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Abstract

DeepMind presented remarkably accurate predictions at the recent CASP14 protein structure 

prediction assessment conference. We explored network architectures incorporating related ideas 

and obtained the best performance with a 3-track network in which information at the 1D 

sequence level, the 2D distance map level, and the 3D coordinate level is successively transformed 

and integrated. The 3-track network produces structure predictions with accuracies approaching 

those of DeepMind in CASP14, enables the rapid solution of challenging X-ray crystallography 

and cryo-EM structure modeling problems, and provides insights into the functions of proteins 

of currently unknown structure. The network also enables rapid generation of accurate protein-

protein complex models from sequence information alone, short circuiting traditional approaches 

which require modeling of individual subunits followed by docking. We make the method 

available to the scientific community to speed biological research.

The prediction of protein structure from amino acid sequence information alone has been 

a longstanding challenge. The bi-annual Critical Assessment of Structure (CASP) meetings 

have demonstrated that deep learning methods such as AlphaFold (1, 2) and trRosetta 

(3), that extract information from the large database of known protein structures in the 

PDB, outperform more traditional approaches that explicitly model the folding process. 

The outstanding performance of DeepMind’s AlphaFold2 in the recent CASP14 meeting 

(https://predictioncenter.org/casp14/zscores_final.cgi) left the scientific community eager to 

learn details beyond the overall framework presented and raised the question of whether 

such accuracy could be achieved outside of a world-leading deep learning company. As 
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described at the CASP14 conference, the AlphaFold2 methodological advances included 

1) starting from multiple sequence alignments (MSAs) rather than from more processed 

features such as inverse covariance matrices derived from MSAs, 2) replacement of 2D 

convolution with an attention mechanism that better represents interactions between residues 

distant along the sequence, 3) use of a two-track network architecture in which information 

at the 1D sequence level and the 2D distance map level is iteratively transformed and 

passed back and forth, 4) use of an SE(3)-equivariant Transformer network to directly refine 

atomic coordinates (rather than 2D distance maps as in previous approaches) generated 

from the two-track network, and 5) end-to-end learning in which all network parameters are 

optimized by backpropagation from the final generated 3D coordinates through all network 

layers back to the input sequence.

Network architecture development

Intrigued by the DeepMind results, and with the goal of increasing protein structure 

prediction accuracy for structural biology research and advancing protein design (4), we 

explored network architectures incorporating different combinations of these five properties. 

In the absence of a published method, we experimented with a wide variety of approaches 

for passing information between different parts of the networks, as summarized in the 

Methods and table S1. We succeeded in producing a “two-track” network with information 

flowing in parallel along a 1D sequence alignment track and a 2D distance matrix track with 

considerably better performance than trRosetta (BAKER-ROSETTASERVER and BAKER 

in Fig. 1B), the next best method after AlphaFold2 in CASP14 (https://predictioncenter.org/

casp14/zscores_final.cgi).

We reasoned that better performance could be achieved by extending to a third track 

operating in 3D coordinate space to provide a tighter connection between sequence, residue-

residue distances and orientations, and atomic coordinates. We constructed architectures 

with the two levels of the two-track model augmented with a third parallel structure track 

operating on 3D backbone coordinates as depicted in Fig. 1A (see Methods and fig. S1 

for details). In this architecture, information flows back and forth between the 1D amino 

acid sequence information, the 2D distance map, and the 3D coordinates, allowing the 

network to collectively reason about relationships within and between sequences, distances, 

and coordinates. In contrast, reasoning about 3D atomic coordinates in the two-track 

AlphaFold2 architecture happens after processing of the 1D and 2D information is complete 

(although end-to-end training does link parameters to some extent). Because of computer 

hardware memory limitations, we could not train models on large proteins directly as the 

3-track models have many millions of parameters; instead, we presented to the network 

many discontinuous crops of the input sequence consisting of two discontinuous sequence 

segments spanning a total of 260 residues. To generate final models, we combined and 

averaged the 1D features and 2D distance and orientation predictions produced for each 

of the crops and then used two approaches to generate final 3D structures. In the first, 

the predicted residue-residue distance and orientation distributions are fed into pyRosetta 

(5) to generate all-atom models. In the second, the averaged 1D and 2D features are fed 

into a final SE(3)-equivariant layer (6), and following end-to-end training from amino acid 

sequence to 3D coordinates, backbone coordinates are generated directly by the network 
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(see Methods). We refer to these networks, which also generate per residue accuracy 

predictions, as RoseTTAFold. The first has the advantage of requiring lower memory (for 

proteins over 400 residues, 8GB rather than 24GB) GPUs at inference time and producing 

full side chain models, but requires CPU time for the pyRosetta structure modeling step.

The 3-track models with attention operating at the 1D, 2D, and 3D levels and information 

flowing between the three levels were the best models we tested (Fig. 1B), clearly 

outperforming the top 2 server groups (Zhang-server and BAKER-ROSETTASERVER), 

BAKER human group (ranked second among all groups), and our 2-track attention models 

on CASP14 targets. As in the case of AlphaFold2, the correlation between multiple 

sequence alignment depth and model accuracy is lower for RoseTTAFold than for trRosetta 

and other methods tested at CASP14 (fig. S2). The performance of the 3-track model on 

the CASP14 targets was still not as good as AlphaFold2 (Fig. 1B). This could reflect 

hardware limitations that limited the size of the models we could explore, alternative 

architectures or loss formulations, or more intensive use of the network for inference. 

DeepMind reported using several GPUs for days to make individual predictions, whereas 

our predictions are made in a single pass through the network in the same manner that would 

be used for a server; following sequence and template search (~1.5 hours), the end-to-end 

version of RoseTTAFold requires ~10 minutes on an RTX2080 GPU to generate backbone 

coordinates for proteins with less than 400 residues, and the pyRosetta version requires 

5 minutes for network calculations on a single RTX2080 GPU and an hour for all-atom 

structure generation with 15 CPU cores. Incomplete optimization due to computer memory 

limitations and neglect of side chain information likely explain the poorer performance of 

the end-to-end version compared to the pyRosetta version (Fig. 1B; the latter incorporates 

side chain information at the all-atom relaxation stage); since SE(3)-equivariant layers are 

used in the main body of the 3-track model, the added gain from the final SE(3) layer is 

likely less than in the AlphaFold2 case. We expect the end-to-end approach to ultimately be 

at least as accurate once the computer hardware limitations are overcome, and side chains 

are incorporated.

The improved performance of the 3-track models over the 2-track model with identical 

training sets, similar attention-based architectures for the 1D and 2D tracks, and 

similar operations in inference (prediction) mode suggests that simultaneously reasoning 

at the multiple sequence alignment, distance map, and three-dimensional coordinate 

representations can more effectively extract sequence-structure relationships than reasoning 

over only MSA and distance map information. The relatively low compute cost makes it 

straightforward to incorporate the methods in a public server and predict structures for large 

sets of proteins, for example, all human GPCRs, as described below.

Blind structure prediction tests are needed to assess any new protein structure prediction 

method, but CASP is held only once every two years. Fortunately, the Continuous 

Automated Model Evaluation (CAMEO) experiment (7) tests structure prediction servers 

blindly on protein structures as they are submitted to the PDB. RoseTTAFold has been 

evaluated since May 15th, 2021 on CAMEO; over the 69 medium and hard targets released 

during this time (May 15th, 2021 ~ June 19th, 2021), it outperformed all other servers 
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evaluated in the experiment including Robetta (3), IntFold6-TS (8), BestSingleTemplate (9), 

and SWISS-MODEL (10) (Fig. 1C).

We experimented with approaches for further improving accuracy by more intensive use 

of the network during sampling. Since the network can take as input templates of known 

structures, we experimented with a further coupling of 3D structural information and 1D 

sequence information by iteratively feeding the predicted structures back into the network 

as templates and random subsampling from the multiple sequence alignments to sample a 

broader range of models. These approaches generated ensembles containing higher accuracy 

models, but the accuracy predictor was not able to consistently identify models better than 

those generated by the rapid single pass method (fig. S3). Nevertheless, we suspect that 

these approaches can improve model performance and are carrying out further investigations 

along these lines.

In developing RoseTTAFold, we found that combining predictions from multiple 

discontinuous crops generated more accurate structures than predicting the entire structure at 

once (fig. S4A). We hypothesized that this arises from selecting the most relevant sequences 

for each region from the very large number of aligned sequences often available (fig. 

S4B). To enable the network to focus on the most relevant sequence information for each 

region while keeping access to the full multiple sequence alignment in a more memory 

efficient way, we experimented with the Perceiver architecture (11), updating smaller 

seed MSAs (up to 100 sequences) with extra sequences (thousands of sequences) through 

cross-attention (fig. S4C). Current RoseTTAFold only uses the top 1000 sequences due to 

memory limitations; with this addition, all available sequence information can be used (often 

over 10,000 sequences). Initial results are promising (fig. S4D), but more training will be 

required for rigorous comparison.

Enabling experimental protein structure determination

With the recent considerable progress in protein structure prediction, a key question is 

what accurate protein structure models can be used for. We investigated the utility of the 

RoseTTAFold to facilitate experimental structure determination by X-ray crystallography 

and cryo-electron microscopy and to build models providing biological insights for key 

proteins of currently unknown structures.

Solution of X-ray structures by molecular replacement (MR) often requires quite accurate 

models. The much higher accuracy of the RoseTTAFold method than currently available 

methods prompted us to test whether it could help solve previously unsolved challenging 

MR problems and improve the solution of borderline cases. Four recent crystallographic 

datasets (summarized, including resolution limits, in table S2), which had eluded solution 

by MR using models available in the PDB, were reanalyzed using RoseTTAFold models: 

glycine N-acyltransferase (GLYAT) from Bos taurus (fig. S5A), a bacterial oxidoreductase 

(fig. S5B), a bacterial surface layer protein (SLP) (Fig. 2A) and the secreted protein 

Lrbp from the fungus Phanerochaete chrysosporium (Fig. 2B and fig. S5C). In all four 

cases, the predicted models had sufficient structural similarity to the true structures that 

led to successful MR solutions (see Methods for details; the per-residue error estimates 
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by DeepAccNet (12) allowed the more accurate parts to be weighted more heavily). The 

increased prediction accuracy was critical for success in all cases, as models made with 

trRosetta did not yield MR solutions.

To determine why the RoseTTAFold models were successful, where PDB structures had 

previously failed, we compared the models to the crystal structures we obtained. The images 

in Fig. 2A and fig. S5 show that in each case, the closest homolog of the known structure 

was a much poorer model than the RoseTTAFold model; in the case of SLP, only a distant 

model covering part of the N-terminal domain (38% of the sequence) was available in the 

PDB, while no homologs of the C-terminal domain of SLP or any portion of Lrbp could be 

detected using HHsearch (13).

Building atomic models of protein assemblies from cryo-EM maps can be challenging in the 

absence of homologs with known structures. We used RoseTTAFold to predict the p101 Gβγ 
binding domain (GBD) structure in a heterodimeric PI3Kγ complex. The top HHsearch hit 

has a statistically insignificant E-value of 40 and only covers 14 residues out of 167 residues. 

The predicted structure could readily fit into the electron density map despite the low local 

resolution (Fig. 2C, top; trRosetta failed to predict the correct fold with the same MSA input 

(fig. S6)). The Cα-RMSD between the predicted and the final refined structure is 3.0 Å over 

the beta-sheets (Fig. 2C, bottom).

Providing insights into biological function

Experimental structure determination can provide considerable insight into biological 

function and mechanism. We investigated whether structures generated by RoseTTAFold 

could similarly provide new insights into function. We focused on two sets of proteins: 

first, G protein-coupled receptors of currently unknown structure, and second, a set of 

human proteins implicated in disease. Benchmark tests on GPCR sequences with determined 

structures showed that RoseTTAFold models for both active and inactive states can be quite 

accurate even in the absence of close homologs with known structures (and better than those 

in current GPCR model databases (14, 15); fig. S7) and that the DeepAccNet model quality 

predictor (12) provides a good measure of actual model accuracy (fig. S7D). We provide 

RoseTTAFold models and accompanying accuracy predictions for closed and open states of 

all human GPCRs of currently unknown structure.

Protein structures can provide insight into how mutations in key proteins lead to human 

disease. We identified human proteins without close homologs of known structure 

that contain multiple disease-causing mutations or have been the subject of intensive 

experimental investigation (see Methods). We used RoseTTAFold to generate models for 

693 domains from such proteins. Over one-third of these models have a predicted lDDT > 

0.8, which corresponded to an average Cα-RMSD of 2.6 Å on CASP14 targets (fig. S8). 

Here, we focus on three examples that illustrate the different ways in which structure models 

can provide insight into the function or mechanisms of diseases.

Deficiencies in TANGO2 (transport and Golgi organization protein 2) lead to metabolic 

disorders, and the protein plays an unknown role in Golgi membrane redistribution into 
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the ER (16, 17). The RoseTTAFold model of TANGO2 adopts an N-terminal nucleophile 

aminohydrolase (Ntn) fold (Fig. 3A) with well-aligned active site residues that are conserved 

in TANGO2 orthologs (Fig. 3B). Ntn superfamily members with structures similar to the 

RoseTTAFold model suggest that TANGO2 functions as an enzyme that might hydrolyze 

a carbon-nitrogen bond in a membrane component (18). Based on the model, known 

mutations that cause disease (magenta spheres in Fig. 3A) could act by hindering catalysis 

(R26K, R32Q, and L50P, near active site) or produce steric clashes (G154R) (19) in 

the hydrophobic core. By comparison, a homology model based on very distant (<15% 

sequence identity) homologs had multiple alignment shifts that misplace key conserved 

residues (fig. S9 and table S3)

The ADAM (A Disintegrin And Metalloprotease) and ADAMTS families of 

metalloproteases are encoded by over 40 human genes, mediate cell-cell and cell-matrix 

interactions (20, 21) and are involved in a range of human diseases, including cancer 

metastasis, inflammatory disorders, neurological diseases and asthma (21, 22). The ADAMs 

contain prodomain and metalloprotease domains; the fold of the metalloprotease is known 

(23, 24), but not that of the prodomain, which has no homologs of known structure. 

The RoseTTAFold predicted structure of the ADAM33 prodomain has a lipocalin-like beta-

barrel fold (Fig. 3C) belonging to an extended superfamily that includes metalloprotease 

inhibitors (MPIs) (25). There is a cysteine in an extension following the predicted 

prodomain barrel; taken together, these data are consistent with experimental data 

suggesting that the ADAM prodomain inhibits metalloprotease activity using a cysteine 

switch (26). Conserved residues within ADAM33 orthologs line one side of the barrel and 

likely interact with the metalloprotease (Fig. 3D).

Transmembrane spanning Ceramide synthase (CERS1) is a key enzyme in sphingolipid 

metabolism which uses acyl-CoA to generate ceramides with various acyl chain lengths 

that regulate differentiation, proliferation, and apoptosis (27). Structure information is not 

available for any of the CerS enzymes or their homologs, and the number and orientation 

of transmembrane helices (TMH) are not known (28). The RoseTTAFold CERS1 model for 

residues 98 to 304 (Pfam TLC domain) (29) includes six TMH that traverse the membrane 

in an up and down arrangement (Fig. 3E). A central crevice extends into the membrane and 

is lined with residues required for activity (His182 and Asp213) (30) or conserved (W298), 

as well as a pathogenic mutation (H183Q) found in progressive myoclonus epilepsy and 

dementia that decreases ceramide levels (31). This active site composition (His182, Asp 213, 

and potentially a neighboring Ser212) suggests testable reaction mechanisms for the enzyme 

(Fig. 3F).

Direct generation of protein-protein complex models

The final layer of the end-to-end version of our 3-track network generates 3D structure 

models by combining features from discontinuous crops of the protein sequence (two 

segments of the protein with a chain break between them). We reasoned that because the 

network can seamlessly handle chain breaks, it might be able to predict the structure of 

protein-protein complexes directly from sequence information. Rather than providing the 

network the sequence of a single protein, with or without possible template structures, two 
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or more sequences (and possible templates for these) can be input, with the output the 

backbone coordinates of two or more protein chains. Thus, the network enables the direct 

building of structure models for protein-protein complexes from sequence information, 

short circuiting the standard procedure of building models for individual subunits and then 

carrying out rigid-body docking. In addition to the great reduction in compute time required 

(complex models are generated from sequence information in ~30 min on a 24G TITAN 

RTX GPU), this approach implements “flexible backbone” docking almost by construction 

as the structures of the chains are predicted in the context of each other. We tested the end-

to-end 3-track network on paired sequence alignments for complexes of known structures 

(32) (see Methods and table S4 for details) containing two (Fig. 4A) or three (Fig. 4B) 

chains, and in many cases, the resulting models were very close to the actual structures 

(TM-score (33) > 0.8). Information on residue-residue co-evolution between the paired 

sequences likely contributes to the accuracy of the rigid body placement as more accurate 

complex structures were generated when more sequences were available (fig. S10). The 

network was trained on monomeric proteins, not complexes, so there may be some training 

set bias in the monomer structures, but there is none for the complexes.

To illustrate the application of RoseTTAFold to complexes of unknown structure with 

more than three chains, we used it to generate models of the complete four-chain human 

IL-12R/IL-12 complex (Fig. 4C and fig. S11). A previously published cryo-EM map of 

the IL-12 receptor complex indicated a similar topology to that of the IL-23 receptor; 

however, the resolution was not sufficient to observe the detailed interaction between 

IL-12Rβ2 and IL-12p35 (34). Such an understanding is important for dissecting the specific 

actions of IL-12 and IL-23 and generating inhibitors that block IL-12 without impacting 

IL-23 signaling. The RoseTTAFold model fits the experimental cryo-EM density well and 

identified a shared interaction between Y189 in IL-12p35 and G115 in IL-12Rβ2 analogous 

to the packing between W156 in IL-23p19 with G116 in IL-23R. In addition, the model 

suggests a role for the IL-12Rβ2 N-terminal peptide (residue 24-31) in IL-12 binding not 

observed in the IL-12 cryo-electron microscopy (IL-12Rβ2 D26 may interact with nearby 

K190 and K194 in IL-12p35), which may provide an avenue to target the interaction 

between IL-12 and IL-12Rβ2 specifically.

Conclusions

RoseTTAFold enables solutions of challenging X-ray crystallography and cryo-EM 

modeling problems, provides insight into protein function in the absence of experimentally 

determined structures, and rapidly generates accurate models of protein-protein complexes. 

Further training on protein-protein complex datasets will likely further improve the 

modeling of the structures of multiprotein assemblies. The approach can be readily 

coupled with existing small molecule and protein binder design methodology to improve 

computational discovery of new protein and small molecule ligands for targets of interest. 

The simultaneous processing of sequence, distance, and coordinate information by the 

three-track architecture opens the door to new approaches incorporating constraints and 

experimental information at all three levels for problems ranging from cryo-EM structure 

determination to protein design.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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One-Sentence Summary

Accurate protein structure modeling enables the rapid solution of protein structures and 

provides insights into function.
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Fig. 1. Network architecture and performance.
(A) RoseTTAFold architecture with 1D, 2D, and 3D attention tracks. Multiple connections 

between tracks allow the network to simultaneously learn relationships within and between 

sequences, distances, and coordinates (see Methods and fig. S1 for details). (B) Average 

TM-score of prediction methods on the CASP14 targets. Zhang-server and BAKER-

ROSETTASERVER were the top 2 server groups while AlphaFold2 and BAKER were 

the top 2 human groups in CASP14; BAKER-ROSETTASERVER and BAKER predictions 

were based on trRosetta. Predictions with the 2-track model and RoseTTAFold (both end-to-

end and pyRosetta version) were completely automated. (C) Blind benchmark results on 

CAMEO medium and hard targets; model accuracies are TM-score values from the CAMEO 

website (https://cameo3d.org/).
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Fig. 2. Enabling experimental structure determination with RoseTTAFold.
(A-B) Successful molecular replacement with RoseTTAFold models. (A) SLP. (top) C-

terminal domain: comparison of final refined structure (gray) to RoseTTAFold model (blue); 

there are no homologs with known structure. (bottom) N-terminal domain: refined structure 

is in gray, and RoseTTAFold model is colored by the estimated RMS error (ranging from 

blue for 0.67 Å to red for 2 Å or greater). 95 Cα atoms of the RoseTTAFold model can be 

superimposed within 3 Å of Cα atoms in the final structure, yielding a Cα-RMSD of 0.98 

Å. In contrast, only 54 Cα atoms of the closest template (4l3a, brown) can be superimposed 

(with a Cα-RMSD of 1.69 Å). (B) Refined structure of Lrbp (gray) with the closest 

RoseTTAFold model (blue) superimposed; residues having estimated RMS error greater 

than 1.3 Å are omitted (full model is in fig. S5C). (C) Cryo-EM structure determination of 

p101 Gβγ binding domain (GBD) in a heterodimeric PI3Kγ complex using RoseTTAFold. 

(top) RoseTTAFold models colored in a rainbow from the N-terminus (blue) to the C-

terminus (red) have a consistent all-beta topology with a clear correspondence to the density 

map. (bottom) Comparison of the final refined structure to the RoseTTAFold model colored 

by predicted RMS error ranging from blue for 1.5 Å or less to red 3 Å or greater. The 

actual Cα-RMSD between the predicted structure and final refined structure is 3.0 Å over 

the beta-sheets. Figure prepared with ChimeraX (35).
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Fig. 3. RoseTTAFold models provide insights into function.
(A) TANGO2 model, colored in a rainbow from the N-terminus (blue) to the C-terminus 

(red), adopts an Ntn hydrolase fold. Pathogenic mutation sites are in magenta spheres. (B) 
Predicted TANGO2 active site colored by ortholog conservation in rainbow scale from 

variable (blue) to conserved (red) with conserved residues in stick and labeled. Pathogenic 

mutations (spheres with wild-type side chains in the sticks) are labeled in magenta; 

select neighboring residues are depicted in the sticks. (C) ADAM33 prodomain adopts a 

lipocalin-like barrel shown in a rainbow from N-terminus (blue) to C-terminus (red). (D) 
ADAM33 model surface rendering colored by ortholog conservation from blue (variable) 

to red (conserved), highlighting a conserved surface patch. (E) CERS1 transmembrane 

structure prediction is colored from N-terminus (blue) to C-terminus (red), with a pathogenic 

mutation in TMH2 near a central cavity in magenta. (F) Zoom of CERS1 active site with 

residues colored by ortholog conservation from variable (blue) to conserved (red). Residues 

that contribute to catalysis (H182 and D213) or are conserved (W298 and D213) line the 

cavity. The conserved pathogenic mutation is adjacent to the active site.
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Fig. 4. Complex structure prediction using RoseTTAFold.
(A, B) Prediction of structures of E.coli protein complexes from sequence information. 

Experimentally determined structures are on the left, RoseTTAFold models, on the right; the 

TMscores below indicate the extent of structural similarity. (A) Two chain complexes. The 

first subunit is colored in gray, and the second subunit is colored in a rainbow from blue 

(N-terminal) to red (C-terminal). (B) Three chain complexes. Subunits are colored in gray, 

cyan, and magenta. (C) IL-12R/IL-12 complex structure generated by RoseTTAFold fits the 

previously published cryo-EM density (EMD-21645).
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