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Abstract

Comparison of intratumor genetic heterogeneity in cancer at diagnosis and relapse suggests 

that chemotherapy induces bottleneck selection of subclonal genotypes. However, evolutionary 

events subsequent to chemotherapy could also explain changes in clonal dominance seen at 

relapse. We, therefore, investigated the mechanisms of selection in childhood B-cell precursor 

acute lymphoblastic leukemia (BCP-ALL) during induction chemotherapy where maximal 

cytoreduction occurs. To distinguish stochastic versus deterministic events, individual leukemias 

were transplanted into multiple xenografts and chemotherapy administered. Analyses of the 

immediate post-treatment leukemic residuum at single-cell resolution revealed that chemotherapy 

has little impact on genetic heterogeneity. Rather, it acts on extensive, previously unappreciated, 

transcriptional and epigenetic heterogeneity in BCP-ALL, dramatically reducing the spectrum of 

cell states represented, leaving a genetically polyclonal but phenotypically uniform population 

with hallmark signatures relating to developmental stage, cell cycle and metabolism. Hence, 

canalization of cell state accounts for a significant component of bottleneck selection during 

induction chemotherapy.

There is increasing evidence that the evolution of cancers and their responses to 

treatment are shaped by the complex interplay of their inherent genetic and epigenetic 

heterogeneities1. However, the relative contributions of these factors to the phenotypes of 

treatment-resistant tumor cells remain poorly understood.

Intratumor genetic heterogeneity has been observed in all cancers. It evolves through 

branched trajectories and can be both spatially segregated and highly dynamic2–6. The 

existence of genetically variegated subclones might explain resistance to chemotherapy and 

subsequent relapse. Indeed, comparisons of genetic variegation in paired samples from 

the same patient at diagnosis and relapse have found differences in clonal architecture, 

suggesting chemotherapy may deterministically select for specific genetic variants 2,7–10. 

However, relapse typically occurs several months or even years after presentation, and often 

long after treatment has ceased. Thus, any insights into the biology of chemo-resistance 

provided by such analyses are retrospective. While the cellular substrate for relapse of 

any cancer clearly comprises those tumor cells that remain post-treatment, the complex 

- and often subclinical - process of post-therapy disease re-establishment provides ample 

opportunity for these cells to proliferate and undergo further genetic evolution that is not the 

direct result of treatment-induced selection processes. Hence, relapse samples may no longer 

be directly representative of the genetic landscape that prevailed immediately after therapy.

In addition to intratumor genetic heterogeneity, phenotypic heterogeneity - broadly 

encapsulated by epigenetic (non-genetic) influences on gene expression - might also provide 

a substrate for selection during both radio- and chemotherapy11–15. However, whether this 

occurs independently of variability in genetic makeup remains unknown.

Very few studies have explored the genetic and epigenetic landscape of the disease residuum 

that persists during treatment16,17. This is largely due to difficulties in obtaining and 
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analyzing the appropriate material when cell numbers are limiting, because sampling tumors 

is difficult or - particularly in the context of haematological malignancies - because universal 

tumor cell surface markers are lacking. Furthermore, since each patient has a genetically 

unique tumor which is treated only once, directly resolving deterministic from stochastic 

selection is not possible; although in principle could be inferred from large cohorts of 

patients.

Because of its relatively simple genetics and its restriction to a well-characterized blood 

lineage, BCP-ALL has proven paradigmatic in illuminating many fundamental principles 

of cancer biology18,19. While treatment of BCP-ALL is based on a multi-drug extended 

protocol lasting up to 36 months, maximum cytotoxicity (typically much greater than 99%) 

is achieved during the first cycle of treatment (induction chemotherapy, lasting 28-days). 

After this, most patients will be deemed in complete remission, without detectable disease. 

In some patients, however, a small number of leukemic cells, almost always subclinical and 

known as minimum or measurable residual disease (MRD), remain post-induction, and these 

cells presumably provide the substrate for relapse20. Molecular quantification of this residual 

disease provides the single most potent indicator of long-term clinical outcome21,22; clearly 

demonstrating the clinical importance of this cell compartment.

To overcome the technical and logistic hurdles outlined above, we used a patient­

derived xenograft (PDX) model of BCP-ALL, whereby leukemic cells from children 

were transplanted into multiple xenograft recipients, each of which developed almost 

identical leukemias. Mice were then treated with Vincristine (a microtubule poison) and 

Dexamethasone (a glucocorticoid), mimicking the first 28 days of BCP-ALL treatment. 

These two drugs form the longstanding core of the standard multi-drug regimens in clinical 

use, which also typically include the enzyme L-Asparaginase. Additional compounds, acting 

primarily through targeting nucleic acid and its synthesis (e.g., doxorubicin, cytarabine, 

methotrexate, 6-MP etc.), are variably used during induction chemotherapy, and always used 

during the subsequent intensification and maintenance phases. We then deployed a wide 

range of bulk and single-cell resolution assays to assess at high resolution the genotype and 

phenotype of the surviving cells.

Results

Defining the clonal architecture of BCP-ALL

To date, genetic variegation in BCP-ALL has been inferred by bulk sequencing and/or 

multicolour FISH (mFISH) using a limited range of probes. To understand the true extent 

of intratumoral genetic heterogeneity, and to dissect the likely order in which mutations are 

acquired, we performed high-resolution single cell whole genome sequencing (scWGS).

We developed a new script for Picoplex whole-genome amplification (WGA) using the 

Fluidigm C1 platform, which is suitable for analysing small cell numbers (Extended 

Data Fig.1). Picoplex chemistry efficiently detects copy number aberrations (CNAs)23, the 

commonest genomic lesions in BCP-ALL24. We studied clonal complexity in bone marrow 

(BM) samples taken at diagnosis (i.e. prior to treatment) from six cases of childhood 

BCP-ALL, analysing 756 cells in total.
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Most cases displayed branching clonal architectures with 4-19 descendant sub-clones 

(Fig.1). Alongside commonly recurring lesions, we identified a number of rarer or 

previously unreported subclonal CNAs (i.e. APOBEC3B amplification, MYC amplification, 

and DNMT3A deletion). In each case, we observed multiple independent lesions targeting 

the same locus. These were characterized by distinct genetic breakpoints and associated 

with different sets of CNAs, and so segregated onto separate branches of the leukemias’ 

phylogenetic trees.

This points to parallel evolution as a highly pervasive mechanism of genomic diversification 

in BCP-ALL, consistent with previous reports that serial and sustained RAG- and AID­

mediated deletions contribute to the genetic heterogeneity observed in this leukemia25,26. 

Furthermore, it suggests genetically distinct sub-clones might exhibit similar fitness during 

the development of BCP-ALL, implying that some mutations might be evolutionarily 

neutral.

Genotype and resistant states do not co-segregate in BCP-ALL

We next analysed the relationship between leukemic genotypes and disease-relevant cell 

states, asking to what extent a given genotype corresponds to a specific phenotype. We 

focused on CD19+/CD34+/CD38–/low cells, which comprise a rare sub-population present 

in leukemia but so far undetected in healthy blood or bone marrow. This compartment is 

enriched in developmentally primitive, quiescent cells that have previously been suggested 

to hold LIC potential and to be linked to increased chemoresistance in patients 27,28.

To simultaneously assess genotype and phenotype of individual cells, we used previously 

published25,29 bulk whole-genome sequencing data of five unsorted diagnostic leukemias 

with different karyotypic abnormalities to identify patient-specific genetic alterations present 

at varying allele frequencies, allowing us to group cells into genetically similar sub-clones 

and infer a phylogenetic, clonal architecture for each patient. We then isolated CD19+/

CD34+/CD38–/low and unsorted control cells and used single-cell qPCR to assess in 

a targeted fashion the presence/absence of each patient-specific genomic alteration (non­

synonymous single-nucleotide variants (SNVs) or CNA mutations), as well as expression 

of the proliferation marker Ki67 and other differentiation markers. This analysis validated 

that CD19+/CD34+/CD38–/low cells are, as anticipated, predominantly non-cycling (see 

representative data in Extended Data Fig.2a-b).

In four of the five cases, all but one of 18 sub-clones were identified in the CD19+/CD34+/

CD38–/low cells, in proportions similar to those in the corresponding bulk leukemic cells. 

In one case (Pt.11), CD19+/CD34+/CD38–/low cells were restricted to a single minor sub­

clone, representing ~5% of the total bulk population (Fig.2, Extended Data Fig.2c-d and 

Supplementary Table 1). We therefore conclude that all genotypes in BCP-ALL equally 

populate cell states associated with non-proliferative status (here defined as Ki67-) and early 

B-cell differentiation.

Intratumor genetic heterogeneity is unaffected by treatment

Next, we explored the implications of this lack of segregation between genotypes and 

phenotypes canonically associated with resistance in BCP-ALL shaped by the selective 

Turati et al. Page 4

Nat Cancer. Author manuscript; available in PMC 2022 January 05.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



pressure of induction chemotherapy. We addressed this using patient-derived xenografts 

(PDXs) (Fig.3a), whereby bone marrow cells from BCP-ALL patients were transplanted into 

multiple mice and treatment outcomes assessed by tracking clonal dynamics longitudinally 

in all recipients; therefore directly comparing clonal variegation before (bone marrow, BM, 

aspiration) and after (total BM) identical chemotherapy treatment (Extended Data Fig.3a),

Multicolor fluorescence in situ hybridization (mFISH) was used to score the co-occurrence 

of CNAs and/or translocation events in >250 cells, and thereby group cells into genetic 

sub-clones (Fig.3b-c and Extended Data Fig.3b-d). We used probes for AML1 (RUNX1), 

TEL (ETV6), TEL-AML1 (ETV6-RUNX1), CDKN2A (p16) and PAX5 (BSAP), which 

are amongst the most frequently altered genes in childhood BCP-ALL. Using the Jensen 

Shannon index of divergence, which measures the similarity between two probability 

distributions, we verified that, at day0, the clonal compositions of the leukemias in all mice 

engrafted with the same primary sample were effectively the same (Fig.3d-e).

Next, we treated half the mice with vincristine and dexamethasone over 28 days, with 

the remaining mice as controls. These drugs are key components of systemic BCP-ALL 

induction chemotherapy, which also includes L-asparaginase, and sometimes additional 

agents targeting DNA replication through distinct mechanisms. Treatment with vincristine 

and dexamethasone produced cytoreduction in the PDX model comparable, if not superior 

(>10 logs), to that observed in patients (Extended Data Fig.3e-h). Mice engrafted with cells 

from high-risk patients showed both slower kinetics of response and a higher percentage 

of residual cells after treatment than mice transplanted with cells from low-risk patients 

(Extended Data Fig.3i).

While treatment markedly reduced overall leukemic burden, most genetic sub-clones were 

still detectable (Fig.3f-g); suggesting they display broadly similar fitness to chemotherapy. 

Where we observed differences in the size of specific sub-clones, these changes were i) 

also detected in control mice and ii) inconsistent between recipients and between disease 

sites (BM and spleen) within an individual mouse; highlighting their stochastic rather than 

deterministic nature (Fig.3g and Extended Data Fig.3j). We quantified the overall extent of 

intratumor genetic heterogeneity before and after chemotherapy by estimating the Shannon 

entropies for the subclonal composition of untreated and treated PDX recipients. This 

entropy index provides a measurement of a sample’s diversity and richness in species (in 

this case the different genotypes), that also takes into account how evenly distributed these 

are. We found that chemotherapy did not significantly change the Shannon entropies in 

recipients, suggesting it has little impact on the genetic complexity of residual disease 

(Fig.3h-i).

While mFISH captures the most common recurrent genetic alterations in childhood BCP­

ALL and affords high throughput, its resolution is limited by the number of markers that 

can be tested in a single experiment and might, therefore, underestimate genetic complexity. 

Higher-resolution approaches should better elucidate the dynamics of minor sub-clones, and 

so we analysed leukemic cells from a third patient by scWGS.
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Firstly, we asked how much of the heterogeneity identified by scWGS of untreated cells 

from patient 1 had been captured by mFISH. We used sequencing data to consolidate 

individual cells into sub-clones defined solely by the copy number status of the markers 

assessed by mFISH. To further sub-classify these clones, we then extended the copy number 

analysis to full genome resolution. We found a high level of agreement between the two 

approaches. Most cells could be classified into mFISH-defined sub-clones. Only cells 

belonging to a single subclone, diploid with respect to all loci assessed by mFISH, remained 

unassigned; suggesting that multicolor FISH provides a good estimate of the overall 

sub-clonal composition of childhood BCP-ALL. This notwithstanding, whole-genome 

information allowed us to further divide each clone identified by mFISH into up to 13 

smaller sub-clones (Fig.4a).

Next, we investigated at whole-genome resolution the clonal dynamics of leukemic cells in 

PDX recipients undergoing treatment. The Jensen Shannon index of divergence confirmed 

that leukemic cells in the majority of recipients (4 out 5) sampled by BM aspiration prior 

to treatment shared the same distribution of sub-clones as the primary material from which 

they were derived. Enrichment for a subset of minor diagnostic subclones in one of the 

recipients suggested a possible sampling error at the time of injection (Fig.4b-c).

We treated two of the mice, using two as controls. The fifth mouse was culled early due to 

unrelated complications. High-resolution scWGS analysis of the immediate post-treatment 

residuum confirmed that treatment-resistant cells in childhood BCP-ALL are as genetically 

heterogeneous as untreated cells. Of all the clones observed before chemotherapy, only one 

minor clone (frequency <3% at d0) became undetectable in both treated mice (Fig.4d-e and 

Extended Data Fig.4). This notwithstanding, a slight increase in Shannon entropy’s index 

values suggested a more uniform distribution of subclones post-treatment (Fig.4F). This 

resulted from partial expansion of a few minor subclones present at very low frequency 

prior to chemotherapy. While our data do not categorically exclude the possibility that 

particular genotypes might confer some degree of enhanced resistance to chemotherapy, 

they strongly suggest very limited selection of genetic subclones and reinforce our prior 

conclusion that the overall genetic complexity of childhood BCP-ALL remains intact in the 

post-chemotherapy residuum.

Transcriptionally driven phenotypes determine resistance

The absence of bottleneck genetic selection after chemotherapy for BCP-ALL suggests 

resistance operates through alternative mechanisms, and we envisaged two distinct 

scenarios; Either (i) survival is purely stochastic and some cells escape treatment by 

chance, or (ii) convergent evolution underpins selection of specific cell state(s) with reduced 

chemotherapy-sensitivity. These state(s) may pre-exist before treatment or be induced by it. 

To distinguish between these hypotheses, we tested whether leukemic cells that survive 

treatment are transcriptionally distinct from their treatment-naïve counterparts, through 

small cell number bulk RNAseq on treatment-naïve and -resistant cells from multiple 

mice engrafted with cells from three patients with different cytogenetics (Fig.5a). Principal 

component analysis (PCA) demonstrated significant transcriptional differences in leukemic 

cells retrieved from treated and untreated mice (Extended Data Fig.5a).
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We reasoned that this transcriptional signature was likely a composite of the unique intrinsic 

transcriptional program(s) of cells with reduced sensitivity to chemotherapy - which had the 

potential to be retained throughout treatment and subsequent relapse - and a ‘generic’ stress­

related, and more transient, transcriptional response to cytotoxic therapy. To discriminate 

these distinct elements, we compared the transcriptomes of xenografted leukemic cells under 

five different experimental conditions involving two rounds of transplantation and treatment, 

namely; (i) ‘chronically treated cells’: both primary and secondary recipients were treated 

for seven days; (ii) ‘acutely treated cells’: primary recipients untreated, secondary recipients 

treated; (iii) ‘treatment withdrawn cells’: primary recipients treated, secondary recipients 

untreated, (designed to address the reversibility of transcriptional phenotypes associated 

with a short exposure to chemotherapy); (iv) ‘untreated controls’: cells were not exposed to 

chemotherapy in primary or secondary recipients; (v) ‘relapse cells’: recipients were treated 

for four weeks and then allowed to relapse “in situ” in the absence of further transplantation 

(Fig.5b).

PCA clustered samples according to their exposure to chemotherapy; with PC1 

discriminating ‘untreated’ and ‘treatment withdrawn cells’ from ‘acutely’ and ‘chronically 

treated’ cells (Figure S5b). Compared to untreated cells, acutely treated cells showed the 

highest number of differentially expressed genes. As hypothesized, pathways involved 

in response to cellular stress (e.g., inflammatory response and complement activation) 

were expressed at significantly higher level in acute than in chronically treated cells 

(Supplementary Table 2 acute vs chronic comparison). We hence refined our definition 

of the core gene expression program of residual disease, by focusing on pathways that 

were altered across all four treatments and appeared to be similarly deregulated in both 

acutely and chronically treated cells. In line with previous reports by our group and 

others 28,30, this analysis identified a striking downregulation of pathways involved in cell 

cycle regulation, cell activation and cell metabolism. Our data also suggest that following 

treatment, signatures associated with earlier stages of the differentiation hierarchy are up­

regulated in residual leukemic cells (Fig.5c). To test whether these phenotypic changes had 

any functional impact on the biology of resistant cells, we used a limiting dilution approach 

to quantify leukemia-initiating cells (LIC) in treated and untreated PDX recipients and found 

that cells from treated recipients had increased tumorigenicity (Extended Data Fig 5c-d).

While the global transcriptome of cells treated for seven days and then re-transplanted (i.e., 

‘withdrawn’) reverted towards that of treatment-naïve cells, the reversion was incomplete. 

Additionally, “relapsed” leukemic cells from a separate branch of the experiment that more 

closely mimicked the clinical situation, retained many transcriptional characteristics of 

resistant cells; even if harvested 6-8 weeks after the end of treatment at a time when the 

leukemia was fully re-established. These cells showed persistent downregulation of G2M 

checkpoint, E2F and MYC1 gene targets signatures, and up-regulation of the proB-cell 

differentiation signature compared to treatment-naïve cells (Fig.5c).

Together, our data further define the nature of the polyclonal leukemic cells that escape 

chemotherapy in childhood BCP-ALL; they have features associated with both primitive 

differentiation status and quiescence and exhibit increased LIC potential. Furthermore, some 
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of the key transcriptional features of the chemotherapy-resistant post-treatment residuum 

persist through in vivo relapse.

We next asked to what extent the gene expression programs associated with resistance are 

encoded through epigenetic modifications. We performed bulk DNA methylation analysis on 

the same matching pre- and post-treatment samples that were used for RNA sequencing. We 

defined a core set of resistance-associated methylation differences, identified as regions 

of the genome that were consistently differentially methylated in pre- (d0) and post­

treatment (d28) samples while remaining unchanged in control mice. Of 669 significantly 

differentially methylated regions (DMRs), the vast majority mapped in promoter regions 

(430 in total). Reassuringly, several DMRs spanned genes previously described as drivers 

of cancer, BCP-ALL progression and drug resistance (e.g., HOXA9, MAPR3, ADAM12, 

ELAVL4, PD4DE) (representative Fig.5d and Supplementary Table 3).

We then performed an integrative analysis of our RNAseq and methylome data using 

the functional epigenetic modules (FEM) algorithm31, which identifies gene modules of 

coordinated differential methylation and expression in the context of a human interactome. 

Several coordinated modules in resistant cells encoded known regulators of early B-cell 

differentiation, cell-cycle, and methylation itself (i.e., MME/CD10, E2F1 and EZH2), 

suggesting that resistance phenotypes, at least in part, extend to the epigenome level (Fig.5e­

g).

Epigenetic variability provides a substrate for selection

We next used single-cell RNA sequencing to explore the transcriptional heterogeneity 

of BCP-ALL and its contribution to treatment resistance. We examined two diagnostic 

leukemias (Pt1 and Pt2) and cells from Pt1 PDXs, whose genotypes had previously 

been characterised at single-cell WGS resolution. We found considerable transcriptional 

heterogeneity in untreated primary leukemias, with expression of genes involved in 

proliferation, metabolism (oxidative phosphorylation), apoptosis (p53 pathway), and 

differentiation status being the most variable between cells (Extended Data Fig.6a-b). Most 

pre-treatment diagnostic and xenografted leukemic cells showed promiscuous expression 

of signatures characteristic of distinct hematopoietic lineages and differentiation stages 

(Extended Data Fig.6c and Extended Data Fig.7), and when assigned to their most closely 

related normal counterpart32, we found that BCP-ALL cells can map transcriptionally to any 

point of the hierarchy (Extended Data Fig 6d and Fig.7d).

PCA showed that, in contrast to untreated cells, treated cells occupied a well-defined, 

limited projection space, suggesting greater transcriptional homogeneity (Fig.6a), as further 

confirmed by statistical analysis. Furthermore, treated cells expressed significantly fewer 

genes per cell, and at a lower level, than their untreated counterparts, suggesting global 

transcriptional repression, in line with the bulk RNA-seq results (Fig.6b). We validated 

the greater heterogeneity of untreated cells using Uniform Manifold Approximation and 

Projection (UMAP), which classified untreated cells into three distinct clusters while 

assigning treated cells to a single subpopulation (Extended Data Fig.8a) and used the R 

toolkit (Seurat) to identify markers defining each cluster (Extended Data Fig.8b-c). Of note, 

even though most signalling cascades were downregulated, resistant cells retained - and even 
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upregulated - signatures corresponding to Hedgehog signalling, Tirosh stemness and TNFA 

via the NFKB pathway (Extended Data Fig.9), previously implicated in the maintenance of 

cancer stem cells33–35.

In line with these findings, our methylome analysis also showed that “RNA polymerase 

II transcription factor activity” was the most significantly deregulated gene set following 

treatment (identified by pathway enrichment analysis; p-value 1.85e-02), and methylation 

variability was also significantly reduced compared to untreated cells. This was true even 

when taking into account the reduced sensitivity inherent to any bulk assay (Fig.6c-d).

By calling single nucleotide variants (SNVs) directly in the scRNA-seq data and comparing 

their frequency in the paired pre- and post-treatment samples, we validated our earlier CNA­

based finding that chemotherapy did not primarily select for genotypes and demonstrated 

that those very same transcriptionally homogenous cells that survive the transcriptional 

bottleneck are as mutationally heterogenous as the untreated disease (Fig.6e). This lack of 

selection was true even when the identified variants (1155 in total, previously reported in the 

COSMIC dataset) were clustered by affected gene, demonstrating that no specific mutated 

gene is preferentially enriched either before (d0) or after (d28) treatment (Fig.6f).

Only a subset of G0 cells are chemoresistant

G0 non-proliferative cell-state and resistance to cytotoxic drugs have previously been linked 

in cancer in general, and specifically in the context of BCP-ALL28,30,36. We therefore 

explored at single-cell resolution the contribution of cell-cycle and differentiation state to 

the intercellular heterogeneity of leukemic cells and chemo-resistance. To address whether 

all quiescent leukemic cells displayed equally reduced sensitivity to treatment, we analyzed 

the relative expression of gene sets associated with G1/S and G2/M cell cycle phases in 

untreated and treated cells to assign each to its corresponding cell cycle stage. As expected, 

while untreated cells could be at any stage of the cell cycle, treated cells were restricted 

to G0 (Fig.7a). Surprisingly, however, G0 cells also accounted for approximately 70% of 

the leukemic cells harvested from xenograft recipients before treatment (Fig.7b). Since our 

treatment model achieved very large levels of cytoreduction (>10 logs), this suggests that 

quiescent cells resistant to cytotoxic drugs likely represent a specific and rare subset of a 

wider quiescent compartment - operationally defined by molecular profiling - that is, for the 

most part, sensitive to treatment.

Consistent with this, in cell cycle scatter plots, untreated and treated G0 cells only partially 

overlap (Fig.7a), indicating that more than one quiescence state might exist in childhood 

BCP-ALL. We explored this further by looking at MYC and E2F1 which are amongst 

the genes most differentially expressed between treated and untreated cells (Extended Data 

Fig.10a), and have previously been implicated in the regulation of quiescence depth and 

the propensity to proliferate in normal fibroblasts37,38. Analysis of co-expression showed 

that progressively shallower quiescence in leukemic cells is defined by the concomitant 

upregulation of Myc and (Rb)-E2F signalling. Once a Rb-E2F-dependent restriction point 

(or expression plateau) is reached, cells begin proliferating; suggesting that as in normal 

cells, a MYC-dependent E2F switching threshold regulates the propensity to enter cell cycle 

in childhood BCP-ALL (Fig.7c).
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Treatment enriched for cells expressing the multi-lymphoid progenitor (MLP) signature 

(Fig.7d) - which identifies the earliest precursors that have both lymphoid (B, T and NK) 

and myelomonocytic potential - while high expression of other signatures (CMP, GMP, 

ETP) was never observed in any deeply quiescent untreated or treatment-resistant cells 

(Fig.7d, Extended Data Fig.10b). Accordingly, expression of markers associated with the 

ETP lineage, as well as to a lesser extent CMP, MEP and GMP lineages, positively correlate 

with the signatures of cycling cells (i.e., MYC, E2F, G2M) (Fig.7e).

Thus G0 cells in childhood BCP-ALL appear to vary in quiescence depth, and, while 

the untreated disease comprises predominantly “shallow” quiescent cells interspersed with 

rare “deeply” quiescent cells, the chemoresistant population is highly populated by the 

latter; which are also developmentally distinct. Crucially, the existence of rare phenotypic 

sub-states within the G0 compartment with different sensitivities to treatment resonates well 

with the observation that, in the clinical setting, only a miniscule percentage of leukemic 

cells survives chemotherapy - typically there are less than 10-4-10-5 residual leukemic cells 

in the BM of MRD positive patients.

Treatment selects a rare pre-existing cell state

We next asked whether leukemic cells with the transcriptional phenotype associated with 

chemo-resistance were present before treatment. We used the TSCAN algorithm39 to cluster 

cells with similar gene expression profiles, irrespective of treatment status, and ordered these 

clusters along an inferred pseudotime trajectory based on the average expression values of 

all genes. Most untreated and treated cells were positioned at opposite ends of the resulting 

minimum spanning tree, with the more heterogeneous untreated cells being distributed 

over a more significant number of clusters than treated cells (Extended Data Fig.10c). 

Expression of genes involved in cell cycle status and differentiation varied as a function of 

cells’ position along the inferred pseudo-time axis (Extended Data Fig.10d-e). Strikingly, a 

sub-population of cells in the untreated leukemia had transcriptomes more closely related 

to those of the chemo-resistant cells that persisted after treatment than to the rest of the 

untreated sample (Fig.8a), suggesting that some cells were in a pre-existing resistant state 

(PRS) that closely resembles the chemo-resistant cells.

When compared to the rest of the untreated cells, these PRS cells represented a more 

homogenous population enriched for markers characteristic of chemo-resistant treated cells, 

including deep transcriptional quiescence and the expression of lineage markers associated 

with primitive developmental state (Fig.8b-c). Unsupervised heatmap clustering of cells 

based on the most variable genes and t-SNE-clustering also independently confirmed the 

presence of PRS cells within the untreated disease (Fig.8d and Extended Data Fig.10f). 

Of note, the t-SNE analysis also provided insight into the ‘spatial relationship’ between 

untreated, PRS and treated cells and identified a subset of cells that, although previously 

defined as PRS by pseudotime analysis, now lay outside the limits of the PRS occupied 

area. Such cells might present an additional intermediate cell state that might acquire 

full phenotypic resistance only upon treatment exposure. Interestingly, PRS cells display 

enhanced expression of mitochondrial genes, which may contribute to their capacity to 

withstand chemotherapy (Extended Data Fig.10g)
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To assess the relevance of these findings to clinical practice, we performed single-cell 

RNAseq analysis of matching diagnosis, MRD and relapse specimens from two patients 

undergoing standard BCP-ALL treatment (including with L-asparaginase). Of note, residual 

leukemic cells in primary MRD specimens typically account for less than 10-4-10-5 cells, 

and there are no universal markers that can be used to separate malignant cells from healthy 

hematopoietic cells, making the direct interrogation of this disease compartment extremely 

challenging.

We first used the xenograft data to generate a signature of resistant and PRS cells by 

differential gene expression analysis (DGE) of treated vs untreated non-cycling cells, and 

of PRS vs untreated non-cycling cells. Our signature consisted of the top 50 genes, after 

pre-emptively filtering out both untreated cycling cells and cell-cycle related genes to ensure 

the DGE results would not solely reflect cell-cycle differences between the populations. To 

account for the very small size of the PRS compartment, which makes direct comparison 

with larger populations statistically challenging, and to ensure weighting of the signature in 

favor of genes important for PRS cells, we also filtered out genes differentially expressed 

between treated and PRS cells.

Testing the expression of the generated signature in individual cells from the clinical 

specimens demonstrated that prior to any treatment, the diagnostic disease contains a rare 

population of cells with high expression of the xenograft-based PRS/treated signature. 

Crucially, in agreement with our idea that treatment selects for cells in this state, this 

population is considerably enlarged in the matching post-induction chemotherapy day28 

MRD samples (Figure 8e). Altogether, therefore, our data paint a direct and clinically 

relevant picture of the prime mechanisms of selection operating during the critical phase of 

induction therapy in BCP-ALL, which entail selection for a rare pre-existing cell state rather 

than a specific genotype.

Discussion

We have sought to understand the principles shaping the genetic and epigenetic landscapes 

of the leukemic residuum that persists in children with BCP-ALL immediately after the 

completion of induction chemotherapy as modelled through in vivo transplantation and 

treatment. These cells are typically subclinical but are ultimately responsible for disease 

recurrence.

Using analyses linking genotype and cell state of individual leukemic cells to their 

phenotype, we have tested the prevailing notion that intratumor genetic heterogeneity is 

the primary determinant of resistance to chemotherapy in BCP-ALL. Surprisingly, but in 

line with the results of a similar recent study of colorectal cancer40, this is not the case; 

rather, phenotypic heterogeneity is the primary source of escape.

Our treatment studies deployed xenografts; a model that is particularly well suited to the 

study of B-cell malignancies. The primary leukemic cells that engraft recipients retain the 

range of genotypic and phenotypic heterogeneities of the leukemia from which they are 

derived2,6,41, and are routinely used to test new drugs42–44. Inevitably, the chemotherapy 
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regimen we used in our experiments is not a perfect replica of that utilized in children, 

which always includes L-asparaginase, and sometimes additional cytotoxic drugs with 

distinct mechanisms of action. Additionally, induction chemotherapy in BCP-ALL patients 

is followed by 24–36 months of consolidation/maintenance treatment, aimed at preventing 

disease recurrence. Since this lengthy protocol would be problematic to fully recapitulate 

in xenografted mice, whether genetic selection occurs during these later phases of 

treatment remains to be assessed. Nevertheless, induction chemotherapy is where maximum 

cytoreduction occurs, and dexamethasone and vincristine - which we administered to PDXs 

in line with standard clinical schedules - together comprise the backbone of this crucial 

phase of treatment in BCP-ALL. Furthermore, our in vivo treatment regimen achieved a 

degree of cytoreduction and disease clearance that is comparable, if not superior, to that 

observed in clinical practice, and we were able to confirm some our key findings directly in 

patients receiving complete clinical regimens. The model also allowed us to independently 

treat cells from the same leukemia multiple times, something which is not possible in 

patients; and therefore, afforded insights into the deterministic versus stochastic nature of 

selection at the level of the genotype of individual tumor cells.

Our finding that induction chemotherapy in BCP-ALL does not primarily select tumor 

genotypes deterministically, suggests that most subclones have similar fitness in response 

to the selective pressure of treatment. This resonates with our observation that there is no 

clear co-segregation between BCP-ALL phenotypes classically associated with treatment 

resistance - such as absence of Ki67 expression - and genotype. While in some instances 

we observed minor differences in clonal size post-treatment, which could either reflect 

stochastic drifts or potentially modest differences in treatment sensitivity, none were of a 

magnitude compatible with major bottleneck selection acting on genotypic differences as 

has been inferred by earlier studies of diagnosis and relapse8.

However, as alluded to above, the persistence of genetic heterogeneity provides a plausible 

substrate for the later diversification and expansion of specific genetic sub-clones during 

the evolution of relapse, either on- or off-treatment (intensification/maintenance). Thus, 

while leukemic subclones of all genotypes survive induction chemotherapy to a broadly 

similar extent, those that either recover/expand/proliferate fastest (either deterministically or 

stochastically) - or stochastically acquire de novo mutations that confer increased resistance 

to subsequent treatment (maintenance and consolidation) - will likely dominate at relapse.

In the absence of significant genetic selection during induction treatment, our transcriptomic 

analysis nevertheless uncovered a severe bottleneck at the cell state level. Leukemic cells 

in newly diagnosed patients span a spectrum of cell states varying in phenotypic traits such 

as cell cycle, metabolic status, and differentiation stage. Furthermore, analogous to normal 

hematopoietic stem and progenitor cells45 they exhibit promiscuous expression of genes 

associated with distinct blood lineages and maturation stages. In contrast, MRD-like cells 

generated through in vivo treatment capture a unique cellular phenotype characterized by 

both an early multi-lymphoid developmental stage and diminished expression of MYC, E2F 
and their target genes.
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Furthermore, we have demonstrated a previously unappreciated correlation between cell 

cycle status and differentiation stage, and identified gene modules of coordinated differential 

methylation and expression involved in regulating these essential phenotypic traits that 

might explain their persistence throughout in vivo relapse. Crucially, we find that cells 

with the same transcriptional phenotype as MRD-like cells are already present at very low 

numbers in untreated leukemias, both in xenografted and direct clinical specimens.

Given the limited sample size and possible limitations associated with the use of a model 

system, it will be interesting to see how the relative contribution to resistance of genetic 

vs epigenetic heterogeneity plays out in a larger cohort of patients. In light of the strong 

association observed in clinical practice between cytogenetics and prognosis, such a cohort 

should span all cytogenetic subtypes, and encompass patients with varied time from 

diagnosis to relapse, as the clinical observation that some BCP-ALL patients relapse during 

treatment while others relapse off-treatment might suggest different underlying selection 

processes. Whether or not our findings apply more broadly to different tumor types remains 

to be assessed. Genetic heterogeneity might play a more predominant role in other cancers, 

particularly in fast-evolving tumors and/or spatially segregated solid tumors. Deterministic 

selection for genotypes is also likely to underlie treatment resistance in the context of 

targeted therapy, where earlier studies have indeed led to the identification of subsets 

of genetic variants directly involved in sensitivity to relevant inhibitors46. Nonetheless, 

these findings argue for the importance of exploring the immediate post-treatment disease 

landscape and evaluating cell state as a determinant of resistance in a broader range of 

hematologic and solid malignancies and further advocate epigenetic cell state as a candidate 

target of any subsequent therapeutic interventions.

Methods

Patients and samples

Diagnostic childhood BCP-ALL bone marrow (BM) samples (see Supplementary Table 5). 

were obtained from human participants aged 3-18 upon informed consent and approval by 

the relevant research ethics committees at John Radcliffe Hospital, Oxford, UK and Centro 

Ricerca Tettamanti, Clinica Pediatrica Universitaria Milano Bicocca, Italy.

Bone marrow reconstitution assay

Primary childhood BCP-ALL mononuclear cells isolated by Ficoll gradient centrifugation 

were transplanted into 8-12 weeks old NOD/SCID IL2Rγhull (NSG) sub-lethally irradiated 

mice (either females or males) via intramedullary injection. To minimize possible adverse 

effects of sublethal irradiation, mice were administered acid water for a week before the 

procedure, and Baytril (resuspended at 25.5 mg/kg in the drinking water) for the 2 weeks 

following it. Sub-lethal irradiation was achieved with a single dose of 375 cGy. Each 

mouse received 2 × 105 primary leukemia cells resuspended in 40μl PBS 0.5% FBS, unless 

otherwise stated,. In the case of secondary limiting dilution assays, a specified equal dose 

of treated and control leukemic cells harvested from the BM of primary recipients was 

injected. Twelve-week post-injection mice were sampled by bone marrow aspiration, and 

the percentage of human engraftment was evaluated by flow cytometry (hCD45/(hCD45+ 
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+ mCD45+)). At the same time, human cells were also FACS sorted for downstream 

applications. Mice displaying at least 70% human engraftment were randomly assigned 

to either control or treatment groups (see below for details on the treatment protocol). After 

28 days tibias, femurs, pelvises, spleen, and brain harvested. Total BM and spleen cellularity 

were estimated through the Sysmex XP-300™ Automated Hematology Analyzer, and all 

remaining cells were then stained for FACS sorting.

In vivo Treatment Protocol

All in vivo experiments were performed in strict accordance with the United Kingdom 

Home Office regulations. Mice were treated with pharmaceutical-grade Vincristine and 

Dexamethasone [Vincristine Sulphate 1 mg/ml Injection (Hospira) and Dexamethasone 2mg 

tablets (Auden Mckenzie)] The treatment regimen was first optimized on mice engrafted 

with commercially available healthy donor cord blood cells (Lonza) and consisted of 0,50 

mg/Kg Vincristine administered weekly via IP, and 6 mg/L Dexamethasone supplemented 

to the drinking water (continuous administration). Unless otherwise stated, treatment was 

administered for a total of four weeks.

Flow cytometry

In the case of material freshly harvested from mice, primary cells were treated with ACK 

buffer (0.15M NH4Cl, 1.0mM KHCO3, 0.1mM EDTA) to lyse red blood cells prior to 

staining. Primary patient samples were brought from liquid nitrogen to room temperature 

and washed in Dulbecco’s phosphate buffered saline (DPBS). Single cell suspensions were 

washed with FACS buffer (PBS + 10% FBS) and stained (15min, 4°C) with the appropriate 

fluorochrome-conjugated antibodies (Supplementary Table 6) diluted to optimal working 

concentration in PBS 10% FBS. A wash in FACS buffer was performed prior to analysis. 

Appropriate unstained, single color and FMO controls were used for compensation set-up 

and to define the gating strategy. Leukemic cells were defined as hCD45+, and “quiescent 

cells” as CD34+/CD19+/CD38-. Data was analyzed with FlowJo v8.6 (Tree Star) software.

Karyotype preparation

Flow sorted cells (500-1*10e6) were collected in a 1.5mL screwcap tube filled with 

10-200ul of FACS buffer (PBS + 10% FBS). Cells were centrifuged at 400g for 10min 

and, after removing the supernatant, resuspended in 700μl of pre-heated KCl (5.6g in 1L of 

purified water) and incubated at 37°C for 15 minutes. Cells were then prefixed by adding 

300μl of ice-cold methanol-acetic acid fixing solution dropwise (3-parts methanol and 1-part 

glacial acetic acid). Tubes were mixed by inversion and centrifuged at 400g for 10min. 

After removing the supernatant, cells were fixed by adding 1ml of ice-cold fixing solution 

dropwise while holding the tube on a vortex (speed 7 or 8). Cells were left to rest for 5min 

before spinning down at 400g for 10min. If needed, cells were stored at 4°C (short-term) or 

−20°C (long-term).

Cytocell Aquarius probes for multicolor FISH

Locus specific FISH probes targeting chromosomes 9, 12 and 21 were custom designed 

and manufactured by Cytocell. Probes were directly labelled with different fluorochromes, 

Turati et al. Page 14

Nat Cancer. Author manuscript; available in PMC 2022 January 05.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



allowing for the simultaneous detection of four different fluorescent signals upon 

hybridization to target sequences (Supplementary Table 7).

Multicolor FISH protocol

Following karyotype preparation, frozen cell suspensions were pelleted by centrifugation 

at 400g for 15 minutes, washed in 800μl of freshly prepared ice-cold fixing solution 

(prepared as above), and centrifuged again. Supernatants were removed, and cell pellets 

were resuspended in 5-50μl of ice-cold methanol-acetic acid fixing solution. Cells were 

spotted dropwise onto a moist slide and allowed to air dry for a few minutes. Spotted 

slides were immersed in 2X SSC for 5min and washed x3 (1min) in distilled water at room 

temperature (RT). Slides were then incubated in Pepsin Working Solution (Sigma-Aldrich) 

[Stock solution: 100mg/ml diluted in distilled water (35ul aliquots stored at −20°C); 

Working solution: 0.05 mg/ml diluted in 10mM HCl at 37°C] for 2 min and washed 3 

times (1min) in distilled water at RT. Slides were dehydrated through immersion in ethanol 

series (70%, 85%, 100%, 2min each at RT) and air-dried. Pre-denaturation of the probe 

and the sample was achieved by spotting warm probe mix (5ul/slide, pre-heated for 5min at 

37°C) on heated slides (5min on a hot-plate set to 37°C). A 22x22 coverslip (VWR®) was 

applied over the spotted area, bubbles were removed by gentle pressure, and the coverslip 

was sealed with rubber glue (Fixogum) and let to dry. Simultaneous denaturation of probe 

and sample was achieved placing slides on a hybridizer (ThermoBrite®) at 75°C for 2min, 

and was followed by overnight incubation in the hybridizer at 37°C. The following day, 

coverslips were removed, and a series of post-hybridization washes were performed. Slides 

were incubated in 0.4X SSC at 72°C for 2min, followed by 30 seconds in 2X SSC/0.1% 

IGEPAL at RT. Upon air-drying, slides were stained with 5μl of Cytocell DAPI/antifade and 

covered with a 22x22 coverslip.

Microscopes and probe visualization

A Zeiss Axio Observer z1 Apotome fluorescence microscope was used for the imaging 

and scoring of mFISH samples. The microscope was set up with commercially available 

DAPI (Filter Set 49, 488049-9901-000) and FITC (Filter Set 38 HE, 489038-9901-000) 

filters purchased from Zeiss, and of custom-made DEAC (49302), Texas Red (49008), 

GOLD (49034), FITC/TXR (59022) filters purchased from Chroma. Slides were scanned 

overnight using Metafer (MetaSystems), an automated high-throughput software specialized 

in FISH images acquisition and processing. For each sample, 100-600 interphase nuclei 

were scanned, and 100-250 cells manually scored for the presence of the ETV6–RUNX1 

fusion gene in combination with deletion (hemizygous or homozygous) or amplification of 

ETV6 (TEL), RUNX1 (AML1), PAX5 and CDKN2A (p16).

Establishing cut-off levels

Each probe hybridization efficiency was quantified, scoring unexpected abnormal signal 

patterns in two types of positive control samples: i) unenriched PBMCs from normal 

peripheral blood and ii) CD19-enriched cells from the bone marrow of two normal 

karyotype individuals. In each case, >200 nuclei were scored for the presence/absence of 

TEL-AML1 fusion gene as well as copy number variants involving ETV6 (TEL), RUNX1 
(AML1), PAX5 and CDKN2A (p16) genes. The mean percentage of cells with loss or 
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amplification of any single gene signal was 0–1.87%. Combinatorial cut-off levels were 

obtained by two independent approaches i) visually scoring slides for the coexistence of 

any two lesions (cut-off of 0.45%) and ii) by mathematical calculation of the likelihood of 

any two events happening at the same time based on scoring data collected for each probe 

(cut-off of 0.35%). Based on these results (Supplementary Table 8), a conservative threshold 

of 2% was set in order for a clone with any single additional CNA (compared to its closest 

predecessor) to be called; an additional requirement was also set requiring at least 3 cells 

with a given genetic makeup to be scored within a sample.

Small cell number RNA sequencing

Small cell number RNA-seq from equivalent cell numbers (400 cells) was performed as 

described in Böiers et al., Dev Cell 201849.

Single cell gene expression (qPCR) analysis

Single cells were sorted into 96 well PCR plates as described in Potter et al50. cDNA 

synthesis from sorted single cells and subsequent target probe pre-amplification with genes 

of interest was performed as described by Moignard et al51. Gene probes used in these 

experiments included: CD34, CD38, CD19, UBC, polr2A, CDK6, CDKN1B, Ki67, TRFR, 

CD3e, RUNX1 and ETV6-RUNX1 (TaqMan™ gene expression assays, Thermo Fisher).

Single-cell RNA sequencing

Single-cell RNAseq experiments were performed as previously described in Ghorani 

et al., Nat Cancer 202052. For each experiment, 1500 single hCD45+ viable (Hoechst 

33258 negative) leukemic cells were flow-sorted directly into a 10-to 17-μm-diameter C1 

Integrated Fluidic Circuit (IFC; Fluidigm).

Single-cell Whole Genome Sequencing

1500 single hCD45+ viable (Hoechst 33258 negative) leukemic cells were flow-sorted 

directly into a 10-17-μm C1 Integrated Fluidic Circuit (IFC; Fluidigm) preloaded with 3.5μl 

of PBS 0.5% BSA. Post-sorting the total well volume was measured and brought to 5ul with 

PBS 0.5% BSA. 1ul of C1 Cell Suspension Reagent was added to final solution. Each C1 

IFC capture site was carefully examined using the EVOS FL Auto Imaging System (Thermo 

Fisher Scientific). An automated scan of all capture sites was also obtained for future 

reference. Cell lysing and whole genome amplification from Single Cells were performed on 

the C1 Single-Cell Auto Prep IFC using the PicoPLEX WGA Kit (Rubicon Genomics). To 

this end, a custom-made script was generated through the C1 Script Builder.

Methylation analysis

Genomic DNA was isolated by phenol-chloroform extraction of primary human CD45+ 

BM cells harvested from untreated and treated mice. DNA quantification and purity were 

determined by Nanodrop and QuBit. The EZ DNA methylation kit (Zymo Research bisulfite 

conversion) was used for bisulfite conversion following manufacturer instructions (final 

elution in 6μl). Samples were analysed at the UCL Genomics facility using the Infinium 

Human Methylation EPIC array (Illumina).
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Processing of bulk RNAseq

Bulk RNAseq samples were processed using a nextflow pipeline (https://github.com/UCL­

BLIC/rnaseq) which runs FastQC, TrimGalore!, STAR and featureCounts to clean, map the 

reads to the human reference GRCh38.p12 and quantify gene expression using the Ensembl 

v96 annotations. Analyses were performed within the R statistical computing framework, 

version 3.5.1 using packages from Bioconductor version 3.10 (https://Bioconductor.org). 

The DEseq2 Bioconductor package was used for outlier detection, normalization and 

differential gene expression analyses. PCA were derived using the top 1000 most variable 

genes after DESeq2 vst transformation.

Processing of single Cell RNAseq

We used STAR to map the reads to the GRCh38 reference human genome, as included 

in Ensembl v84, RSEM to quantify transcript and gene expression abundance, scater for 

quality assessment and scran for normalization. All count data, metadata and intermediate 

results were kept within a SingleCellExperiment R object. Unless otherwise specified, all 

analyses were performed using log-transformed normalized counts. We used the t-SNE 

method implemented in the Rtsne package. Seurat package was used to build the UMAP, 

cluster the cells and identify cluster gene markers (only among genes detected in at least 

25% of the cells). Pseudo-time reconstruction was obtained using the TSCAN package 39 

with 10 clusters, as suggested by the SC3 package. PRSandTREATED signature was derived 

using the SingleR package with the top 50 genes in a 3-way comparison, where we removed 

any genes identified as differentially expressed between PRS and treated cells.

Gene sets and Gene Set Enrichment Analysis

Gene signatures of potential biological interest were retrieved from the Hallmark dataset 

(MSigDB version 6.1). These were complemented with gene signatures defining the 

different stages of haematopoietic lineage differentiation32. Gene signatures identifying cell 

cycle marker were also included genes34,53 (Supplementary Table 4). This combined set of 

gene signatures was used for enrichment analysis, lineage determination, cell cycle state 

determination, single-cell latent variable model analysis and correlation analysis between 

these different factors. The fGSEA package48 was used to determine gene set enrichment for 

each of the signatures.

Lineage Classification for single cells

For hematopoietic lineage determination, we followed a previously published approach for 

assigning a lineage to each cell 54. In more detail, to achieve normal distribution, data were 

re-normalized as z-scores of log(TPM+1); the lineage score of each signature within a given 

cell was then computed as the average value of all signature genes. In the single lineage 

analysis, each cell was assigned to the lineage with the highest score. For multi-lineage 

analyses, a threshold of z-score=0.75 was used as a cut-off for a positive lineage call.

Processing of single cell Whole Genome Sequencing

Single-cell whole-genome data were processed using a nexflow pipeline (https://github.com/

UCL-BLIC/nf-ginkgo; commit 2fb0ac0) which run at the time: FastQC v0.11.8; MultiQC 
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v1.6; TrimGalore! v0.5.0; bwa mem v0.7.12-r1039; samtools v1.9 for sorting and indexing; 

Picard MarkDuplicates v2.18.9-SNAPSHOT; BEDTools v2.27.1 to generate BED files with 

read information and Ginkgo (https://github.com/robertaboukhalil/ginkgo; commit 892b2e9) 

to bin the reads, GC-correct and normalise the counts, produce per-cell QC plots and 

initial CN profiles. Data were re-normalised using control single-cells obtained from 2 

cord blood samples (1 male, 1 female) initially processed as above. Bins characterised 

as deletions, amplifications or displaying excessive variability among control cells were 

excluded. Initial CN events were detected for each sample using the multi-sample PCF (R 

package copynumber v1.14.0) with gamma = 5. These CN events were manually inspected 

and compared to the raw data, and CN calls using single-sample PCF (gamma = 10) to 

confirm the edges, adjust the CN thresholds (usually 0.5 for homozygous deletion, 1.5 for 

heterozygous deletion, 2.5 for 1-copy gain, etc.) and resolve possible overlaps between CN 

events. To mitigate the effect of choosing one common CN threshold for all cells, we sample 

around each CN threshold (using a truncated normal distribution, sd = 0.05) and around each 

cell CN value (using a normal distribution, sd = 0.05). Final CN calls are a consensus of 

the best 100 out of 10,000 trials to reduce the total number of clones in each sample. The 

results were then manually inspected to confirm the soundness of the selected thresholds 

and clone assignments. The final tree is inferred using getMinimumArborescence from the 

optrees v1.0 R package. Pt1 PDX tree was trimmed to remove leaf nodes with a single cell. 

Fishplots were drawn using the R package Timescape v1.10.

Illumina Infinium EPIC data pre-processing

DNA methylation levels were measured using Illumina Infinium MethylationEPIC 

BeadChips (‘EPIC array’) according to the manufacturer’s protocol. Data preprocessing 

steps were carried out using methods incorporated in the R packages minfi55,56 and 

ChAMP57. First, we filtered out probes based on the following criteria: (1) detection p-value 

greater than 0.01; (2) bead count of less than three in at least 5% of samples; (3) non-CG 

probes; (4) containing SNPs with a MAF of at least 1% in the European population (1000 

Genomes Project) within five base pairs of the probed CG58; (5) mapping to multiple 

genomic locations58; and (6) mapping to sex chromosomes. The filtering procedure resulted 

in 763,949 out of 866,238 probes. Next, we applied PBC normalization, a peak-based 

method, to correct for probe bias in Illumina Infinium Methylation data59 and reduce 

technical variation. We adjusted for batch effects due to multiple samples processed on 

each slide using the ComBat function of the R package SVA60. To assess data quality 

and identify further potential batch effects or outlier samples, we performed singular value 

decomposition (SVD) to determine components of variation and applied multidimensional 

scaling (MDS), principal component analysis (PCA) and hierarchical clusterings at all steps 

of the data preprocessing procedure.

Quantification of DNA methylation

DNA methylation values are provided as either M-values or Beta-values. M-values are the 

log2 ratio of the intensities of the methylated probe versus the unmethylated probe on the 

EPIC array. Beta-values are calculated as the ratio of the methylated probe intensity and 

the overall intensity. All analyses of DNA methylation data were performed on M-values. 

Beta-values, which have more straightforward interpretability, was used for the visualization 
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of DNA methylation data in figures (i.e., 0–100% DNA methylation). To quantify DNA 

methylation variability (MV) and correct for the dependency of variability measurements on 

the mean, we adapted the method of Alemu et al.61 as previously described62.

Analysis of differential methylation

We applied a paired limma model63,64 to identify differentially methylated positions 

(DMPs). Statistical significance was defined as BH-corrected65 p < 0.05 and an absolute 

fold change >= 1. Differentially methylated regions (DMRs) were identified by bumphunter 

setting the minimum number of neighbouring probes to four, the maximum length of a DMR 

to 300 bp, the number of permutations to 250. Statistical significance was again defined as 

BH-corrected p < 0.05.

Analysis of differential methylation variability

We applied a combined statistical approach based on DiffVar66, which is embedded in 

the framework of limma, and the MV as previously described62. Paired tests were used 

to identify differentially variable positions (DVPs). Statistical significance was defined as 

BH-corrected p < 0.05 and MV difference ≥ 10% relative to the observed range of MV 

values. Differentially variable regions (DVRs) were identified by DMRcate67 based on 

limma, setting the individual BH-corrected p-value threshold to 0.25 and considering regions 

with a minimum of four neighbouring CpGs. Statistical significance was defined by the 

default region-based p-value cutoff determined by DMRcate.

Methylation array pathway analysis

We analyzed the biological functions and pathway enrichment of flanking genes with 

GREAT68 using the standard parameters: association rule = basal plus extension (proximal 

5 kb upstream, 1 kb downstream, up to 1 Mb extension); curated regulatory domains = 

included.

Statistics and reproducibility

Statistics calculations were carried out in either Prism (version 8) or R (version 3.4.3). 

Power calculations and Monte-Carlo simulations based on earlier data (Anderson et al. 

2011) were used to inform the design of the in vivo experiments. Investigators were 

not blinded to allocation during the experiments and outcome assessment. Samples for 

transplantation were chosen based on the appropriate cellularity of the specimen. Mice 

assignment to either the control or treatment group was randomized. Where appropriate, P 

values were adjusted using the Benjamini–Hochberg method to control the type 1 error rate 

in the context of multiple testing. scWGS samples were excluded if they had an MAPD > 

0.6, fewer than 500,000 reads, a median number of reads per bin smaller than 10; a Gini 

index >0.35, or displayed unusual profiles in the QC plots produced by Ginkgo. Three bulk 

RNAseq samples were excluded from the analysis. These include one PT1 untreated, one 

PT2 acutely treated and one PT12 treated sample because they failed to cluster with the 

related samples in a PCA analysis. Single-cell RNAseq libraries with fewer than 1 million 

reads or fewer than 2000 genes expressed were removed. In the downstream analysis, genes 
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with more than 20 read counts in fewer than 6 cells (scRNA-seq) or samples (bulk RNA-seq) 

were also excluded.

Reporting Summary

Further information on research design is available in the Nature Research Reporting 

Summary linked to this article.

Extended Data
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Extended Data Fig. 1. 

Extended Data Fig. 2. 
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Extended Data Fig. 3. 
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Extended Data Fig. 4. 

Turati et al. Page 23

Nat Cancer. Author manuscript; available in PMC 2022 January 05.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Extended Data Fig. 5. 
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Extended Data Fig. 6. 
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Extended Data Fig. 7. 
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Extended Data Fig. 8. 
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Extended Data Fig. 9. 
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Extended Data Fig. 10. 

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Defining the clonal architecture of BCP-ALL at single-cell resolution
Phylogenetic trees mapping the evolutionary histories of 6 diagnostic leukemias as inferred 

by scWGS. Each clone is represented by a grey circle whose diameter reflects the size 

of the clone within the leukemia. White circles represent inferred ancestors (not detected 

by the analysis). Branches linking the subclones to one another are coloured-coded by 

their copy-number events. Events that appear in more than one branch within each tree 

are marked with the same letter. Below each tree, a dot matrix shows the combination of 

copy-number events for each leaf clone. Linked dots represent copy number events shared 
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through a common ancestor. Disconnected dots correspond to cases where the same event 

happens in more than one lineage. Due to a technical failure of the flow sorter, only 9 cells 

from Pt2 were available for whole-genome sequencing. Normal early B-cell progenitors 

from 2 umbilical cord-blood units were used as controls to normalize read counts and 

exclude potential technical artefacts.

Turati et al. Page 35

Nat Cancer. Author manuscript; available in PMC 2022 January 05.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 2. Genotype and cell-states associated with resistance do not co-segregate in BCP-ALL
(a-c) Subclonal genetic architecture of bulk (unsorted) and non-cycling (CD34+/CD19+/

CD38-) diagnostic leukemic cells from 3 childhood BCP-ALL patients as inferred by 

single-cell multiplex targeted Q-PCR. Informative patient-specific Q-PCR probes detecting 

either non-synonymous SNV or copy number alterations (CNA) were selected based on 

whole-genome sequencing data of the same diagnostic samples. 80-300 cells were analyzed 

per compartment, and a ~2% threshold was implemented to control for false-positive 
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events. In the figure, f=fusion, d=deletion, i=insertion, m=mutation, het=heterozygous, 

homo=homozygous.
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Figure 3. Treatment in a mouse model of childhood BCP-ALL does not affect the overall extent 
of intratumor genetic heterogeneity
(a) Treatment model: NSG mice received an intramedullary injection (right leg) of primary 

leukemic cells from pediatric ALL patients. 12 weeks after injection (d0), all mice 

underwent a bone marrow aspiration (right leg). Upon engraftment, mice were randomly 

assigned to either control or treatment groups. Treated mice received Dexamethasone 

(6mg/L continuous administration in the drinking water) and Vincristine (0.50mg/Kg IP/

weekly) for 4 weeks. Following treatment, the BM (from femur, tibia and pelvis from both 

sides) of each mouse was harvested. (b-c) Barplots showing the subclonal composition of 
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each engrafted diagnostic Pt3 (b) or Pt2 (c) leukemia. Clonal makeup was determined by 

mFISH (n=1186 cells across n=10 Pt3 engrafted mice and n=2268 cells across n=12 Pt2 

engrafted mice) using probes for TEL (ETV6), AML1 (RUNX1), (TEL-AML1), PAX5 
and CDKN2A (p16). Cells were grouped into genetically similar subclones based on their 

combinatorial copy number status, and each subclone was then assigned a unique identifier 

number and color code (Extended Data Figure 3c-d). (d and e) Heatmap showing the results 

of all possible pairwise comparisons of the clonal composition of individual engrafted 

leukemias using the Jensen-Shannon divergence index (bounded between 0 and 1). (f) Bar 

plots showing the BM clonal composition of 2 control and 4 treated mice (identified by 

the tag number shown above the chart) engrafted with Pt3 cells at d0 (BM aspiration) and 

d28 (total BM harvest). Below the bar plots are the corresponding pairwise Jensen-Shannon 

divergence analysis results. (g) Same as (e) but for mice engrafted with Pt2 cells. In this 

case, also the spleen was analyzed at d28. (h and i) Shannon entropy was used to quantify 

the overall diversity of the matching pre-and post-treatment specimens for each recipient.
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Figure 4. Single-cell whole-genome sequencing confirms limited selection of genetic subclones in 
response to chemotherapy
(a) Phylogenetic tree of Pt1 diagnostic leukemia as inferred by scWGS. Background shading 

is used to highlight clones previously defined by mFISH. (b) Subclonal genetic composition 

of 5 mice engrafted with Pt1 leukemia at d0 (before treatment) and Pt1 diagnostic disease 

(c) Heatmap showing all Jensen-Shannon divergence index-based comparisons of clonal 

compositions between pairs of engrafted mice at d0. (d-e). TimeScape plots visualizing 

tumor evolution over time in 2 control (grouped) and 2 treated (grouped) mice. The plots 

show the clonal composition at 3 timepoints: i) the primary diagnostic leukemia ii) at d0 
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in the xenografts (BM aspirate), and ii) at d28 in the xenografts (total BM harvest). Clonal 

identities as detailed in Figure S4C. (f) Table summarizing the Shannon entropy values of 

each control and treated engrafted leukemia at d0 and d28.
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Figure 5. Transcriptionally driven phenotypes contribute to treatment resistance in BCP-ALL 
and DNA methylation analysis identifies epigenetically deregulated hotspots in BCP-ALL 
resistant cells
(a-b) Graphical representation of the standard and multi-arm treatment models. In the 

standard model (a) matching d0 and d28 cells harvested from 9 untreated and 9 treated mice 

were analyzed. Untreated samples, shown in light blue, represent d0 cells from untreated 

mice and treated mice, as well as d28 samples from untreated mice. In the multi-arm model 

(b), two consecutive rounds of transplantation and treatment (7 days) allowed the analysis of 

‘acutely treated’ (green), ‘treatment withdrawn’ (dark yellow), ‘chronically treated’ (red), 
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and ‘untreated control’ (dark blue) cells harvested from 3 mice each (see main text). 

‘Relapse-like’ cells were also obtained through a separate arm of the experiment, whereby 

2 mice were treated for 28 days and then allowed to relapse in situ in the absence of 

further treatment (6-8 weeks). (c) Hallmark gene-sets and published signatures associated 

with predefined differentiation stages of the B-cell ontogeny32,47, which represent the core 

processes deregulated during chemotherapy across different patient subtypes and treatment 

regimens (see Supplementary Table 4 for the full list). Each population is compared to the 

corresponding untreated control. P-values are obtained using 2-sided permutation test48 with 

10,000 permutations; significance thresholds: <0.05 after Benjamini-Hochberg multiple test 

correction. (d) Representative example of a region (HOXA9 locus) differentiallymethylated 

in d28 treated mice as compared to both d0 treated-mice and untreated-mice at d0/d28. 

All annotated CpG regions for the loci are listed at the bottom of the plot in chromosomal 

order. Each line shows the mean beta value of the corresponding sample. TSS200 = 0–200 

bases upstream of the transcriptional start site (TSS). TSS1500 = 200–1500 bases upstream 

of the TSS. (e-f-g) Representative results of 3 out of 5 gene modules identified using the 

Functional Epigenetic Modules (FEM) algorithm31 comparing treated versus untreated d28 

cells using the default FEM protein-protein interaction network. In each representation, the 

largest circle represents the ‘seeds’ (or master regulator) of the corresponding functional 

epigenetic module. In the figure, blue nodes represent significantly hypermethylated 

gene promoters, yellow nodes represent significantly hypomethylated gene promoters, red 

labels represent significantly overexpressed genes and green labels represent significantly 

underexpressed genes.
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Figure 6. Transcriptional and epigenetic variability provide a substrate for genotype­
independent selection over treatment
Single-cell RNA sequencing of d0 (BM aspiration) and d28 (total BM harvest), primary 

cells from 3 untreated and 4 treated Pt1 xenografts. Untreated cells (light blue) comprise 

d0 and d28 cells from control mice and d0 cells (engrafted before to treatment) from 

treated mice. Treated cells (purple) are d28 cells from mice that received chemotherapy. 

(a) Principal component analysis of the single-cell data displaying variations in the 

transcriptomes of individual untreated and treated cells. (b) Boxplots showing gene 

expression variance per cell (left), number of genes expressed per cell (middle), and 
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average gene expression per cell (right) in diagnostic (n=448 cells), treated (n=163 cells) 

and untreated cells (n=66 cells). Data is normalized for sequencing coverage. Each boxplot 

shows the median, the 25th and the 75th percentiles; whiskers cover all data points within a 

1.5x the inter-quantile range from the bounds of the box; remaining data points are plotted 

as outliers. Distributions are compared using a 2-sided Wilcoxon test (unadjusted p-values). 

(c) Violin plots showing mean methylation variance (MV) scores across n=763949 array 

probes for n=6 control and n=9 treated mice at d0 and d28. Statistical significance (2-sided 

T-test) is shown above each MV comparison. P-value statistical significance corresponds to: 

***<1e-3 (d) Histogram representation of the MV scores for control and treated mice. (e) 

SNV analysis comparing the frequency of COSMIC mutations across cells in paired day 0 

and d28 post-treatment samples. Only mutations supported by at least 10 reads in at least 

10% of the cells were included in the analysis (total 813 COSMIC-annotated SNVs). No 

SNV was found to be significantly enriched (2-sided Fisher exact test, p-value < 0.05, FDR 

multiple-test correction). (f) Same as (e) but clustering mutations by gene (538 mutated 

genes in total).
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Figure 7. Resistant BCP-ALL cells represent a small subset of G0 cells with MLP-like 
transcriptional features
(a) Scatter plot showing the classification of n=611 cells to non-cycling/G0 and different 

stages of the cell cycle based on the relative expression of gene-sets associated with the 

G1/S (x-axis) and G2/M (y-axis) phases. Gene sets obtained from ref34. and available in 

Supplementary Table 4. (b) Bar plot showing the percentages of Cycling and G0 cells 

within untreated leukaemia at d0 (n=351 cells). Treated cells were found exclusively in 

the G0 compartment. (c) Scatter plot showing the classification of non-cycling/G0 n=611 

cells as deep quiescent and shallow quiescent based on the relative expression of gene-sets 
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associated with E2F signaling (x-axis) and MYC signaling (y-axis). The 95th percentile 

of the expression of each signature in treated cells was used as a reference to establish 

the approximate cut-off values for deep quiescence. (d) Nonlinear dimension reduction 

and visualization t-SNE analysis. Each cell is assigned to its closest normal hematopoietic 

cell lineage based on the expression of known marker genes (signature with the highest 

Z-score average)32. (e) Correlation matrix looking at the relationship between different 

gene signatures associated with cell cycle and lineage. Correlated expression patterns are 

displayed in blue and anticorrelated in red.

Turati et al. Page 47

Nat Cancer. Author manuscript; available in PMC 2022 January 05.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 8. Treatment selects a rare pre-existing cell state
(a) (a) Ordering of n=492 cells along the main path of the TSCAN39 inferred pseudotime 

(see Fig S8C). The plot shows n=30 pre-existing resistant cells (PRS) that, although 

untreated, cluster together with treated cells with respect to pseudotime. (b) Boxplots 

showing the variance of gene expression per cell (left), number of genes expressed per 

cell (middle) and average gene expression per cell (right) in PRS (n=30 cells), treated 

(n=163 cells) and untreated cells (n=418 cells). Data is normalized for sequencing coverage. 

Each boxplot shows the median, the 25th and the 75th percentiles; whiskers cover all data 
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points within a 1.5x the inter-quantile range from the bounds of the box; remaining data 

points are plotted as outliers. Distributions are compared using a 2-sided Wilcoxon test 

(unadjusted p-values). (c) Tables showing the percentage of untreated (n=418 cells), PRS 

(n=30 cells) and treated cells (n=163 cells) assigned to different cell cycle states (top) and 

differentiation stage (bottom). (d) T-SNE clustering of all n=611 cells.. PRS cells as defined 

by both this approach and pseudotime analysis are highlighted by a black box and arrow. (e) 

Identification of PRS-like treatment resistant cells in matching diagnosis, MRD and relapse 

specimens from two patients that underwent standard BCP-ALL treatment. The xenograft 

data was used to generate a ‘resistance’ signature comprising the union of the top 50 genes 

differentially expressed between both treated vs untreated (non-cycling only) and PRS vs 

untreated (non-cycling only) cells, after removing any gene differentially expressed between 

treated and PRS cells. The signature expression was then tested on the un-transplanted 

specimens.
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