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Key Points

� Incorporation of 11 serum biomarkers alongside clinical variables improved prediction of adverse CKD outcomes
over 5-year follow-up.

� Patients with the triad of high sTNFR1 andNGAL coupledwith lowC3a-desArg had particularly high adverse event
rates during follow-up.

� Biomarkers were quantified on a single, clinical-grade analyzer, with potential for improved translatability to the
CKD outpatient setting.

Abstract
Background We investigated the predictive value of 11 serum biomarkers for renal and mortality end points in
people with CKD.

Methods Adults with CKD (n5139) were enrolled from outpatient clinics between February 2014 and November
2016. Biomarker quantification was performed using two multiplex arrays on a clinical-grade analyzer.
Relationships betweenbiomarkers and renal andmortality endpointswere investigatedby randomforests andCox
proportional hazards regression.

Results The cohort was 56% male. The mean age was 63 years and median (IQR) CKD-EPI eGFR was
33 (24–51)ml/min per BSA.A total of 56 (40%) people developed a composite end point defined as$40%decline in
eGFR, doubling of serum creatinine, RRT, or death overmedian (IQR) follow-up of 5.4 (4.7–5.7) years. Prediction of
the composite end point was better with random forests trained on serum biomarkers compared with clinical
variables (areaunder the curveof 0.81 versus 0.78). Thepredictiveperformance of biomarkerswas further enhanced
whenconsideredalongside clinical variables (areaunder the curveof 0.83versus 0.81 for biomarkers alone).Patients
(n527, 19%) with high soluble TNF receptor-1 ($3 ng/ml) and neutrophil gelatinase-associated lipocalin
($156 ng/ml), coupledwith low complement 3a des-arginine (,2368 ng/ml), almost universally (96%) developed
the composite renal and mortality end point. C-reactive protein (adjusted hazard ratio, 1.4; 95% CI, 1.1 to 1.8),
neutrophil gelatinase-associated lipocalin (adjusted hazard ratio, 2.8; 95% CI, 1.3 to 6.1) and complement 3a des-
arginine (adjusted hazard ratio, 0.6; 95% CI, 0.4 to 0.96) independently predicted time to the composite end point.

Conclusions Outpatients with the triad of high soluble TNF receptor-1 and neutrophil gelatinase-associated
lipocalin coupled with low complement 3a des-arginine had high adverse event rates over 5-year follow-up.
Incorporation of serum biomarkers alongside clinical variables improved prediction of CKD progression and
mortality. Our findings require confirmation in larger, more diverse patient cohorts.
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Introduction
CKD is a growing public health problem, with its prevalence
increasing by 29% si nce 1990 to affect 9% of the global pop-
ulation in 2017 (1). Although morbidity and mortality rates
from other noncommunicable diseases have declined over
the past three decades, no such favorable trends exist for
CKD (2). Death due to cardiovascular disease is over-
represented among people with CKD, and mortality rates
increase as eGFR declines. In a meta-analysis of 21 general
population cohorts incorporating .1.2 million participants,
eGFR independently predicted mortality risk in an almost
linear fashion (3).
Communicating risk of adverse outcomes to patients with

CKD is challenging, particularly at earlier, typically asymp-
tomatic, disease stages. Although eGFR and urine albumin-
creatinine ratio (uACR) are strongly predictive of adverse
outcomes in epidemiologic studies, intraindividual variabil-
ity weakens their prognostic value in clinical practice (4,5).
Measuring multiple circulating biomarkers simultaneously
has the potential to uncover subgroups of patients with
CKDwhohave differing risks of progressive renal functional
decline and mortality. However, prognostication of adverse
CKD outcomes with multiple biomarkers is challenged by
the strong intercorrelation between biomarkers from diverse
pathways, which may result in marginal improvements in
predictive performance when additional biomarkers are
studied (6–8). Additionally, many biomarker studies to
date have enrolled specific subgroups of patients with
CKD, for example thosewith diabetic kidney disease.Hence,
predictive performance of circulating biomarkers across the
spectrum of CKD severity and etiology in real-world outpa-
tient nephrology practice is underexplored.
We aimed to evaluate theperformance of twomultianalyte

serum biomarker arrays in patients with CKD. Specifically,
we aimed to ascertain the relationships of the 11 biomarkers
to each other and to determine their individual and com-
bined predictive value for renal and mortality outcomes.
We hypothesized that clusters of patientswith differing risks
of adverse CKD outcomes could be identified on the basis of
serum biomarker profiles. Furthermore, we hypothesized
that incorporation of multiple biomarkers into multivariate
models would improve prediction of renal and mortality
end points over 5-year follow-up, compared with clinical
variables alone, in people with a broad range of CKD etiolo-
gies and severity attending a tertiary referral nephrology
center.

Materials and Methods
Study Cohort
Adults with CKD stages 1–5 were enrolled from nephrol-

ogy outpatient clinics at Galway University Hospitals
between February 2014 and November 2016. As previously
described (9), inclusion criteria were as follows: age $18
years, diagnosis of CKD, absence of current infection, immu-
nosuppression, cancer, acute cardiovascular event or hema-
tologic condition other than anemia, hemoglobin $10 g/dl,
not on RRT, and no prior kidney transplant.
Clinical and laboratory data were recorded from enroll-

ment to the end of follow-up on July 15, 2020 in a secure,
password-protected, web-based clinical database (Distiller;
SlidePath, Dublin, Ireland). Longitudinal measurements of

serum creatinine were extracted for each participant using
the eMED Renal system (Mediqal H.I., Aston, United King-
dom). A creatininase assay traceable to isotope-dilution
mass spectrometry was used to measure creatinine (10).
Chronic Kidney Disease Epidemiology Collaboration
(CKD-EPI) eGFRwas calculated fromserumcreatinine using
standard formulae and expressed as milliliters per minute
per body surface area (BSA). Second and subsequent creati-
nine values on a given day and creatinine values subsequent
to RRT initiation were excluded. Individuals with less than
three eGFR values were excluded from the dataset. Interim
renal outcomes ($40% decline in CKD-EPI eGFR and dou-
bling of serum creatinine) were defined at their first occur-
rence after study enrollment compared with baseline study
values. RRT was defined as first requirement for dialysis or
kidney transplantation after study enrollment. All-cause
mortality after study enrollmentwas recorded. Time to event
of renal and mortality end points was recorded for each
patient. Duration of study follow-up was calculated as the
time fromenrollment todate of last study follow-upordeath.
Duration of renal functional follow-up was calculated as the
time from enrollment to date of last eGFR determination.
Annual eGFR slopes were calculated by linear regression
of eGFR over time for individuals with three or more eGFR
determinations over $1 year. Median log-transformed
uACR was estimated from urinary protein-creatinine ratio
(uPCR) using the validated equation of Weaver et al. (11).
Four-variable Kidney Failure Risk Equation (KFRE) scores
for 2- and 5-year risks of progression to kidney failure were
calculated according to regional (non-North American) for-
mulae (12).

The studywas approved by theGalwayUniversityHospi-
tals Clinical Research Ethics Committee (reference C.A. 885)
and conducted in accordance with the 1964 Declaration of
Helsinki. Participants provided written, informed consent.

Blood Sample Collection and Serum Biomarker
Determinations

Serumwas isolated fromperipheral venous blood samples
provided at enrollment. Eleven serum biomarkers were
quantified using two CKD multiplex arrays on an Evidence
Investigator immunoassay analyzer (Randox Teoranta, Don-
egal, Ireland). Because physiologic serum concentrations
vary significantly for the 11 included biomarkers (from pg/
mL to mg/mL), low- and high-abundance biomarkers were
quantified on separate multiplex arrays to improve assay
sensitivity and performance. A seven-analyte array mea-
sured the following low-abundance biomarkers: epidermal
growth factor (EGF), IL-8, soluble TNF receptor-1 (sTNFR1)
and sTNFR2, fatty acid-binding protein-1 (FABP1),
D-dimer, and macrophage inflammatory protein-1-a (MIP-
1-a). A four-analyte array measured the following high-
abundance biomarkers: C-reactive protein, cystatin C, com-
plement 3a with cleaved C-terminal arginine (C3a-desArg),
and neutrophil gelatinase-associated lipocalin (NGAL).
Additional details on serum isolation, the immunoassay pro-
cedure, the rationale behind biomarker selection, and assay
performance and validation are provided in Supplemental
Appendices 1–3. The interassay coefficient of variation for
individual biomarkers across multiplex array plate runs
that were used to quantify biomarkers for the study cohort
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is presented in Supplemental Table 1. The interassay coeffi-
cient of variation was 8% for the seven-analyte array, and
10% for the four-analyte array, resulting in an overall interas-
say coefficient of variation of 9%.

Statistical Analyses
Descriptive and Inferential Statistics, Logistic Regression,
and Clustering
Data analysis was performed using the R statistical pro-

gramming language (R version 4.0.0) in RStudio. A composite
renal and mortality end point of$40% decline in eGFR, dou-
bling of serumcreatinine, RRT, or deathwasdefinedandused
as the primary outcome for analyses.A renal-specific compos-
ite endpoint of$40%decline in eGFR, doubling of serum cre-
atinine, or RRT was used in sensitivity analyses. Biomarkers
were transformed using the natural logarithm for analysis.
Cohort characteristics were summarized by descriptive statis-
tics. Independent sample t tests,Wilcoxon rank-sum tests, and
chi-squared tests assessed for differences in clinical variables
and biomarkers among those who did and did not develop
the composite renal andmortality end point.P,0.05was con-
sidered statistically significant. Univariate relationships
between serum biomarkers and the composite renal andmor-
tality end point were investigated using logistic regression.
Odds ratios from logistic regression models are expressed
per one unit change in natural logarithm biomarker concen-
trations. We performed unsupervised clustering of patients
on the basis of biomarker concentrations using principal com-
ponents analysis (13).

Decision Tree and Random Forest Classification Models
A supervised machine-learning approach with binary

classification random forests was used to explore the value
of all biomarkers considered together in predicting the com-
posite renal and mortality end point. Random forests have
several advantages over logistic regression, including seam-
less handling of regressor collinearity and automatic selec-
tion and fitting of nonlinear relationships and statistical
interactions. A binary classification decision tree, evaluating
classification of the composite renal and mortality end point
by serum biomarkers, was generated using default parame-
ters of the R function “rpart” to illustrate the complementary
information provided by multiple biomarkers (14,15). Bio-
markerswere inputted to thedecision tree and randomforest
models as continuous variables. Biomarker thresholds were
selected by recursive binary splitting to maximize node
purity in each tree (the number of individuals from a single
class, who either did or did not develop the composite renal
and mortality end point). Binary classification random for-
ests (5000 trees per model), with the composite renal and
mortality end point as the response variable, were fit (16).
Three model types were created: clinical variables alone
(age, sex, hypertension, diabetes, and eGFR), biomarkers
alone, and clinical variables plus biomarkers. A leave-one-
out cross-validation approachwas implemented, which con-
sisted of excluding one individual, in turn, from training the
random forest model. Subsequently, the trained random for-
est model predicted the class of the individual excluded dur-
ing model training. This process was repeated iteratively for
each individual in the dataset, such that a predicted classwas
assigned to each study participant by each of the three

random forest model types. The leave-one-out cross-valida-
tion procedure was only performed for random forest mod-
els and not for other model types.
Area under the curve (AUC) valueswere calculated for each

of the threemodel types using the predicted probability of hav-
ingdeveloped the composite renal andmortality endpoint and
the individual’s actual recorded composite renal andmortality
endpoint status as inputs to the function “roc” in theRpackage
pROC (17). Receiver operating characteristic curves were plot-
ted using the function “ggroc.” Model performance metrics
(sensitivity, specificity, positive predictive value, and negative
predictive value) were calculated across three probability
thresholds (10%, 30%, and 50%) for labeling patients as having
developed the composite renal and mortality end point. For
example, an individualwith apredictedprobability of the com-
posite renal andmortality end point by a random forest model
of 45% would be labeled as having developed the composite
renal and mortality end point by the first two thresholds eval-
uated, but not the latter. An estimate of variable importance to
the random forestmodels (mean decrease in accuracy)was cal-
culated from mean values of each model iteration during the
leave-one-out cross-validation procedure.

Cox Proportional Hazards Regression Models
Multivariable Cox proportional hazards regressionmodels

were created to investigate relationships between biomarkers
and time to renal and mortality and renal-specific composite
end points. The primary Coxmodel analysis investigated the
value of biomarkers when considered in addition to clinical
variables in predicting time to the composite renal and mor-
tality end point. For this analysis, two models were con-
structed: a clinicalmodel adjusting for age, sex, hypertension,
diabetes, and eGFR; and a clinical plus biomarker model
additionally incorporating all log-transformed biomarker
values. Backward elimination of nonsignificant biomarker
effects from the clinical plus biomarker model was subse-
quently performed using stepAIC (18). Biomarkers for which
the P-values of their hazard ratios were.0.05weremanually
excluded from the Akaike information criterion (AIC)–se-
lected model to create a final parsimonious clinical plus bio-
marker model. Clinical variables were manually retained in
thefinalmodel.Hazard ratios fromCoxmodels are expressed
per one unit change in natural logarithm biomarker concen-
trations. Comparisons ofCoxmodel adequacy (clinicalmodel
versus clinical plus biomarker model) were assessed using
likelihood ratio chi-squared tests.
Cox models were constructed using the R package survival

(19). The R package survminer was used to create forest plots
and toplot fully adjusted survival curves from themultivariate
clinical plus biomarker Coxmodel for the composite renal and
mortality end point according to biomarker tertiles, which
were calculated using the function “ntile” from the R package
dplyr (20,21). We tested each Cox model for proportionality
assumptions using Schoenfeld residuals. AIC values for fitted
Cox models were obtained using extractAIC (22).

Sensitivity Analyses
A series of sensitivity analyses was performed to further

evaluate the predictive value of serum biomarkers incorpo-
rated in the random forest and Cox models outlined above.
Random forest models trained on clinical variables, alone,
or in combination with biomarkers, were additionally
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adjusted for baseline uACR. Baseline uACRwas included in
random forest models in two separate analyses: firstly, ran-
dom forest models were performed in the subgroup with
baseline uACR data available and, secondly, after imputa-
tion of missing baseline uACR data using the function
“rfImpute” in the R package randomForest (16). Imputation
of missing uACR data was only performed for sensitivity
analyses involving random forests.
With respect to the final parsimonious clinical plus bio-

marker Cox model of the composite renal and mortality
end point outlined above, the predictive value of biomarkers
in this model was separately evaluated in Cox models in the
subgroup with CKD stages 3–5/eGFR,60 ml/min per BSA
and in the subgroup with baseline uACR data available. The
value of these biomarkers for predicting time to a renal-
specific composite end point was also evaluated using Cox
models, both in the full study cohort and in the subgroup
with baseline uACR data available.

Results
Baseline Characteristics and Serum Biomarker
Concentrations
Baseline characteristics and serum biomarker concentra-

tions of the study cohort (n5139), stratified by development
(n556) or not (n583) of the composite renal and mortality
end point, are presented in Table 1. The study population
had a mean age of 63 years, 56% were male, and median
(interquartile range [IQR]) eGFR was 33 (24–51) ml/min
per BSA. Of those sampled, study participants hadmoderate
proteinuriawith amedian (IQR) uACR of 127 (22–479)mg/g
and uPCR of 327 (124–814) mg/g. After calculating uACR
from uPCR (11), baseline uACR data were available for 113
(81%) individuals, for whom the median (IQR) uACR was
144 (22–532) mg/g. Characteristics of individuals with avail-
able and missing baseline uACR data (after conversion of
uPCR to uACR where available) are presented in
Supplemental Table 2. Those with missing uACR data
trended toward being older (68614 versus 62617 years,
P50.06) but, otherwise, no significant differences between
those with and without baseline uACR data were observed.
Over 25% and 80% of the study cohort had diabetes mellitus
and hypertension, respectively, and glomerulonephritis
(22%) and diabetic kidney disease (17%) were the two most
frequently documented CKD etiologies. Median (IQR) 2-
and 5-year risks of progression to kidney failure were 1.4%
(0.3%–6.5%) and 5.4% (1.2%–23.1%), respectively.
Comparedwith individualswho did not develop the com-

posite renal and mortality end point, those who did were
older (67615 versus 60617 years, P50.01), more likely to
be male (71% versus 46%, P50.005), had a higher prevalence
of diabetes mellitus (43% versus 13%, P,0.001), lower eGFR
(26 [IQR, 18–34] versus 43 [31–60] ml/min per BSA,
P,0.001), higher uACR (283 [IQR, 83–993] versus 104
[19–269] mg/g, P,0.001), and higher 5-year KFRE scores
(22.5% [IQR, 6.1%–55.1%] versus 2.1% [0.3%–9.0%],
P,0.001). Concentrations of several serum biomarkers
were higher in those who developed the composite renal
and mortality end point, including sTNFR1, sTNFR2,
NGAL, cystatin C, and—to a lesser extent—C-reactive pro-
tein, FABP1, and MIP-1-a. Conversely, concentrations of
EGF and C3a-desArg were lower in those who developed

the composite renal and mortality end point. Of note, the
median (IQR) sTNFR2 concentration (1.4 [0.8–2.2] ng/ml)
was lower than that of sTNFR1 (3.0 [2.1–4.6] ng/ml) in the
study cohort, which is the converse of what has been
observed in several studies (23–25). However, sTNFR1
and sTNFR2 concentrations remained strongly correlated
with each other (Pearson r correlation 0.73, P,0.001;
Supplemental Figure 1).

Incidence of Renal and Mortality End Points
The median (IQR) duration of study follow-up was 5.4

(4.7–5.7) years. Median (IQR) duration of renal functional
follow-up (study enrollment todate offinal eGFRdetermina-
tion) was 4.7 (3.5–5.2) years, with participants having a
median (IQR) of 22 (12–34) eGFR values (Table 2). The
median (IQR) rate of decline in eGFR was 20.9 (22.3 to
0.5) ml/min per BSA per year. Renal functional decline
was greater in those who developed the composite renal
and mortality end point compared with those who did not
(22.2 [IQR, 23.9 to 21.4] versus 0 [21 to 1.6] ml/min per
BSA per year, P,0.001). Relevant study end points, includ-
ing$40% decline in CKD-EPI eGFR, doubling of serum cre-
atinine, RRT, and death, occurred in 38 (68%), 14 (25%), 21
(38%), and 15 (27%) patients, respectively. A total of 56
(40%) individuals developed the composite renal and mor-
tality end point, whereas 47 (34%) developed the renal-
specific composite end point.

Univariate Relationships between Serum Biomarkers and
the Composite End Point

Figure 1 presents biomarkers with significant associations
with the composite renal andmortality end point by univar-
iate logistic regression. EGF (odds ratio [OR], 0.5; 95% CI, 0.3
to 0.9) and C3a-desArg (OR, 0.6; 95% CI, 0.4 to 0.96) were
inversely associated with the composite renal and mortality
outcome, whereas MIP-1-a (OR, 1.8; 95% CI, 1.2 to 2.8) and
C-reactive protein (OR, 1.6; 95%CI, 1.2 to 2.2)were positively
associated with it. Furthermore, sTNFR1 (OR, 25.9; 95% CI,
8.6 to 94.5), sTNFR2 (OR, 13.7; 95% CI, 4.5 to 47.4), NGAL
(OR, 4.8; 95% CI, 2.4 to 10.6), and cystatin C (OR, 10.4; 95%
CI, 4.0 to 31.5) were strongly associated with the composite
renal and mortality end point.

Clustering of Patients on the Basis of Serum Biomarkers
Unsupervised clustering of patients by principal compo-

nents analysis identified shifts in biomarkers by CKD
stage and by the composite renal and mortality end point
(Figure 2, A and B), with the loading plot (Figure 2C) illus-
trating which biomarkers were important in this regard.
Expression of several biomarkers clustered together in a pre-
dictable fashion, based on a priori knowledge. sTNFR1 and
sTNFR2 clustered together, as did two biomarkers that
were inversely associatedwith the composite renal andmor-
tality end point: EGF and C3a-desArg. Patients separated on
the basis of biomarker expression along principal compo-
nents 1 and 2 by both CKD stage and by development of
the composite renal and mortality end point. Biomarkers
clustered in the upper left corner (EGF and C3a-desArg)
were more strongly expressed in earlier stages of CKD and
in those who did not develop the composite renal and mor-
tality end point (Figure 2C, Table 1). Conversely, biomarkers
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Table 1. Baseline characteristics and serum biomarker concentrations of the study cohort stratified by development of a composite
renal and mortality end point (n5139)

Characteristic
Data Available,

n (%)
Total Cohort,

n5139

Did Not Develop
Composite End
Point (n583)a

Developed
Composite End
Point (n556)a

Clinical parameters
Age (yr), (mean6SD) 139 (100) 63617 60617 67615
Male, n (%) 139 (100) 78 (56) 38 (46) 40 (71)
Diabetes mellitus, n (%) 139 (100) 35 (25) 11 (13) 24 (43)
Hypertension, n (%) 139 (100) 115 (83) 64 (77) 51 (91)
Coronary artery disease, n (%) 139 (100) 18 (13) 8 (10) 10 (18)
CKD stage, n (%) 139 (100)

Grade 1 5 (4) 5 (6) 0 (0)
Grade 2 17 (12) 16 (19) 1 (2)
Grade 3a 22 (16) 19 (23) 3 (5)
Grade 3b 42 (30) 25 (30) 17 (30)
Grade 4 46 (33) 16 (19) 30 (54)
Grade 5 7 (5) 2 (2) 5 (9)

CKD etiology, n (%) 139 (100)
Diabetes 23 (17) 8 (10) 15 (27)
Hypertension 12 (9) 9 (11) 3 (5)
GN 30 (22) 23 (28) 7 (13)
Congenital 8 (6) 7 (8) 1 (2)
Polycystic kidney disease 6 (4) 3 (4) 3 (5)
Obstructive 6 (4) 2 (2) 4 (7)
Interstitial 7 (5) 5 (6) 2 (4)
Other/unknown 47 (34) 26 (31) 21 (38)

Laboratory data
Serum creatinine (mg/dl),
mean6SD

139 (100) 2.061.0 1.660.6 2.661.1

CKD-EPI eGFR (ml/min per BSA),
median (IQR)

139 (100) 33 (24–51) 43 (31–60) 26 (18–34)

uACR (mg/g), median (IQR) 58 (42) 127 (22–479) 33 (18–144) 504 (92–1249)
uPCR (mg/g), median (IQR) 76 (55) 327 (124–814) 301 (124–637) 345 (181–1381)
Merged uACR (mg/g), median
(IQR)b

113 (81) 144 (22–532) 104 (19–269) 283 (83–993)

Hemoglobin (g/dl), mean6SD 138 (99) 13.061.7 13.461.9 12.361.2
KFRE estimates (%), median (IQR) 113 (81)
2 year 1.4 (0.3–6.5) 0.6 (0.1–2.4) 6.4 (1.6–18.7)
5 year 5.4 (1.2–23.1) 2.1 (0.3–9.0) 22.5 (6.1–55.1)

Multiplex biomarker values, median
(IQR)
C-reactive protein (ng/ml) 139 (100) 3035 (1607–8244) 2610 (1416–5296) 4612 (2303–15181)
Cystatin C (ng/ml) 139 (100) 3715 (2575–5000) 3241 (2115–4384) 4984 (3662–5739)
C3a-desArg (ng/ml) 139 (100) 1762 (1010–2877) 2240 (1099–3392) 1467 (947–2178)
D-dimer (ng/ml) 138 (99) 81 (41–153) 73 (34–143) 103 (49–172)
EGF (pg/ml) 138 (99) 91 (54–126) 109 (58–134) 72 (47–104)
FABP1 (ng/ml) 139 (100) 1.6 (0.7–3.0) 1.3 (0.6–2.7) 1.9 (1.2–3.8)
IL-8 (pg/ml) 139 (100) 3.7 (2.6–8.5) 3.9 (2.5–8.6) 3.6 (2.7–7.3)
MIP-1-a (pg/ml) 130 (94) 4.8 (2.6–10.6) 3.9 (2.3–6.6) 7.5 (3.7–15.1)
NGAL (ng/ml) 137 (99) 167 (116–253) 137 (104–194) 213 (173–327)
sTNFR1 (ng/ml) 136 (98) 3.0 (2.1–4.6) 2.4 (1.9–3.2) 4.6 (3.5–6.8)
sTNFR2 (ng/ml) 138 (99) 1.4 (0.8–2.2) 1.1 (0.6–1.6) 2.1 (1.3–2.5)

Values are given as n (%) for categorical variables, or mean6SD for normally distributed continuous variables, unless otherwise
indicated. Median (IQR) values are presented for continuous variables that are not normally distributed. CKD-EPI, Chronic Kidney
Disease Epidemiology Collaboration; BSA, body surface area; IQR, interquartile range; uACR, urine albumin-creatinine ratio; uPCR,
urine protein-creatinine ratio; KFRE, Kidney Failure Risk Equation (four-variable; non-North America); C3a-desArg, complement 3a
with cleaved C-terminal arginine; FABP1, fatty acid-binding protein-1; MIP-1-a, macrophage inflammatory protein-1-a; NGAL,
neutrophil gelatinase-associated lipocalin; sTNFR1, soluble TNF receptor-1; sTNFR2, soluble TNF receptor-2.
aComposite end point: $40% decrease in CKD-EPI eGFR, doubling of serum creatinine, RRT, or mortality.
bMergeduACR represents a combination ofmeasureduACRand calculated uACR fromuPCRusing the validated equation ofWeaver
et al. (11). uACR values on the natural log scale were exponentiated such that presented values are in absolute units in milligrams per
gram.
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in the far right (NGAL, cystatin C, sTNFR1, and sTNFR2)
weremore strongly expressed in advancedCKDand in those
who developed the composite renal andmortality end point
(Figure 2C, Table 1).

Prediction of a Renal and Mortality Composite End Point by
Serum Biomarkers Using Supervised Machine Learning
(Random Forest Classification Models)
C3a-desArg reclassified risk of the composite renal and

mortality end point among those with high sTNFR1 and
NGAL (Figure 3A). Those with high sTNFR1 ($3 ng/ml),
high NGAL ($156 ng/ml), but also high C3a-desArg
($2368 ng/ml) had a 44% risk of the composite renal and
mortality end point. Conversely, individuals with high
sTNFR1 ($3 ng/ml), high NGAL ($156 ng/ml), and low
C3a-desArg (,2368 ng/ml), which accounted for 19% of
the cohort, almost universally (96%) developed the compos-
ite renal and mortality end point.
Receiver operating characteristic curves and AUC values

for classification of the composite renal and mortality end
point by random forests trained on clinical variables alone,
biomarkers alone, and clinical variables plus biomarkers
are presented in Figure 3B. An incremental improvement
in predictive performance was observed between models
trained on biomarkers compared with those trained on
clinical variables (AUCof 0.81 versus 0.78). Predictiveperfor-
mance was further enhanced after inclusion of clinical varia-
bles alongside biomarkers to train the models (AUC of 0.83
versus 0.81 for biomarkers alone). Baseline eGFR was the
most important predictor of the composite renal andmortal-
ity end point in models trained on clinical variables alone,
whereas, when incorporated alongside biomarkers, eGFR
and cystatin C were ranked as the third and fourth most
important variables, respectively (Figure 3, C–E). sTNFR1
andNGALwere the twomost important variables to predic-
tion of the composite renal and mortality end point, both
when biomarkers were considered alone and alongside clin-
ical variables.

Additional random forest performance metrics stratified
by three predicted probability thresholds (10%, 30%, and
50%) for classifying the composite renal and mortality end
point arepresented inTable 3.At a low (10%)predictedprob-
ability threshold, inclusion of serum biomarkers improved
sensitivity for classification of the composite end point at
the expense of reduced specificity. At the 30% predicted
probability threshold, models trained on serum biomarkers
again improved sensitivity for classification of the composite
end point while also achieving specificity values comparable
with models trained on clinical variables alone. At both of
these thresholds, the highest sensitivity for classification of
the composite end point was observed when serum bio-
markers were considered alongside clinical variables. At
the 50% predicted probability threshold, favorable trends
toward improved sensitivity and specificity were observed
in models trained on serum biomarkers, albeit the absolute
magnitude of improvement was smaller than at lower pre-
dicted probability thresholds.

Sensitivity analyses were performed to test the extent to
which improved classification of the composite renal and
mortality end point by random forest models incorporating
serum biomarkers persisted after inclusion of uACR along-
side other clinical variables. Although AUC values of ran-
dom forest models trained on clinical variables alone did
improve after incorporation of baseline uACR using two dif-
ferent approaches, the highest AUC values continued to be
observed in random forest models trained on both clinical
variables plus serum biomarkers (Supplemental Figure 2,
A and B).

Prediction of Time to Renal andMortality and Renal-Specific
Composite End Points by Serum Biomarkers (Cox Models)

The AIC value for the Coxmodel incorporating all clinical
and biomarker variableswas 382.92,which reduced to 374.83
after stepwise backward elimination of six biomarkers in the
following order: EGF, FABP1, cystatin C, IL-8, MIP-1-a, and
sTNFR2. Three biomarkerswere included in the final clinical
plus biomarker model: C-reactive protein, NGAL, and C3a-

Table 2. Duration of follow-up and incidence of renal and mortality end points during the study period (n5139)

Characteristic
Data Available,

n (%)
Total Cohort

(n5139)

Did Not Develop
Composite End
Point (n583)a

Developed
Composite End
Point (n556)a

Number of eGFR measurements, median (IQR) 139 (100) 22 (12–34) 19 (11–29) 27 (15–42)
Duration of renal functional follow-up (yr),

median (IQR)b
139 (100) 4.7 (3.5–5.2) 4.9 (4.1–5.2) 4.1 (1.8–5.2)

Duration of study follow-up (yr), median (IQR)c 139 (100) 5.4 (4.7–5.7) 5.4 (4.8–5.7) 5.4 (4.4–5.7)
Slope of CKD-EPI eGFR (ml/min per BSA per

yr), median (IQR)d
129 (93) 20.9 (22.3 to 0.5) 0 (21 to 1.6) 22.2 (23.9 to 21.4)

$40% decrease in CKD-EPI eGFR, n (%) 139 (100) 38 (27) 0 (0) 38 (68)
Doubling of serum creatinine, n (%) 139 (100) 14 (10) 0 (0) 14 (25)
Required RRT, n (%) 139 (100) 21 (15) 0 (0) 21 (38)
Death from any cause, n (%) 139 (100) 15 (11) 0 (0) 15 (27)

IQR, interquartile range; CKD-EPI, Chronic Kidney Disease Epidemiology Collaboration; BSA, body surface area.
aComposite end point: $40% decrease in CKD-EPI eGFR, doubling of serum creatinine, RRT, or mortality.
bDuration between date of study enrollment and date of final eGFR determination. eGFR values subsequent to RRT initiation were
excluded.
cDuration between date of study enrollment and date of last study follow-up or date of death.
dSlope of CKD-EPI eGFR was calculated only for individuals with three or more eGFR values over at least 1 year.
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desArg. Compared with a Cox model incorporating only
clinical variables (AIC, 385.31), this parsimonious clinical
plus biomarker model (AIC, 375.86) improved prediction
of time to the composite renal and mortality end point
(P50.001). C-reactive protein (adjusted hazard ratio [aHR],
1.4; 95% CI, 1.1 to 1.8) and NGAL (aHR, 2.8; 95% CI, 1.3 to
6.1) were positively associated with the composite renal
and mortality end point (Figure 4A). C3a-desArg was
inversely associated with the composite renal and mortality
end point (aHR, 0.6; 95% CI, 0.4 to 0.96). Figure 4, B–D,
presents survival without the composite renal and mortality
end point in the fully adjusted multivariate clinical plus bio-
marker Coxmodel, stratified by tertiles of C-reactive protein
(Figure 4B),NGAL (Figure 4C), andC3a-desArg (Figure 4D).

Several sensitivity analyses were performed to further
interrogate these findings. In Cox models performed in the
subgroup of patients with CKD stages 3–5/eGFR ,60 ml/
min per BSA, serum biomarkers improved prediction of
time to the composite renal and mortality end point
(P50.001). C-reactive protein, NGAL, and C3a-desArg
remained independently predictive of time to the composite
renal and mortality end point, with hazard ratios similar to
those obtained in the full study cohort observed
(Supplemental Figure 3A). In Cox models additionally
adjusted for uACR, which were performed in the subgroup
of patients with baseline uACR available, serum biomarkers
improved prediction of time to the composite renal andmor-
tality end point (P50.001). C-reactive protein (aHR, 1.5; 95%
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Figure 1. | Univariate logistic regression highlights the strength and directionality of relationships between individual serum biomarkers
and a composite renal and mortality end point. (A and B) Variables that exhibited a significant inverse relationship with the composite renal
andmortality end point, including (A) EGF and (B) complement 3a with cleaved C-terminal arginine (C3a-desArg). (C and D) Biomarkers with a
modest positive relationship with the composite renal and mortality end point, including (C) macrophage inflammatory protein-1-a (MIP-1-a)
and (D) C-reactive protein. (E–H) Biomarkers that displayed a strong positive relationship with the composite renal and mortality end point,
including (E) soluble TNF receptor-1 (sTNFR1), (F) sTNFR2, (G) neutrophil gelatinase-associated lipocalin (NGAL), and (H) cystatin C. Indi-
viduals who developed the composite renal and mortality end point are identified as 100% on the y axis and as triangular points. Individuals
who did not develop the composite renal and mortality end point are identified as 0% on the y axis and as circular points. Biomarkers that
displayed an inverse association with the composite renal and mortality end point are colored in blue, those with a strong positive association
are colored in red, and those with modest positive associations are presented in a shade intermediate between both colors. Log transformation
of serum biomarkers was performed before modeling. Odds ratios from logistic regression models are expressed per one unit change in natural
logarithm biomarker concentrations. The 95% confidence interval is represented by navy shading surrounding the pink regression curve. The
size of individual data points is scaled by baseline eGFR to illustrate relationships between serum biomarkers and kidney function at enroll-
ment. Larger points represent higher eGFR; smaller points represent lower eGFR. Composite renal and mortality end point:$40% decrease in
Chronic Kidney Disease Epidemiology Collaboration eGFR, doubling of serum creatinine, RRT, or mortality.
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CI, 1.1 to 2.1) and NGAL (aHR, 3.5; 95% CI, 1.5 to 8.2)
remained predictive of the composite renal and mortality
end point (Supplemental Figure 3B).
Sensitivity analyseswere also performed to test the predic-

tive value of the serum biomarkers with respect to a renal-
specific composite outcome, defined as $40% decline in
CKD-EPI eGFR, doubling of serum creatinine, or RRT. Com-
paredwith a Coxmodel incorporating only clinical variables
(AIC, 329.01), the clinical plus biomarkermodel (AIC, 325.00)
improved prediction of time to the renal-specific composite
end point (P50.02). NGAL (aHR, 3.0; 95% CI, 1.3 to 6.7)
and C3a-desArg (aHR, 0.5; 95% CI, 0.3 to 0.9) independently

predicted time to the renal-specific composite end point
(Supplemental Figure 4A). In Cox models additionally
adjusted for uACR, serum biomarkers considered alongside
clinical variables improved prediction of time to the renal-
specific composite end point compared with clinical varia-
bles alone (P50.03). NGAL (aHR, 2.7; 95% CI, 1.1 to 6.3)
remained predictive of the renal-specific composite end
point (Supplemental Figure 4B).

Discussion
This study provides insight into the value of 11 serum bio-

markers measured using twomultiplex biochip arrays in the
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Figure 2. | Principal components analysis illustrates relationships between biomarker expression, CKD stage, and a composite renal and
mortality end point. (A) Unsupervised clustering of patients by principal components analysis identifies global shifts in biomarkers across cat-
egorical CKD stages, grouped as grades 1 (G1) and 2 (eGFR of$60 ml/min per body surface area [BSA]), grade 3 (eGFR of 30–59 ml/min per
BSA), and grades 4 and 5 (eGFR of ,30 ml/min per BSA). (B) Unsupervised clustering of patients by principal components analysis identifies
global shifts in biomarker expression profiles between those who did and did not develop a composite renal and mortality end point during
follow-up. (C) A loadings plot from principal components analysis reveals the influential biomarkers that drive the shifts in biomarker expres-
sion across CKD stages and when stratified by the composite renal and mortality end point. Individuals with advanced CKD who developed
the composite renal and mortality end point had higher expression of biomarkers in the right of the plot, including sTNFR1, sTNFR2, NGAL,
and cystatin C. Individuals with earlier stages of CKD who did not develop the composite renal and mortality end point had higher expression
of protective factors in the upper left corner of the plot, including C3a-desArg and EGF. The color of the points illustrates the directionality of
the relationships between biomarkers and the composite renal and mortality end point (blue, inverse; red, strong positive; modest positive
relationships are colored in between both). The shape of the points represents statistical significance of the relationship between biomarkers
and the composite renal and mortality end point by univariate logistic regression (circle, statistically significant; triangle, not statistically sig-
nificant). In (A), (B), and (C), the x and y axes represent principal components 1 and 2, respectively. Composite renal and mortality end point:
$40% decrease in Chronic Kidney Disease Epidemiology Collaboration eGFR, doubling of serum creatinine, RRT, or mortality. PC, principal
component.
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identification of outpatientswith CKD at high risk of acceler-
ated renal functional decline andmortality. Biomarkerswere
quantified on a single, clinical-grade platform,which offers a
route for improved translatability to the CKD outpatient

setting where biomarkers may enhance prognostication
afforded by existing clinical risk prediction tools (12,26).
Global shifts in serum biomarker profiles, reflecting changes
in both protective factors and injury markers, were evident
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Figure 3. | A supervised machine-learning approach (random forest classifier) illustrates the added predictive value of multiple serum bio-
markers for a composite renal and mortality end point, both when considered alone and in addition to conventional clinical variables. (A)
Decision tree classification of the composite renal and mortality end point by serum biomarkers in the study cohort. The decision tree high-
lights the predictive value of simultaneously assessing multiple serum biomarkers. In this decision tree, the three biomarkers are ranked by
their proximate level of importance to correct classification of the composite renal and mortality end point, from sTNFR1 (highest) to C3a-
desArg (lowest). Individuals with low sTNFR1 values (,3 ng/ml) had a relatively low risk of the composite renal and mortality end point
(12%). However, not all individuals with high sTNFR1 values had the same risk of the composite renal and mortality end point. Those
with high sTNFR1 ($3 ng/ml) coupled with low NGAL values (,156 ng/ml) had a 39% risk of the composite renal and mortality end point,
whereas those with high sTNFR1 ($3 ng/ml), high NGAL ($156 ng/ml), but also high C3a-desArg values ($2368 ng/ml) had a 44% risk of the
composite renal and mortality end point. Conversely, individuals with the triad of high sTNFR1 ($3 ng/ml), high NGAL ($156 ng/ml), and low
C3a-desArg (,2368 ng/ml), which accounted for approximately 20% of the study cohort, almost universally (96%) developed the composite
renal and mortality end point during follow-up. Biomarker values in the decision tree are colored in a continuous gradient from left to right
from blue (lower risk) to red (higher risk). (B) Receiver operating characteristic curves for three types of random forest (RF) classification models
of the composite renal and mortality end point: clinical variables alone (age, sex, hypertension, diabetes, and baseline eGFR; green), serum
biomarkers alone (orange), and clinical variables plus serum biomarkers (purple). A leave-one-out cross-validation approach was imple-
mented for the random forest models. The plot illustrates incremental improvements in correct prediction of the composite renal and mortality
end point across the three model types. Area under the curve (AUC) values and associated 95% CIs for the three model types are presented in
the inset table: 0.78 for clinical variables alone, 0.81 for serum biomarkers alone, and 0.83 for clinical variables plus serum biomarkers. (C–E)
Dot plots of variable importance across the three random forest classification models of the composite renal and mortality end point: (C) clin-
ical variables alone (age, sex, hypertension, diabetes, and baseline eGFR), (D) serum biomarkers alone, and (E) clinical variables plus bio-
markers. eGFR was the most important clinical variable, whereas sTNFR1 and NGAL were the biomarkers that provided the most predictive
value to the models. All five clinical variables are presented (C), whereas the top eight most important variables are presented for the bio-
markers alone and clinical variables plus biomarker models (D and E). The dots are colored in a continuous gradient from navy (lower variable
importance) to yellow (higher variable importance). Composite renal and mortality end point:$40% decrease in Chronic Kidney Disease Epi-
demiology Collaboration eGFR, doubling of serum creatinine, RRT, or mortality. CRP, C-reactive protein.
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Table 3. Random forest model performance metrics for prediction of the composite renal and mortality end point (n5126)

Parameter

Predicted Probability
Threshold .10%a

Predicted Probability
Threshold .30%a

Predicted Probability
Threshold .50%a

Clinical Biomarker
Clinical and
Biomarker Clinical Biomarker

Clinical and
Biomarker Clinical Biomarker

Clinical and
Biomarker

Sensitivity 0.92 0.96 0.98 0.79 0.85 0.88 0.69 0.71 0.69
Specificity 0.36 0.24 0.21 0.69 0.65 0.71 0.81 0.83 0.82
Positive predictive value 0.47 0.44 0.43 0.61 0.60 0.65 0.69 0.72 0.70
Negative predictive value 0.87 0.90 0.94 0.84 0.88 0.90 0.81 0.82 0.81

Three types of random forest classificationmodels were implemented to evaluate prediction of the composite renal andmortality end
point: clinical variables alone (age, sex, hypertension, diabetes, and baseline eGFR), serum biomarkers alone, and clinical variables
plus serum biomarkers. A leave-one-out cross-validation approach was implemented, which consisted of excluding one individual
from training the random forest model. Subsequently, the trained random forest model predicted the class of the individual excluded
duringmodel training. This processwas repeated iteratively for each individual in the dataset, such that a predicted classwas assigned
to each study participant by each of the three random forest model types.
aModel performance metrics were calculated across three probability thresholds (10%, 30%, and 50%) for labeling patients as having
developed the composite renal andmortality end point. For example, an individualwith a predicted probability of the composite renal
andmortality endpoint by a random forestmodel of 45%would be labeled as having developed the composite renal andmortality end
point by the first two thresholds evaluated, but not the latter.
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Figure 4. | C-reactive protein, NGAL, and C3a-desArg independently predict time to development of a composite renal and mortality end
point (Cox proportional hazards regression). (A) Forest plot of parsimonious Cox proportional hazards regression model incorporating clin-
ical variables and serum biomarkers predictive of a composite renal and mortality end point (n5126). C-reactive protein (adjusted hazard ratio
[aHR], 1.4; 95% 95% CI, 1.1 to 1.9) and NGAL (aHR, 2.7; 95% CI, 1.3 to 5.8) were positively associated with time to the composite renal and
mortality end point. C3a-desArg values were inversely associated with time to the composite renal and mortality end point (aHR, 0.5; 95% CI,
0.3 to 0.9). (B–D) Plots of survival without the composite renal and mortality end point derived from the fully adjusted, multivariate clinical
plus biomarker Cox proportional hazards regression model presented in the forest plot in (A), stratified by tertiles of serum (B) C-reactive pro-
tein, (C) NGAL, and (D) C3a-desArg. Biomarker values were log transformed for modeling. Hazard ratios from Cox models are expressed per
one unit change in natural logarithm biomarker concentrations. Composite renal and mortality end point:$40% decrease in Chronic Kidney
Disease Epidemiology Collaboration eGFR, doubling of serum creatinine, RRT, or mortality. AIC, Akaike information criterion. T1, tertile 1. *,
P,0.05; **, P,0.01; ***, P,0.001
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with declining kidney function and in those who subse-
quently developed a composite renal and mortality end
point defined on the basis of CKD progression, need for
RRT, or death. We demonstrate, using random forests and
multivariate Cox models, that incorporation of biomarkers
alongside clinical variables improves prediction of CKDpro-
gression and mortality.
We used diverse statistical methods, including univariate

logistic regression (for ease of interpretability and visual rep-
resentation), principal components analysis (to illustrate
clustering of patients on the basis of serum biomarker pro-
files), random forest models (to accurately characterize the
predictive value of the biomarkers for adverse outcomes,
not least due to seamless handling of regressor collinearity),
andCoxmodels (to incorporate time-to-event data). Replica-
tion of the overarching results (improved predictive perfor-
mance of models incorporating serum biomarkers for
adverse CKD outcomes) using a variety of statistical
approaches adds to the robustness of these findings.
Annual decline in kidney function was moderate in our

study cohort, at 20.9 ml/min per BSA per year, which was
significantly lower than a local cohort of patients with type
2 diabetic kidney disease (mean eGFR of 47 ml/min per
BSA) attending our hospital for multidisciplinary CKD
care, in whom eGFR trajectories ranged from 26 ml/min
per BSA per year preintervention to 23 ml/min per BSA
per year postintervention (10). However, the latter cohort
of patients exclusively had type 2 diabetes for amediandura-
tion of 10 years and were enrolled up to a decade before
patients in this study (10). The eGFR slope trajectory of this
cohort was more similar to, albeit still lower than, a group
of patients with type 2 diabetes and CKD (mean eGFR of
42 ml/min per BSA) enrolled in Dublin, Ireland during
2014–2015, in whom annual change in eGFR was 22 ml/
min per BSA per year (27). Thus, improvements in CKD
management and a lower prevalence of diabetes (25%) in
this study cohort may explain themodest rates of renal func-
tional decline observed.
Interestingly, patients with the triad of high sTNFR1 ($3

ng/ml) and NGAL ($156 ng/ml) coupled with low C3a-
desArg (,2368 ng/ml) almost universally (96%) developed
an adverse renal outcome or died during follow-up. This
finding requires validation in a larger external cohort, but
does suggest this biomarker signature may be useful for
enrollment of patients with CKD who are at high risk into
prospective studies and may also prove useful as a means
of guiding treatment intensification in nephrology practice
(28). The discriminant value of sTNFR1 and NGAL for
adverse outcomes was improved by C3a-desArg, highlight-
ing that proteins with diverse functions in innate immune
responses and inflammation may have complementary
prognostic benefit.
To the best of our knowledge, circulating C3a-desArg has

not previously been explored as a biomarker of adverseCKD
outcomes. C3a-desArg, also known as acylation-stimulating
protein, is an adipokine that binds to the C5a receptor-2 to
regulate metabolic processes, specifically stimulation of tri-
glyceride accumulation and synthesis in adipocytes and glu-
cose uptake in pancreatic b-cells (29–31). The majority of
C3a-desArg is produced by the alternative complement
pathway (32). However, adiponectin activates C1q, which
generates C3a and C5a fragments via classic pathway

activation (33). Increased plasmaC3a-desArg has been docu-
mented in patients with nephrotic syndrome, and may be
implicated in the pathogenesis of the associated dyslipide-
mia (34,35). In this study, circulating C3a-desArg was
inversely associated with adverse CKD outcomes. We
hypothesize that decreased C3a-desArg lowers glucose
uptake and decreases clearance of triglycerides and fatty
acids, thereby promoting glucose intolerance, hyperinsuline-
mia, and renal glucotoxicity and lipotoxicity (36). Decreased
C3a-desArg may partly occur due to obesity-associated
hypoadiponectinemia (33,36). By extension, adverse renal
outcomes in those with low C3a-desArg in our cohort may
be partly accounted for by the loss of the protective effects
of adiponectin on glomerular podocytes—if so, this may be
reversed by intentional weight loss strategies (37).
Random forests trained on serum biomarkers were

superior to models trained on clinical variables in terms of
prognosticating CKD progression and death. Predictive per-
formance of the biomarkers was further enhanced when
incorporated alongside clinical variables. sTNFR1 and
NGALwere the twomost important biomarkers to classifica-
tion by random forests, reaffirming their predictive value,
which has been demonstrated across multiple cohorts
(23–25,27,38–40). C-reactive protein ranked as the fifth most
important variable to random forest classification of the com-
posite renal and mortality end point, both in models trained
on serum biomarkers alone and in models trained on both
clinical variables and biomarkers, which further endorses
its role in prognosticating the risk of renal functional decline
in CKD (41,42). Both C-reactive protein andNGAL indepen-
dently predicted time to the composite renal and mortality
end point, which persisted after additional adjustment for
baseline albuminuria and in the subgroup of patients with
baseline eGFR of ,60 ml/min per BSA. Serum NGAL also
independently predicted time to a renal-specific composite
end point, which persisted after additional adjustment for
albuminuria.
The study cohort had a high prevalence of GN, at 22%.

Indeed, GN was the most documented CKD etiology in the
study cohort. A significant proportion of biomarker research
inCKDhas focusedon the subgroupof patientswithdiabetic
kidney disease, although the Chronic Renal Insufficiency
Cohort Study has investigated biomarker prognostication
in study populations with CKD who do not exclusively
have diabetes (43). Immunosuppressive therapy in people
with GN has the potential to modify associations between
biomarkers andadverseCKDoutcomes (44); however, active
immunosuppressionwas an exclusion criterion for our study
cohort. Several of the biomarkers that demonstrated the
strongest independent predictive value for adverse CKD
outcomes in this study cohort have also demonstrated asso-
ciationswith histopathologicmarkers of disease severity and
risk of renal functional decline in biopsy sample–proven glo-
merular diseases (such as IgA nephropathy and lupus
nephritis), including sTNFR1, NGAL, andC-reactive protein
(45–48).
Absolute sTNFR2 concentrations were lower than those of

sTNFR1 in the study cohort, which is in contrast to other
studies evaluating the prognostic value of both biomarkers
in patients with CKD (23–25). At the time of development
of the multiplex arrays, limited international referencemate-
rial was available by which to standardize and harmonize
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the assays. More generally, assay standardization and har-
monization remains a significant challenge in biomarker
research (49). Nevertheless, the multiplex arrays used in
our study are specific for the 11 target biomarkers contained
therein. Indeed, sTNFR1 and sTNFR2 concentrations were
strongly correlated with each other, and the two biomarkers
clustered together by principal components analysis. Fur-
thermore, sTNFR1 and sTNFR2 were the two biomarkers
that were the most strongly associated with development
of the composite renal andmortality end point by univariate
logistic regression, and both biomarkers ranked as important
variables to correct classification of the composite renal and
mortality end point by random forestmodels. Thus, themul-
tiplex arrays are specific for both sTNFR1 and sTNFR2 tar-
gets. Although quantification of sTNFR2 by the multiplex
arrays appears to provide absolute serum concentrations
that are lower than those reported by others using stand-
alone immunoassays, this did not affect interpretation of
the prognostic value of either sTNFR1 or sTNFR2 in the
study cohort.
Our study cohort was relatively small, which limited sta-

tistical power, but event rates of renal and mortality out-
comeswere high and findingswere replicated using random
forests and Cox models. Ethnicity data were missing,
although the majority (.95%) of patients attending nephrol-
ogy clinics in Ireland are White (10,50). The predictive value
of our multiplex arrays requires validation in a larger, more
ethnically diverse cohort. Additionally, a head-to-head com-
parison of the value of the KFRE equation with that of the
multiplex biomarker arrays for prediction of kidney failure
should be performed in a subsequent, larger-scale study
(12). Furthermore, prediction of incident CKD by the multi-
plex biomarker arrays in populations without established
CKD should be evaluated and compared with existing clini-
cal risk prediction tools, such as the equations developed by
the CKD Prognosis Consortium (26). Baseline albuminuria
data were missing for over half of the cohort. We calculated
log-transformed uACR from uPCR using a validated equa-
tion (11), providing uACR values for .80% of participants.
Individuals with missing uACR data trended to be older,
but there were no significant differences between those
with available andmissing uACRdata in terms ofCKD stage
or etiology, suggesting uACR data was largely missing at
random. Furthermore, we performed sensitivity analyses to
demonstrate persistence of the predictive value of serumbio-
markers in random forest and Cox models, despite addi-
tional adjustment for albuminuria.
In summary, simultaneous measurement of 11 serum bio-

markers using novelmultiplex biochip array technologywas
technically feasible and robust. Parallel assessment of multi-
ple biomarkers provided complementary prognostic value.
In particular, patients with the triad of high sTNFR1, high
NGAL, and low C3a-desArg almost universally developed
an adverse renal end point or died over 5-year follow-up.
Incorporation of serum biomarkers alongside clinical varia-
bles improved prediction of CKDprogression andmortality.
Our findings provide a strong basis for focusing the content
of multianalyte biomarker panels as risk prediction tools in
theCKDoutpatient setting, and for confirmationof their clin-
ical value and cost-effectiveness in larger, more diverse
patient cohorts.
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