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Abstract

The Wiskott–Aldrich syndrome protein (WASP) participates in innate and adaptive immunity 

through regulation of actin cytoskeleton-dependent cellular processes, including immune synapse 

formation, cell signaling, migration and cytokine release. There is also emerging evidence for a 

direct role in nuclear transcription programmes uncoupled from actin polymerization. A deeper 

understanding of some of the more complex features of Wiskott Aldrich syndrome (WAS) itself, 

such as the associated autoimmunity and inflammation, has come from identification of defects 

in the number and function of anti-inflammatory myeloid cells and regulatory T and B cells, as 

well as defects in positive and negative B-cell selection. In this review we outline the cellular 

defects that have been characterized in both human WAS patients and murine models of the 

disease. We will emphasize in particular recent discoveries that provide a mechanistic insight into 

disease pathology, including lymphoid and myeloid cell homeostasis, immune synapse assembly 

and immune cell signaling.
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Introduction

Wiskott Aldrich syndrome protein (WASP) is ubiquitously expressed in non-erythroid 

haematopoietic cells. Since identification of the WAS gene more than 20 years ago [1], 

there have been approximately 300 different mutations described, leading to a remarkably 

varied clinical phenotype including immunodeficiency, inflammatory symptoms, bleeding 

diathesis, autoimmunity and malignant potential. The clinical aspects of WAS and emerging 

treatments have been reviewed in detail recently [2] and will not be discussed here.

WASP is a cytosolic protein comprising 502 amino acids. It consists of an Ena-VASP 

homology domain (EVH1, also known as WH1) at the amino terminal, a short basic domain 

(B), a guanosine triphosphatase-binding domain (GBD), a large polyproline (PP) domain 
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and verprolin homology/central/acidic (VCA) domain at the carboxyl terminal (Fig. 1). 

WASP is established as a key regulator of the actin cytoskeleton in haematopoietic cells, 

with important functional roles in lymphoid and myeloid cell migration, receptor signaling, 

cytotoxicity, and phagocytosis. More recently, cytoskeleton-independent functions of WASP 

have been identified at the level of nuclear transcription (Table 1). At rest, WASP exists 

in an autoinhibited state, in which the VCA domain associates with a hydrophobic pocket 

in the GBD domain [3] (Fig. 1, top). Binding of WASP with partners, such as the Rho 

family GTPase cell division cycle 42 (CDC42), and/or phosphorylation of a tyrosine residue 

(Y291 in human WASP) within the GBD hydrophobic region destabilizes the autoinhibited 

conformation (Fig. 1, bottom). This exposes the VCA region, thereby allowing actin related 

protein (ARP) 2/3 binding [4–6]. Subsequent localization and nucleation of actin filaments 

results in the formation of actin branches [7]. Several other proteins, particularly the SRC 

homology 3 (SH3) domain adaptor NCK, and a number of defined tyrosine kinases, also 

promote the activation of WASP through interaction with the basic or polyproline domains 

[8–11]. Phosphorylation of two serine residues in the VCA domain further regulate WASP 

activation through enhanced affinity to the ARP 2/3 complex [3, 5, 12, 13]. Evidence also 

exists for regulation of WASP activity through oligomerization, where active WASP forms 

complexes through VCA dimers or higher order oligomers, with much greater potency for 

ARP 2/3 stimulation [14, 15]. In addition to activation, phosphorylation of Y291 in the GBD 

domain is thought to mark WASP for degradation by calpain and protea-some proteolysis [6, 

16–18]. WASP-interacting protein (WIP) stabilizes WASP by binding to the EVH1 domain, 

and protecting it from calpain and proteasomal degradation [16, 19] (Fig. 1, top), but also is 

important for localizing WASP to areas of actin polymerization [16, 20].

The role of WASP in lymphoid lineages

WASP in T cells

WASP has been implicated in a number of intrinsic T-cell functions including cell 

proliferation, differentiation and survival, through both actin-dependent and -independent 

mechanisms (Table 1). In lymphoid lineages the development of early progenitors proceeds 

normally in both humans and mice bearing a WASP deficiency, but WASP is required for the 

survival and homeostasis of terminally differentiated cells [21–23]. Abnormal thymopoiesis 

in the absence of WASP has been suggested by evaluation of lymphocyte counts in WAS 

patients [24, 25], and by the observation of thymic hypoplasia at post mortem [26]. Evidence 

for a role of WASP in thymopoiesis has also been identified in murine models, in which 

subtle abnormalities such as a possible block in progression from double negative (CD4- 

CD8-) to double positive (CD4+ CD8+) T cells [22, 23] have been shown. The numbers 

of circulating naïve CD4+ T cells in human WAS are usually within the normal range, but 

the proportion of CD8+ T cells is usually low [2], often accompanied by an abundance of 

γδ T cells [27]. Age-dependent clonal skewing of T-cell receptor (TCR) β-chain repertoires 

has been found in human peripheral blood of WAS patients [28]. Interestingly, WASP has 

been found to be present in the T-cell nucleus and may play an important actin-independent 

role in regulating histone methylation at the TBX21 promoter [29] and in transcription 

of cytokines required for T helper (TH) 1 cell differentiation [30, 31]. The absence of 

WASP in human T helper cells is associated with detrimental effects on cytokine gene 
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transcription required for TH1 differentiation resulting in skewing towards TH2 dominance 

(Fig. 2A). Additionally, WASP may play a role in lymphocyte survival. Activated T cells can 

undergo apoptosis in response to TCR stimulation in order to eliminate T cells responding 

to chronically expressed antigens, including autoantigens, through interactions with the 

tumour necrosis factor (TNF) family member Fas ligand (FasL). Murine wasp deficiency 

is associated with impaired TCR-induced FasL secretion in CD4+ T cells and reduced 

apoptosis with increased autoantibody production [32], which may go some way to explain 

the predisposition to autoimmunity. In contrast, attenuated B-cell lymphoma 2 (BCL2) and 

abnormal CD95 expression in human WAS have been associated with increased lymphocyte 

apoptosis [33, 34]. It is unclear whether this process is a result of dysregulated transcription 

or secondary to intracellular cytoskeletal events, but may reflect a compensatory mechanism 

in response to increased autoantigen expressing T cells.

The immunological synapse (IS) is a highly dynamic interface between communicating 

immune cells. It is organized so that optimal antigen recognition and signal transduction 

may occur and relies on remodeling of the actin cytoskeleton to distribute proteins 

accordingly [35]. In wild-type cells, TCR ligation leads to IS assembly by clustering of 

receptor and signaling molecules into lipid rafts. Subsequent IS maturation results in a 

central concentration of TCRs and costimulatory molecules surrounded by a peripheral 

ring of adhesion molecules including lymphocyte function-associated antigen (LFA)-1 [36]. 

WASP is rapidly recruited to the TCR upon ligation and is required for efficient endocytic 

TCR internalization, which is impaired in WASP-deficient human and murine T cells 

[37–39]. WASP is recruited to the IS by WIP and is activated by CDC42 [40], but also 

through CD2 stimulation [41]. Murine and human WASP-deficient T cells have impaired 

actin polymerization at the T cell-antigen-presenting cell (APC) contact site, resulting 

in inefficient recruitment of other IS proteins in response to TCR stimulation [40–42], 

and lower numbers of lipid rafts that fail to cluster [42]. Disrupted formation of actin 

foci is found in murine wasp-deficient T cells upon T cell activation, with subsequent 

impaired calcium signaling, and may be critically important for focused signal integration 

and amplification of downstream signals [35, 43, 44]. Murine wasp-deficient T cells also 

demonstrate failure to polarize cytokines [45, 46], and exhibit abrogated chemokine-induced 

migration in transwell migration assays, with impaired homing to Peyer’s patches following 

adoptive T cell transfer [45–48].

The number and development of regulatory T (Treg) cells in WASP deficiency have 

been shown to be normal [49–51], but the peripheral homeostasis and function of these 

cells are disturbed [32, 49], and may therefore contribute to the predisposition of WAS 

patients to autoimmunity. A role for WASP in granzyme B-mediated B cell killing has 

been identified, with murine wasp-deficient Treg cells showing defective B-cell suppression 

[52]. Murine wasp-deficient Treg cells lack tissue-homing markers, including integrin α4β7 

and chemokine receptors CCR4 and P and E selectin ligands, which may explain why 

they are almost entirely absent in inflamed peripheral tissues and found in decreased 

numbers in secondary lymphoid tissues [53]. Both human and murine WASP-deficient Treg 

cells exhibit impaired ability to suppress the proliferation of activated T effector cells [49–

51], with relatively unrestrained TH2 effector responses driving inflammation in a mouse 

model of intestinal allergy [54] (Fig. 2A). WASP-deficient Treg cells also secrete less of 
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the anti-inflammatory cytokine IL-10 [53], which may further predispose to pathological 

inflammation.

WASP in B cells

WASP plays a critical B-cell-specific role in immune homeostasis involved in development 

of the splenic marginal zone, regulation of lymph node germinal center interactions 

and prevention of autoimmunity by negative selection of autoreactive B-cell progenitors 

[55–57]. Murine wasp-deficient B cells demonstrate hyperproliferation associated with 

autoantibody production and enhanced differentiation into class switched plasmoblasts [55]. 

WAS patients, however, have normal or slightly reduced absolute numbers of circulating B 

cells, and normal numbers of class switched memory B cells [56]. In both humans and mice, 

transitional B cells exhibit enhanced proliferation in response to stimulation by antigen 

or myeloid differentiation primary response protein 88 (MYD88) [56, 58, 59], which, in 

addition to relaxed peripheral tolerance [59–61], results in the enrichment of autoreactive 

cells at the naïve B-cell stage.

Memory B-cell activation is disrupted in murine wasp deficiency by reduced transcription 

of the B-cell receptor (BCR) coreceptor CD19, and enhanced recruitment of the BCR’s 

negative regulators FcyIIB and SH2 inositol 5-phosphatase (SHIP) [62–65]. Impaired 

BCR and integrin signaling in human and murine WASP-deficient B cells also results 

in poorly formed immunological synapses, which may further impair B-cell activation, 

chemotaxis and subsequent signaling in memory B cells, but is not known to compromise 

class-switching [66]. Murine wasp-deficient immature B cells, however, appear to have 

enhanced BCR responsiveness, which promotes egress from the splenic marginal zone [57, 

65] and may provide an explanation for the suboptimal T-independent antibody responses 

observed in WAS patients [55, 66]. Altered antibody production in WAS likely results from 

intrinsic B-cell dysfunction, but also through defective activity of follicular T (Tfh) cells, 

which proliferate poorly, and exhibit defective differentiation with increased apoptosis [67].

Recent studies have suggested that WASP is required for acquisition of normal regulatory 

B (Breg) cell number and function, which may have an important influence on the balance 

and recruitment of Treg cells and TH17 cells during inflammation [68, 69] (Fig. 2A). In 

particular, arthritic WAS knockout (KO) mice were shown to have reduced numbers of 

IL-10-producing Breg cells in association with reduced Treg cells and increased TH17 

cells [68]. Interestingly, adoptive transfer of wild-type Breg cells ameliorated arthritis and 

restored the balance between Treg cells and TH17 cells, but selective deficiency of wasp in 

Breg cells did not lead to exacerbated arthritis or increase in TH17 cells despite reduced 

numbers of Breg and Treg cells. This suggests an element of compensation by other 

regulatory cell lineages.

WASP in NK and iNKT cells

WASP has previously been demonstrated to be one of a few cytoskeletal proteins responsible 

for the regulation of NK-cell killing [70]. Enriched human WASP-deficient NK cells 

demonstrate impaired actin polymerization and perforin accumulation at the NK-target 

contact point [71], resulting in significantly reduced NK-cell cytolytic activity. Expansion of 
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NK-cell populations is often found in WAS patients [71], which may be compensatory for 

these functional defects.

WASP has also been implicated in the homeostasis and function of invariant NKT (iNKT) 

cells, which have roles in microorganism clearance, tumour surveillance and autoimmunity 

[72–75]. Circulating iNKT cells are almost absent in WAS, but interestingly are normal in 

patients with X-linked thrombocytopaenia (XLT), the milder form of disease where some 

residual WASP expression and function is retained [73]. This suggests that defective iNKT 

activity may contribute to disease pathology, but the degree to which this is important 

has not been defined. Murine studies have suggested that wasp is more important for 

peripheral homeostasis rather than thymic production, though iNKT-cell maturation in 

the wasp-deficient murine thymus shows retarded progression to mature phenotypes [72]. 

Murine wasp-deficient iNKT cells respond poorly to glycopeptide antigens, with defective 

activation, homing and retention within peripheral lymphoid tissues [72, 73], but the role of 

WASP in humans has not been properly explored.

The role of WASP in myeloid lineages

WASP has been shown to have an important role in myeloid cells, with profound 

abnormalities in actin distribution leading to impaired cell polarization and migration, 

protrusion activity and phagocytic cup formation in human and murine WASP-deficient 

monocytes, macrophages, dendritic cells (including Langerhans cells (LC)) and neutrophils 

[76–81]. WASP has also recently been shown to have a role in the transcriptional and 

epigenetic regulation of myeloid cells [82].

Cell migration requires adhesive interactions with substrata. The β-2 family of integrins 

is important in this process by linking the extracellular matrix to the actin cytoskeleton, 

necessary for transducing mechanical force and pulling on neighboring cells. Podosomes 

are specialized, highly dynamic structures found in many cells including macrophages 

and DCs. They contain an actin core surrounded by a ring of integrins, scaffold and 

actin-binding proteins, and are thought to be important for adhesion-dependent migration 

through digestion of the extracellular matrix [83]. There are many similarities between 

adhesive podosomes observed in myeloid cells and actin foci formed at the IS suggesting 

that this fundamental structure can be adapted for multiple tasks. In migrating human and 

murine polymorphonuclear (PMN) cells the absence of WASP leads to failure of integrin 

clustering at the leading edge [84]. Podosomes are completely absent in WASP-deficient 

human and murine myeloid cells, but are restored when a wild-type copy of the WAS 

gene is reintroduced, causally linking WASP with their formation [85]. Human and murine 

WASP deficiency results in impaired adhesion to endothelial adhesion molecule intercellular 

adhesion molecule 1 (ICAM-1), leading to defective migration, poor IS stabilization and 

degranulation, and abrogated activation of respiratory burst [83, 84, 86].

DC cytoskeletal remodeling by WASP is emerging as a key regulatory component of 

functional immune synapse formation, and consequently is important for directing T-cell 

responses [35, 87, 88]. Human and murine models have demonstrated that priming of wild-

type T cells by WAS KO DCs is diminished [87, 89–91]. WASP-deficient DCs appear less 

Rivers and Thrasher Page 5

Eur J Immunol. Author manuscript; available in PMC 2021 December 03.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



able to support IL-12 and type 1 interferon secretion [92, 93] with abrogation of downstream 

events following TCR signaling. Such events include calcium flux, microtubule organizing 

center polarization, phosphorylation of zeta chain associated tyrosine kinase (ZAP)-70 and 

T-cell proliferation [87, 90]. WASP is also necessary for cytoskeletal remodeling during 

formation of the DC-NK cell immunostimulatory synapse and subsequent DC induction of 

NK-cell interferon gamma production [94].

One hypothesis for skin pathology in WAS is that decreased migration of LCs and DCs 

results in local potentiation of inflammatory T cells [95] (Fig. 2B). A recent study in 

mice subjected to skin challenge with allergens and parasitic infiltration revealed that 

in the absence of wasp, and thus impaired cdc42-mediated effector function, ras-related 

C3 botulinium toxin substrate 2 (rac2) activation was enhanced in DCs [96]. This led to 

enhanced cross-presentation of antigen through NADPH-oxidase mediated maintenance of 

neutral phagosome pH, and marked expansion of IFNγ producing CD8+ T cells at the 

expense of CD4+ T cells.

WASP has recently been implicated in the anti-inflammatory functions of macrophages (Fig. 

2c), with an increased percentage of pro-inflammatory macrophages found in pre-colitic 

wasp-deficient mice [97]. Lipopolysaccharide (LPS) stimulation induced a much higher 

expression of pro-inflammatory cytokines in addition to enhanced CD4+ T-cell proliferation 

and decreased generation of Treg cells compared to wild-type mice.

WASP is important for neutrophil development. X-linked congenital neutropenia, resulting 

from gain of function mutations in the WASP GBD domain, results from destabilization of 

the autoinhibitory conformation and dysregulated actin polymerization [76]. Consequently, 

cytoplasmic viscosity of neutrophil precursors is increased, which impairs chromosomal 

separation during mitosis leading to premature apoptosis and relative failure of neutrophil 

differentiation [98]. WASP also plays a key role in neutrophil migration, with murine wasp-

deficient PMNs migrating more slowly than wild-type through cell monolayers in parallel 

plate flow assays [84]. Although WASP-deficient PMNs adhered similarly to wild-type at 

low levels of shear stress in bead binding assays, attachments were lost when shear stress 

was increased to physiological levels [84], highlighting the additional importance of WASP 

in neutrophil adhesion.

A possible role of WASP in IgE-mediated mast cell cytoskeletal rearrangement has 

previously been identified. WASP-deficient mast cells exhibited defects in granule 

exocytosis and cytokine production, with decreased capacity to degranulate on FcεR1 

triggering [99].

Activities of WASP family members and binding partners

WASP family proteins have recently been shown to have a number of important roles, 

particularly in autophagy, where the role of WASP itself is not yet known. WASH (WASP 

and SCAR homologue) has been implicated in downregulating autophagy by preventing 

ubiquitination of beclin 1 in murine embryonic fibroblasts [100]. WASH deficiency in 

Dictyostelium species and HeLa cells has more recently been linked with impaired 
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autophagosome formation and lysosomal digestion of both phagocytic and autophagic 

cargo [101, 102]. WASH has additionally been shown to have an important role in ARP2/3-

dependent endosomal sorting [101, 103]. Similarly, WAVE (WASP verprolin homologous 

proteins) and WHAMM (WASP homologue associated protein with actin membranes and 

microtubules) have now also been demonstrated to be important in endo/exocytosis and 

autophagosome formation [104, 105].

Defects in the WASP binding partners WIP [106], ARPC1B, a haematopoietic-restricted 

component of the ARP2/3 complex [107], and dedicator of cytokinesis 8 (DOCK8) 

[108–110] have recently been described to result in similar clinical phenotypes to WAS. 

The increased severity of DOCK8 deficiency may reflect an additional interaction with 

the WASP family protein neural WASP (N-WASP), which is more widely expressed 

[111]. DOCK8 forms a complex with WIP and WASP linking the TCR to the actin 

cytoskeleton, with actin polymerization occurring via DOCK8-mediated CDC42 activation 

of WASP following TCR ligation [112]. Combined DOCK8 and WASP deficiencies in mice 

show attenuated subcortical actin, with reduced filamentous (F) actin content, defective 

TCR-driven actin foci formation and mechanotransduction, resulting in impaired T-cell 

transendothelial migration and homing to lymph nodes [112]. The cytoskeletal adaptor 

and fes/CIP4 homology-bin/amphiphysin/rvs (F-BAR) protein proline-serine-threonine 

phosphatase-interacting protein 1 (PSTPIP1) negatively regulates the transition from 

podosomes to filopodia in macrophages, through its interaction with WASP. Mutations in 

PSTPIP1 are causally associated with a number of autoinflammatory diseases, including 

PAPA syndrome (pyogenic sterile arthritis, pyoderma gangrenosum and acne), which shares 

some similar inflammatory pathologies to those of WAS. This further highlights the 

importance of actin cytoskeleton regulation in autoinflammation [113].

Bruton’s tyrosine kinase (BTK) has been shown to modulate inflammatory responses in 

macrophages through its interaction with WASP downstream of toll-like receptors (TLRs) 

[114, 115]. Inhibition of the WASP-BTK interaction in macrophages was shown to result 

in impaired phosphorylation of inhibitor of κB αβ (IKKαβ) and nuclear factor (NF)-kB 

with reduced transcription of the inflammatory cytokines TNF-α, IL-6 and IL-1β [114, 115]. 

How this plays into the wider picture of inflammation in WAS is not yet known. More 

recently, an interaction between WASP and BTK has also been demonstrated to be important 

for neutrophil migration in sterile inflammation [116] (Fig. 2B).

Additionally, neutrophil recruitment to sites of inflammation has been found to be dependent 

on WASP through its binding to SRC kinase-associated phosphoprotein 2 (SKAP 2), which 

appears to be necessary for regulating actin polymerization and β2 integrin activation [117]. 

Deletion of skap2 in mice results in failure of integrin activation and a leukocyte adhesion 

deficiency (LAD)-like phenotype.

Conclusion

Over the years, defects in WASP have been identified in many different lineages, but 

the challenge now is to work out how they operate together to create the complex 

identity of WAS. Interplay between defects of peripheral and central tolerance, and effector/
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regulatory cells that mediate balanced cytokine responses during inflammation is likely to be 

particularly important. Pursuit of understanding WAS has provided a unique opportunity 

to explore the role of the cytoskeleton during normal immune function from cellular 

homeostasis to evasion of infection, cancer and autoimmunity. Future studies may well lead 

to the emergence of targeted therapies for autoimmunity and inflammation extending beyond 

the realm of rare monogenic diseases such as WAS.
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Figure 1. 
Domain structure of WASP in its inactive and active forms. At rest, WASP exists in an 

autoinhibited state where the VCA region associates with the GBD region, the conformation 

of which is stabilised by WIP. WASP becomes activated through binding partners such as 

the GTPase CDC42 or phosphorylation of a tyrosine residue (Y291), which release the 

VCA domain and expose the ARP 2/3 binding domain. The ARP 2/3 complex recruits actin 

monomers resulting in the formation of branched actin filaments. ARP 2/3, actin-related 

protein; B, basic domain; CDC42, cell division cycle 42; EVH1, Ena-VASP homology 

domain; GBD, guanosine triphosphate binding domain; P, phosphate; PP, polyproline 

domain; VCA, verprolin homology/central/acidic domain; WASP, Wiskott Aldrich syndrome 

protein; WIP, WASP interacting protein.
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Figure 2. WASP deficiency and inflammation. Inflammatory symptoms are common in WAS and 
the role of WASP in inflammation is being increasingly defined.
(A) CD4+ T cells show impaired gene transcription required for TH1 differentiation, 

leading to TH2 dominance. Treg cells produce less of the anti-inflammatory cytokine 

IL-10 and fail to regulate TH2 effector responses, which has been associated with allergic 

intestinal inflammation. Reduced numbers of IL-10 producing Breg cells are associated with 

reduced Treg cell recruitment and increased pro-inflammatory TH17 cells. (B) Enhanced 

cross presentation leads to over activation of CD8+ T cells and is associated with skin 

inflammation, which is contributed to by allergen-laden Langerhans cells that fail to migrate 

from the skin to lymph nodes. Neutrophil migration to sites of sterile inflammation is 

also impaired, particularly through WASP-BTK interaction. (C) Increased numbers of 

pro-inflammatory macrophages are found, with increased production of pro-inflammatory 

cytokines. Breg cell, regulatory B cell; BTK, Bruton’s Tyrosine Kinase; DC, dendritic cell; 

LN, lymph node; TH1/2/17, T helper cells; Treg cell, regulatory T cell; WAS, Wiskott 

Aldrich syndrome; WASP, Wiskott Aldrich syndrome protein.
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Table 1
Actin cytoskeleton dependent and independent immune functions of WASP

Actin cytoskeleton-dependent functions of WASP Actin cytoskeleton-independent functions of WASP

Lymphoid cell proliferation and homeostasis T cell differentiation

Lymphoid and myeloid immune synapse assembly and signaling Memory B cell activation, through transcription of B 
cell co-receptor CD19

Lymphoid and myeloid cell cytokine polarization and release Transcription of inflammatory cytokines

Myeloid cell protrusion activity and endothelial adhesion, through podosome 
formation

Transcriptional regulation of myeloid cells

Lymphoid and myeloid cell migration

NK cytolytic activity, through perforin accumulation at NK-target cell contact

Phagocytosis

Early research identified WASP as an important regulator of the actin cytoskeleton. More recently, important cytoskeleton independent functions in 
nuclear transcription have been identified. NK, natural killer cell; WASP, Wiskott Aldrich syndrome protein.
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