant when attempting to bridge the gap with the anticipated 

inhaled aerosol dose deposited on the 3D airway lumen [36,86,118]. This latter point holds 

direct ties with the transport and fate of inhaled aerosols in the lungs (see discussion in 

section 3.4).
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3.2 The extra-cellular matrix (ECM)

The ECM serves as the 3D scaffold of all tissues and body organs. In addition to providing 

a physical scaffolding, the ECM plays a key role in morphogenesis, differentiation and 

homeostasis [119]. Notably, the integration of an in situ-like ECM is a key to mimic both 

cell-cell and cell-ECM contacts [48] and extends for example into remodeling phenomena 

in diseased conditions such as emphysema [120,121]. Amongst other, the ECM allows 

the transport of nutrients, metabolites and oxygen gradients [122]; critical properties in 

ultimately assessing drug effectiveness. Among the constituents of the ECM that include 

elastin and laminin, collagen is the most abundant protein (i.e. ~30% of the total protein 

mass of the tissue). It regulates cell adhesion, provides tensile strength, and supports 

chemotaxis and cell migration [121,123]. While collagen-rich hydrogel scaffolds have 

gained accrued use in various tissue engineering applications including grafts [115,116] 

(e.g. skin, cardiovascular, bone, etc.), current ALI-based in vitro lung models have instead 

been mostly limited to coating ECM proteins (e.g. collagen layer) onto the apical and basal 

sides of the porous membranes acting as the cell substrate.

Recalling that the epithelial and endothelial cell layers are separated in vivo by a very thin 

basement membrane (~50 nm) critical for efficient gas exchange from air into capillary 

blood (Figure 1), the total mean thickness of the ACB is a mere ~1 μm [49]. In contrast, 

current ALI-based assays make most often use of commercially-available polycarbonate 

(PC) and polyethylene terephthalate (PET) membranes that are typically ~10-20 μm thick 

and thus result in additional resistance to respiratory gas and macromolecular exchange; note 

that custom-designs of artificial membranes using for example PDMS can be even thicker 

(~50-100 μm) [124]. Recent developments in biomaterials are now pushing the limits to 

achieve thinner constructs but the discrepancy with the in situ environment still confines 

in vitro approaches to accurately model transport properties across the ACB [72]. Of 

significance, a novel design has featured a stretchable and biodegradable membrane formed 

by drop-casting a collagen-elastin solution onto a gold mesh [125], where it spreads and is 

maintained by the action of surface tension alone. With a thickness of just a few microns the 

dried solution is suspended on the hexagon-shaped mesh. Primary human alveolar epithelial 

cells were then co-cultured with primary human lung endothelial cells and demonstrated in 
vivo-like ACB functions (Figure 2f), thereby setting an exciting new precedent.

3.3 Mechanical strains of the acinar lumen

Acinar wall distensions are an intrinsic property of breathing motions of the lung 

parenchyma [108]. Such movements induce constant cyclic strains recognized to stimulate 

maturation of the airway epithelium [126]. The mechanotransduction signaling pathways 

involved with such strains have been the subject of recent reviews [49,124,127] and are 

linked to cellular phenotypes and function such as surfactant secretion, epithelial barrier 

integrity and immune response amongst other [77,83,128]. For example, cytokine secretions 

have been shown to increase with the inclusion of mechanical strains relative to static 

conditions [128]. Furthermore, mechanical strains play a tangible role in enhancing PM 

transport across the ACB [83]; a point most recently underlined as static in vitro assays may 

underestimate cellular uptake and transbarrier transport of nanoparticles in the lungs [129]. 

Physiological breathing strains lie typically in the range of ε~5-10% (i.e. linear strains) for 
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quiet breathing conditions [108] but may be significantly increased under increased physical 

activity or alternatively in diseased lung conditions such as in ARDS (~15-20%) [124]. In 

the latter cases, large strains can open tight junctions and disrupt barrier integrity across the 

alveolar epithelium by activation of intracellular signaling pathways [66,130].

Ideally, breathing motions should be recapitulated via mechanical strains applied across 

an entire 3D airway lumen. Instead, lung-on-chip models (Figure 1) have been widely 

limited to stretching cells on flat porous membranes or curved 2D surfaces using for 

example diaphragm-like actuation mechanisms [77,125,128,131]. Nevertheless, the types 

of mechanical strains reproduced with existing microfluidic models [124] are broad (i.e. 

unidirectional, bi-directional and even three-dimensional) but still contrast with the idea 

of recapitulating a confluent epithelial barrier across a 3D airway lumen. Developments 

in delivering more advanced membrane technologies are now seeing a significant push 

[77,125,129,132]. For example, combining a micro film (thermo)forming and ion track 

technology Baptista et al. have introduced curved track-etched membranes, exemplifying 

spherical geometries reminiscent of acinar structures [133]. Typically, these and other “soft” 

membranes can be integrated into relatively large arrays supporting the prospect of large 

throughput assays at an ALI [86], but are however restricted to geometrical constructs that 

largely forego the intrinsic lung anatomy (i.e. bifurcating airway tree, etc.). In comparison, 

lung-on-chips featuring more complex airway networks (Table 1) suffer in the lack of 

throughput capacity (Figure 3). Even the more advanced porous membrane technologies 

exhibit a stiffness (i.e. Young’s modulus in the range of 1 MPa) that is several orders of 

magnitude larger than the nominal elastic modulus reported for both healthy alveolar tissue 

(~1-5 kPa) and under pathological conditions (~15-20 kPa) such as idiopathic pulmonary 

fibrosis [49]. Moreover, the need for rather complex actuation systems (e.g. vacuum 

pressure pumps) in conjunction with advanced microfabrication techniques to produce such 

membranes are still hampering a wider spread use of such setups across the respiratory 

research community.

3.4 Physiological respiratory airflows and inhaled aerosol transport

Inhalation airflows are a cornerstone of aerosol transport phenomena in the lungs and result 

from transpulmonary pressure-differences at the origin of parenchymal wall distensions 

[108]. In the deep respiratory regions, the interplay between the acinar anatomy (e.g. 

alveolar cavities, see section 3.1) and oscillatory wall strains (see section 3.3) gives rise 

to 3D airflows showcasing amongst other intricate topologies that evolve with increasing 

generation depth along the acinar tree [35,134–136]. Quantitative flow visualization studies 

using micro particle imaging velocimetry (μPIV) in microfluidic models of alveolated trees 

have supported the existence of slow yet complex vortical flows inside alveolar cavities, 

with a gradual crossover to radial-like flow streamlines in the deeper acinar generations 

[137]. In such models, breathing motions were matched to physiologically-realistic strains 

via thin deformable PDMS walls separating acinar ducts and alveoli from external actuating 

chambers.

The coupling between respiratory inhalation flows and the relevant transport mechanisms of 

inhaled PM are known to determine local deposition outcomes in the lungs [35,108,138]. 
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Notably, the mechanistic transport determinants for a given airborne particle (i.e. 

aerodynamic size, shape, etc.) include foremost convection via breathing (i.e. viscous 

drag), sedimentation and Brownian diffusion (for equivalent diameters approx. <1 μm) in 

the deep lung regions [108,139–141]. As these transport mechanisms operate within an 

intricate 3D airway network covering a breadth of length scales within a space-filling 

volume, combined with a wide range of gravitational orientations (e.g. apical vs. basal lung 

lobes), PM deposition patterns in the deep lungs are known to be complex and spatially 

heterogeneous [35,118,136,142]. Here, microfluidic acinar airway models have enabled 

seminal quantitative in vitro studies of aerosol (PM) deposition patterns under physiological 

breathing conditions providing for the first time, temporally-resolved tracking of airborne 

particle flight within alveolar cavities [143].

Undeniably, ALI-based efforts have moved away from traditional instillation assays directly 

on cell cultures and instead delivered directly aerosols via techniques including (i) direct 

spraying, (ii) cloud settling or sedimentation, and (iii) impingement or direct spraying, as 

recently reviewed [72]. Yet, current in vitro gold standards including now “soft” membrane­

based ALI models (Table 1) still come short of replicating the true inhaled “airborne 

journey” of aerosols in the deep lungs resulting from aerosol transport and deposition [86]. 

This includes importantly accounting for the dispersion and loss of inhaled aerosols as they 

are “screened” along the respiratory tract [35,144–147]. Most recently, individual lung-on­
chip models mimicking bifurcating airway trees at real scale with an airway epithelium 

differentiated at the ALI were integrated within a larger 3D printed anatomically-realistic 

physical airway tree model [148]. The in situ-like inhalation exposure setup was shown to 

replicate the anticipated mechanistic journey of airborne PM under physiological inhalation 

airflows in a multiscale structure of the human airways. Such efforts are not only advancing 

in vitro-in silico correlations of PM deposition but importantly, they support the prospect 

of realistic in vitro PM exposure assays to emulate more faithfully local 3D deposition 

outcomes characteristic of in vivo inhalation in humans.

4 Therapeutic applications in advanced preclinical in vitro platforms

4.1 Inhalation therapy

Aerosol therapy via inhalation is a hallmark of respiratory medicine and a cornerstone 

for treating lung diseases topically, including the use of e.g. β2-agonists, corticosteroids, 

antibiotics and mucolytics [149–152]. Concurrently, with a vast surface area and direct 

access to the entire circulation across the thin ACB, the lungs are an ideal port of entry 

for systemic delivery, gene therapy and vaccines amongst [153–157]. Advantages of aerosol 

inhalation include on the one hand the delivery of small molecules with rapid action, 

low metabolism and high bioavailability, while on the other hand macromolecules can be 

delivered by avoiding invasive intravenous or intramuscular injections [158,159]. Compared 

with oral administration, inhalation modalities bypass the toxicity of the digestive system, 

which in many cases degrades the drug and, in most cases, achieve a similar or superior 

effect with a much lower dosages [160]. Yet, pulmonary delivery systems still exhibit 

various drawbacks. For example, the small number of excipients approved for inhalation 

therapy leads to an increase in failure rates of many new formulations, given requirements 
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for isotonicity, sterility, pH restrictions (ranging between 3 and 8.5), biocompatibility and 

good aerosolization properties [161]. Importantly, and despite its widespread use, inhalation 

therapy still suffers from low if not dismal deposition efficiencies with the use of common 

inhalers [138,162], in particular in younger populations [163,164].

To overcome these pharmaceutical and regulatory hurdles, as well as explore opportunities 

for new therapeutic treatments (Table 2), advanced pulmonary in vitro platforms are 

accelerating our understanding of the challenges associated with both cellular (e.g. uptake, 

translocation, modulating inflammatory mediators, etc.) and non-cellular aspects (e.g. 

respiratory flow transport, aerodynamic aerosol properties, etc.) of the lungs. In conjunction 

with our earlier discussion (see section 3.4), the prospect of realistic exposure assays holds 

promise to recapitulate the anticipated deposition efficiencies of inhalation therapy and 

ultimately explore strategies for improved targeted drug delivery to the lungs. This includes 

for example selecting aerosol sizes and shape [141,165] and is most critical when seeking 

to localize deposition towards improved topical delivery (e.g. diseased airways, tumor or 

nodule). Indeed, large quantities of inhaled drugs are commonly lost during inhalation 

and/or lead to superfluous deposition in undesired airways or lung lobes, thus undermining 

the greater potential of inhalation therapy [166,167]. Moreover, reducing lung toxicities 

and associated side effects is still challenging when considering for example inhaled 

chemotherapies [168–170]. Although important progress has been unfolding [72,86,171], 

delivering in vitro models with strong human in vivo correlation remains a major challenge 

in advancing therapeutic endpoints (Figure 2).

4.2 From advanced in vitro models to therapeutic applications

Perhaps the best known work on therapeutic applications with lung-on-chips is that of Huh 

et al. [172] who tested with a lung-on-chip a pharmacological agent, i.e. Angiopoietin 1 

(Ang-1), to prevent IL-2 induced vascular leakage in a pulmonary edema model. Notably, 

Ang-1 was shown when co-administered with the cytokine IL-2 to stabilize the endothelial 

junction and halt entirely vascular leakage. Furthermore, the drug prevented the formation of 

paracellular gaps despite the presence of cyclic mechanical strains. The authors went on to 

examine whether the pharmaceutical inhibition of TRPV4 channels with a newly-developed 

pharmacological agent (GSK2193874, GlaxoSmithKline) could prevent the exacerbation of 

IL-2-induced permeability owing to cyclic mechanical strains; such strains are known to 

activate TRPV4 ion channels and the stimulation of these channels can increase alveolar­

capillary leakage. When administered intravascularly through the basal channel of the 

in vitro model, the compound inhibited leakage, underlining the translational value as a 

prospective treatment option for patients with pulmonary edema who are being mechanically 

ventilated. In parallel, Jain et al. [173] leveraged the same lung-on-chip model to explore 

human thrombotic responses to a new therapeutic protease activated receptor-1 inhibitor, 

i.e. Parmodulin-2 (PM2), that exhibited cyto-protective and antithrombotic properties. 

Specifically, the authors observed that PM2 treatment of the endothelium significantly 

decreased thrombotic formation.

Another novel lung-on-chip approach was recently used to detect the effect of several 

anti-inflammatory drugs on the pulmonary endothelium and epithelium using primary cells 
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isolated from healthy individuals or people with COPD [174]. When an experimental 

compound, i.e. Bromodomain Containing Protein 4 (BRD4) inhibitor, was tested on the 

inflamed cells the authors found significant suppression of neutrophil adhesion due to 

a reduction in the expression of adhesion molecules (E-selectin), vascular cell adhesion 

protein-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1). BRD4 inhibitor 

downregulated the expression of cytokine genes (e.g. IL-6 and -8) and significantly 

decreased the secretion of cytokines and neutrophil chemokine (GM-CSF). Furthermore, 

the in vitro airway was exposed to IL-13 to produce asthmatic changes in the epithelium, 

followed by the administration of high doses of tofacitinib (a potent inhibitor of JAK1, 

-2 and -3) which suppressed goblet cell hyperplasia and decreased secretion of G-CSF 

and GM-CSF. In contrast, dexamethasone was found to be ineffective using the same 

protocol. These in vitro results were consistent with the clinical observation that pediatric 

asthmatic patients often fail to respond to inhalation therapy with dexamethasone [175]. 

Finally, Nawroth et al. [176] used a commercially-available chip (Emulate) to create 

a micro-engineered model of fully-differentiated human mucociliary airway epithelium. 

Stimulation with IL-13 induced a Th2-type asthmatic phenotype and by infecting the 

cells with live human rhinovirus 16 (HRV16) the authors reproduced clinical features 

of viral-induced asthma exacerbation. Treatment with MK-7123, a CXCR2 antagonist, 

reduced the proportion of transmigrating neutrophils, by reducing neutrophil adhesion to 

the endothelium.

5 Opportunities for respiratory therapeutics with inhaled liposomes

In recent years, the challenges and opportunities facing the drug discovery process have 

given rise to vibrant discussions in delivering novel inhaled drugs [6,72,154,158,169,177], 

with therapeutic endpoints geared at respiratory diseases such as COPD, tuberculosis, 

idiopathic pulmonary fibrosis (IPF), cystic fibrosis, bacterial, fungal and viral lung 

infections and chemotherapies amongst other. The breadth of new and repurposed inhaled 

pharmaceutical compounds (e.g. anti-inflammatory corticosterioids, antibacterial agents, 

antibiotics, long-acting beta agonists, long-acting muscarinic receptor antagonists, etc.) has 

been the subject of extensive discussions available therein. In this context, we focus here on 

one exciting therapeutic avenue where advanced in vitro lung platforms can offer tangible 

paths in preclinical respiratory research, namely with inhaled liposomes and lipid-based 

therapies (Figure 4). Liposomes, first described as nano-sized lipid vesicles [178,179], 

consist of concentric phospholipid bilayers that can be enriched with cholesterol, other lipids 

and biopolymers, thereby forming both hydrophilic and hydrophobic domains [180]. By 

leveraging such unique structures, lipophilic compounds can be encapsulated inside the lipid 

bilayer with hydrophilic compounds simultaneously loaded inside the aqueous core, thus 

enabling to encapsulate a wide range of therapeutics [181]. In the years since, advances 

in liposomal technology have accelerated applications across various pharmaceuticals areas 

[182,183].

5.1 Liposomes for lung therapies

Liposomes have attracted significant attention in pulmonary delivery (Table 3) with the 

ability to entrap drugs inside vehicles that have a lipid composition similar to PS [184–186]. 
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As the therapeutic efficacy of inhaled liposomes is affected by the ability to overcome 

the lungs’ biological barriers (e.g. ALI, AMs, etc.) [160], liposomal formulations with 

high similarity to PS are considered pharmacologically favorable with respect to toxicity 

and antigenicity [187,188]. While liposomes are used to reduce systemic toxicity from 

the encapsulated drugs, variations in types and ratios of phospholipids can be leveraged 

to modulate immune responses [189,190] whereas the liposomal surface-charge (zeta 

potential) and inclusion of other immune stimulatory factors play a role in immune 

activation [191,192]. Concurrently, the particle composition, size, morphology, surface 

characteristics, surface targeting moieties also affect the liposome performance [193–195]. 

As the biodistribution of particles is strongly influenced by their diameter, we recall as 

a rule of thumb that inhaled particles with aerodynamic diameters below ~2-3 μm are 

acknowledged to deposit preferentially in the deep respiratory regions [108,138].

Liposomes are already in clinical use for treating several lung disorders. For example, 

Amikacin liposome suspension is an FDA-approved antibacterial formulation administered 

via inhalation for treating pulmonary infections such as Mycobacterium avium complex 

(MAC) lung disease [196,197]. These liposomes are composed of DPPC and cholesterol 

at a 2:1 weight ratio with a reported diameter of 300 nm to allow effective diffusion 

through 500-1’000 μm of human airway mucus [198]. Notably, the amikacin concentration 

retained has been found higher in airways and lung tissue after 24 h compared to 

non-liposomal inhaled amikacin [199]. Preclinical studies have shown that encapsulated 

liposomal glucocorticoids can be used for treating inflammatory lung disorders and decrease 

glucocorticoids side effects [200,201]. For example, encapsulated dexamethasone that 

was administered intravenously to treat lung inflammation demonstrated local release 

into the lungs and inhibited most parameters of lung inflammation as effectively as 

free dexamethasone [202]. Encapsulation into liposomes also extended the effect of anti­

asthmatic medications (e.g. Salbutamol sulfate, a selective β2-adrenergic receptor agonist) 

[203,204].

In parallel, liposomal drugs are used in cancer treatments due to their ability to accumulate 

in tumors and to reduce side effects. An Irinotecan liposomal formulation is undergoing a 

Phase III trial for treating small-cell lung cancer. This formulation was already approved by 

the FDA in the treatment of pancreatic cancer [205]. Recently, liposomal cisplatin has been 

evaluated for treating non-small cell lung cancer via intravenous administration [206,207]. 

Cisplatin liposomes with 110 nm in diameter was shown to reduce cisplatin toxicity and 

enhance its tumor targeting after intravenous injection [208]. Possible future applications 

may be the inhalation of such liposomes for direct treatment of lung tumors and metastases 

and would call for new in vitro lung platforms as preclinical screening assays. Indeed, lung­

specific targeting could be enhanced via modified liposomes (e.g. antibody conjugation) 

that induce uptake of the liposomes by certain cell populations. Notably, effective targeted 

delivery of lung cancer drugs was demonstrated using dual-ligand modified liposomes 

where antibody and tumor lineage-homing cell-penetrating peptides were used to enhance 

tumor-specific targeting and increase tumor cell penetration [209].
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5.2 Lipid-based pulmonary gene therapy and vaccination

The SARS-CoV-2 (COVID-19) pandemic has brought lipid-based delivery into the spotlight 

with the recently FDA-approved COVID-19 lipid-based nanoparticle mRNA vaccines 

[210]. The lipid nanoparticle envelopes the strands of mRNA and helps them evade 

biological degradation and reduce immunogenicity [211,212]. mRNA delivery followed by 

protein translation into functional form within a targeted cell’s cytoplasm enables protein 

replacement therapy. With such tremendous progress, there is an urgent need in addressing 

genetic diseases where endogenous proteins are defected or missing. Examples of potential 

diseases include cystic fibrosis (CF), neonatal surfactant protein B (SP-B) deficiency, and 

multifactorial diseases such as COPD [213]. In CF, inhalable mRNA lipid formulations 

are being evaluated clinically to test lung function improvement [214]. In SP-B deficiency, 

cationic mRNA liposomes restored 72% of the wild-type SP-B expression and improved 

survival in mice, when administered intratracheally [215]. In parallel, mRNA delivery shows 

hope also for treating COPD, where mRNA of a1-antitrypsin (AAT) lipid nanoparticles 

demonstrated increased AAT levels and lung function in vivo [216].

Gene replacement can also be achieved by encapsulating plasmid DNA. This approach is 

being evaluated for treating lung cancer [217] and inflammatory diseases [218]. Inhaled 

gene-expressing plasmids therapy gives hope to chronic airway inflammatory disease such 

as allergic asthma, where a combination of mucus penetrating nanoparticle demonstrated 

anti-inflammatory and anti-fibrotic effects [219,220]. The potential for gene therapy to 

correct the underlying cause of CF disease by expressing the missing CFTR (cystic fibrosis 

transmembrane conductance regulator) gene is promising [221]. These approaches are 

reaching the clinic: for example, CF complementary DNA (cDNA) based treatments [222] 

were reported in patients who received cationic liposomes GL67A therapy, delivered by 

inhalation [223]. GL67A cationic lipid mixture is currently the preferred option in CF 

aerosol gene delivery with highest levels of expression [222,224].

Despite clinical successes, there is a growing urgency for developing additional therapeutic 

strategies for treating people with rare and complex lung impairments where preclinical 

in vitro pulmonary research holds a promising role [225]. Small interfering RNA (siRNA) 

is a gene silencing mechanism that holds great promise for downregulating malignant 

genes in the lungs [226]. Lipid-siRNA nanoparticles targeted to the liver disorders have 

been approved by the FDA to treat hereditary TTR-mediated amyloidosis (hATTR), a 

condition caused by extracellular deposits of misfolded transthyretin protein (TTR) [227]. 

Concurrently, siRNA is being tested for treating lung disorders including COPD [214]. 

In allergic asthma, dexamethasone delivered concomitantly with siRNA demonstrated 

reduction of airway inflammation in vitro [228]. siRNA developed to target NF-kB 

and related pathways, reduce inflammation as well as target genes involved in mucus 

hypersecretion, are now promising approaches [229].

6 Conclusions

Over the past years we have witnessed exciting developments with lung-on-chip platforms 

including notably biocompatible “soft” membrane-based technologies (Table 1). These new 

systems testify to the significant progress witnessed in delivering novel bioengineering 
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solutions for preclinical in vitro respiratory research, in contrast to more traditional 

preclinical in vitro cell cultures (Figure 1). Undeniably, only a very limited number of 

studies to date has explored new therapeutic applications using advanced in vitro lung-on­
chip platforms. On the one hand, the current state-of-the-art attests to the relative infancy 

of this field altogether. On the other hand, most of the recent efforts witnessed have largely 

focused on first establishing these novel bioengineered platforms, including the technology 

itself and the integration of a human-relevant pulmonary cellular makeup. This is widely 

the case for example with the newest “soft” membrane-based assays that have yet to be 

leveraged in conducting therapeutic screens. There still remains a recognized trade-off 

between the physiological and biological complexity of these novel in vitro lung models 

and their ability to deliver assays with considerable, if not high, throughput capabilities for 

screening assays (Figure 3). Bridging this gap is undeniably still a challenge in conjunction 

with strengthening the in vivo relevance of such studies. Yet, the few seminal pulmonary 

in vitro studies available have delivered striking preclinical results of significant value and 

interest to the respiratory research community and beyond (Table 2). The upcoming years 

are thus anticipated to see further developments in broadening the applicability of such 

in vitro systems and accelerating therapeutic screens for drug discovery and translational 

applications in treating respiratory disorders. Here, we have stressed one, among several, 

exciting avenue with liposome-based respiratory therapies (Table 3).
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Figure 1. 
Bridging the gap between in vivo and in vitro interfaces in the lungs: Left: schematic of 

the respiratory region (i.e. pulmonary acinus) exemplifying the alveolar-capillary barrier and 

its cellular make-up. Right: Overview of preclinical in vitro models for pulmonary research 

spanning traditional assays including culture plates under immersed conditions and air-liquid 

interface (ALI) based assays to advanced in vitro models, featuring “soft” membrane-based 

assays and microfluidic lung-on-chips.
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Figure 2. 
Examples of in vitro phenotypical endpoints using advanced in vitro lung models. (a) 

Monitoring secretion of cytokines in a biochip of pulmonary sarcoidosis model [230]. (b) 

Measurement of metabolic activity following deposition of PM-like particles in airway-on­
chip platforms [148]. (c) Assessment of therapeutics in an alveolus-on-a-chip model of 

intravascular thrombosis [173]. (d) Permeability assay in a breathing alveolus-on-chip model 

[77]. (e) Single cell distortion as a function of applied force in a stretching alveolar-capillary 

chip [83]. (f) Imaging tight junction (TJ) and adherent junction markers in a lung-on-a-chip 
with an array of stretchable alveoli-like membranes [125].
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Figure 3. 
In vitro approaches currently exhibit a trade-off between throughput capacity and 

physiological and biological complexity. The feasibility for high-throughput data collection 

decreases as the in vitro model design mimics physiological and biological characteristics of 

the lungs in the effort to recapitulate more closely in vivo models, and humans in particular.

Artzy-Schnirman et al. Page 31

Adv Drug Deliv Rev. Author manuscript; available in PMC 2021 October 10.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 4. 
Liposome-based therapies for treatment of respiratory diseases including method of 

administration.
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Table 1
Overview of advanced in vitro pulmonary platforms, based on their underlying technology 
(category), physical cues, cellular makeup and type of exposure assay.

Category Physical cues Exposure assay Cellular makeup Ref

Stretchable
membranes

-mechanical
stretching
-ALI

Instillation

-Bronchial epithelial
16HBE14o
- Primary human lung
microvascular endothelial cells
(VeraVec)
-Primary human alveolar
epithelial cells (hAEpCs)

[77]

-Bronchial epithelial
16HBE14o- cells
-primary human pulmonary
alveolar epithelial cells
(pHPAEC)
- primary human umbilical vein
endothelial cells (pHUVEC)

[128]

-mechanical
stretching
-ALI

Instillation - VeraVec
- hAEpCs [125]

-mechanical
stretching N/A - A549 [132]

-mechanical
stretching
-ALI

Nebulized
aerosols -A549

-16HBE14o- cells

[129,231]

N/A [232]

Microfluidic
isolated
channels

-mechanical
stretching
-fluid flow

Instillation

-Human pulmonary
microvascular endothelial cells
-Alveolar epithelial cells
(NCI-H441)

[172]

-fluid flow
-ALI Instillation

Human Umbilical Vein
Endothelial Cells from pooled
donors (HUVECs)
Human Lung Microvascular
Endothelial Cells (hMVECh,
CC-2527)
Primary alveolar epithelial cells
(type I and II cells)

[173]

-fluid flow
-ALI Instillation

-Primary human airway
epithelial cells (hAECs)
- Human umbilical vein
endothelial cells
-Primary neutrophils

[174]

-fluid flow
-ALI Instillation

-hAECs
-hMVECs, HUVECs
-Primary neutrophils

[176]

-air Flow Instillation - [233]

-mechanical
stretching
-ALI
-fluids flow

Instillation

- Human pulmonary
microvascular endothelial cells
-Alveolar epithelial cells:
NCI H441
A549
E10
-Primary neutrophils

[83]

-fluids flow
-AIL Instillation

-Primary tracheo-bronchial
epithelial cells (AE)
-Human lung microvascular
endothelial cells
- Primary human lung
fibroblasts

[234]
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Category Physical cues Exposure assay Cellular makeup Ref

-fluids flow
-air flow

Dry
aerosol

- Primary human small airway
epithelial cells [235]

-mechanical
stretching
-ALI
-fluid flow

Instillation

- Human primary airway
epithelial cells
- Primary human primary
alveolar epithelial cells
-human lung microvascular
endothelial cells
- H1975 NSCLC tumor cells

[236]

-fluid flow N/A -A549 cells [237]

N/A Instillation
- HUVECs
-A549
-HFL1

[238]

3D
Microfluidic

channels

N/A Instillation

-primary human bronchial
epithelial (HBEC)
- Human lung microvascular
endothelial cells (LMVEC)
-normal pulmonary fibroblasts
(NPF)
- primary polymorphonuclear
cells (PMNs)

[239]

-fluid flow Instillation

- Immortalized human alveolar
epithelial cells (HPAEpiCs)
- Primary human umbilical vein
endothelial cells

[240]

Acinar tree

-wall strains
-fluid flow Instillation N/A [137]

-ALI Nebulized
droplets

-hAELVi cells
-THP-1 [113]

Airway tree -ALI Dry
Aerosol

-Normal Human Bronchial
Epithelial (NHBE) cells [148]
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Table 2
Currently available therapeutic applications using advanced in vitro lung-on-chip 
platforms.

Disease Mechanism of action drug Ref

Pulmonary edema

Promotes angiogenesis,
remodeling, and repair of the

vascular system

Angiopoietin 1 (Ang-1)
co-administered with IL-2 [172]

Ion channel inhibitor TRPV4 channel blocker
GSK2193874 [172]

Pulmonary
thrombosis

antithrombotic and
anti-inflammatory therapeutic Parmodulin-2 (PM2) [173]

COPD + Asthma
(HRV induced

asthmatic response)
anti-inflammatory

Bromodomain Containing
Protein 4 (BRD4) inhibitor
Tofacitinib/
Dexamethasone

[174]

Viral-induced asthma
exacerbation Navarixin (MK-7123) [176,241]

Adv Drug Deliv Rev. Author manuscript; available in PMC 2021 October 10.



 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Artzy-Schnirman et al. Page 36

Table 3
Overview of liposomal applications for lung disease treatments.

Application Formulation Development
stage

Administration Ref

Mycobacterium
avium complex
(MAC) lung
disease

DPP C :Cholosterol
liposomal amikacin, 300 nm

FDA approved Inhalation [196–199]

Lung cancer PEG-modified liposomal
Irinotecan, formulated by
utilizing sucrose octasulfate
gradient, 110 nm

Now in Phase
III clinical trial
for lung cancer

Intravenous [205]

PEG-modified liposomal
cisplatin, 110 nm

Phase III clinical
trial

Intravenous [206–208]

Dual-ligand anti-CA IX
antibody and CPP33
liposomal Triptolide (TPL),
137 nm

Pre-clinical Endotracheal [209]

Lung
inflammation

IgG-modified liposomal
dexamethasone, 103 nm

Pre-clinical Intravenous [202]

Cystic fibrosis
(CF)

PEG-modified liposomal
nanoparticle encoding
mRNA of CFTR protein

Phase I/II
clinical trial

Inhalation [214]

Cationic GL67A liposomes
with plasmid DNA
encoding CFTR protein

Phase I clinical
trial

Inhalation [223,224]

Epithelial targeted liposome
with ENaC siRNA, 200 nm

Pre-clinical Inhalation [242]

Neonatal SP-B
deficiency

Cationic liposomes with SP-
B mRNA

Pre-clinical Intravenous [215]

Chronic
obstructive
pulmonary
disease (COPD)

Self-assembling ionizable
lipid nanoparticle with
mRNA for a1-antitrypsin
(AAT)

Pre-clinical Intravenous [216,243]

Asthma Liposomes encapsulating
salbutamol sulfate

Pre-clinical Inhalation [203,204]
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