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Abstract

There is increasing evidence for a cerebellar contribution to cognitive processing, but the specific 

input pathways conveying this information remain unclear. We probed the role of climbing fiber 

inputs to Purkinje cells in generating and evaluating predictions about associations between 

motor actions, sensory stimuli and reward. We trained mice to perform a visuomotor integration 

task to receive a reward and interleaved cued and random rewards between task trials. Using 

two-photon calcium imaging and Neuropixels probe recordings of Purkinje cell activity, we show 

that climbing fibers signal reward expectation, delivery and omission. These signals map onto 

cerebellar microzones, with reward delivery activating some microzones and suppressing others, 

and with reward omission activating both reward-activated and reward-suppressed microzones. 

Moreover, responses to predictable rewards are progressively suppressed during learning. Our 

findings elucidate a specific input pathway for cerebellar contributions to reward signaling 

and provide a mechanistic link between cerebellar activity and the creation and evaluation of 

predictions.

The cerebellum is thought to facilitate smooth behavioral execution and learning by 

generating expectations about the sensory consequences of actions and using sensory input 

to inform future motor output—that is, forming internal models of how we interact with 

the world 1,2 . Purkinje cells, the output neurons of the cerebellar cortex, are crucial for the 

construction and updating of internal models 3 . These neurons receive thousands of inputs 

from parallel fibers carrying contextual sensory and motor information, and a single but 

exceptionally strong input from a climbing fiber. These climbing fibers, which generate 

complex spikes in Purkinje cells, carry supervisory instructive signals and modify the 

synaptic weights of parallel fiber inputs to Purkinje cells 4–6 .
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Climbing fiber activation triggers complex spikes in Purkinje cells at low rates (~0.5–2 

Hz) and yet exerts a powerful influence on cerebellar function at the level of Purkinje cell 

populations. This is due to the anatomical and functional relationships between inferior 

olive neurons, the source of climbing fibers, and Purkinje cells 7,8 . Olivary neurons are 

gap-junction coupled and exhibit subthreshold oscillations 9,10 , and neighboring olivary 

neurons, which innervate neighboring Purkinje cells, fire action potentials synchronously 

and consequently trigger synchronous complex spikes in neighboring Purkinje cells. In this 

way, functional clusters of Purkinje cells, known as microzones, experience climbing fiber 

activation coherently and coordinate cerebellar output via synchronous output to neurons of 

the cerebellar nuclei 11 . Population recording methods have recently made it possible to 

address how olivary neurons engage Purkinje cell populations during behavior 12–20 .

In well-studied tasks that engage the cerebellum, the instructive signals conveyed by 

climbing fibers are usually considered as error signals in an extrinsic framework; for 

example, retinal slip during visual tracking 21,22 . However, there is increasing evidence for 

the cerebellum’s involvement in a higher-order processing 23 including spatial navigation 24 , 

language processing 25 and, notably for our study, reward 15,26 . We therefore examined 

whether the climbing fiber inputs to Purkinje cells may carry internally generated instructive 

signals and tested this possibility directly by studying how reward context is represented by 

climbing fiber inputs to Purkinje cell populations.

We demonstrate topographically organized encoding of reward context in the complex 

spiking patterns of Purkinje cell populations in the lobule simplex of the cerebellar cortex, 

a region traditionally thought to modulate forelimb movements 15,27 . We recorded dendritic 

calcium signals (a proxy for climbing fiber input and complex spikes) using two-photon 

microscopy and made direct recordings of complex spikes using Neuropixels probes while 

mice received rewards with varying degrees of predictability: after performing a trained 

motor action, after a tone cue that preceded reward by a fixed delay and randomly without 

prompting. Population activity of Purkinje cells represented reward context in a diverse but 

predictable manner organized spatially into microzones: some microzones exhibited elevated 

activity at reward delivery (‘reward-activated microzones’), while other microzones were 

inhibited (‘reward-suppressed microzones’). Some of these microzones also exhibited an 

elevated rate of complex spiking in anticipation of upcoming reward, with this behavior 

preferentially expressed in reward-suppressed microzones. When rewards were omitted on 

motor trials, both reward-activated and reward-suppressed microzones exhibited omission-

related feedback error signals. Omitting tone-cued rewards also triggered feedback error 

signals and these signals occurred just after the time of expected reward. Finally, the degree 

of reward predictability modulated reward-related sensory responses in a graded fashion: the 

more predictable the reward, the smaller the sensory response it triggered. Combined with 

the recent demonstration that cerebellar granule cells also encode reward context 26 , our 

data demonstrate that the cerebellar cortex has access to the information streams necessary 

to create and evaluate expectations about higher-order variables.
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Results

Population Purkinje cell complex spike recordings during a sensorimotor task

We trained mice to perform a visually guided sensorimotor integration task to study the 

variety of climbing fiber signals conveyed to Purkinje cells during behavior. Mice were 

head-fixed in front of an array of monitors and trained to use a steering wheel placed in 

front of their forepaws to control a virtual object (Fig. 1a, left). The object appeared at an 

eccentric visual position ~45° from the visual midline and mice had to move it into the 

center of the environment to receive a delayed water reward. After ~10 days of pre-training 

aimed to establish an association between steering wheel turns and virtual object movement, 

mice were transitioned to a more difficult version of the task. Here, the object always 

appeared on the same side (left) at a fixed position and the mice were required to make 

a single, continuous turn of the steering wheel to translate the object/wheel to a visible 

target region ±15° from the visual midline (Fig. 1a, right). Each trial was initiated by the 

appearance of the object and well-trained mice-initiated movements as soon as the object 

appeared. After the mouse initiated a wheel movement, trial outcome was assessed by the 

position of the object when the mouse had, for the first time since trial start, stopped moving 

the wheel for 100 ms continuously. If the object was positioned within the central target 

region, a delayed reward was given 500 ms after the object was stopped (400 ms from 

trial evaluation). Mice performed 214±8 trials per session (mean ± s.e.m., n = 61 sessions 

from six mice) and there were three possible outcomes of each trial: undershoots, correct 

(rewarded) trials and overshoots (Fig. 1b). Behavioral performance plateaued after < 1 week 

on this final task version and resulted in the following breakdown of performance: 28 ± 4% 

undershoots, 59 ± 2% correct trials and 13 ± 3% overshoots (mean ± s.e.m., n = 6 mice, 

averaged within mouse for sessions ≥5 of the final task version; Fig. 1c). By comparison, 

performance on days 1 and 2 of the final task version was significantly lower (46 ± 3% 

correct trials, mean ± s.e.m., n = 6 mice, P < 0.05).

To image Purkinje cell populations during our task, we expressed Cre-dependent GCaMP6f 

virus in Pcp2(L7)-cre mice. Injections were targeted to the left lobule simplex and adjacent 

vermis (Fig. 1d), regions known to be involved in forelimb movements 15,27 . Purkinje 

cell population activity was recorded using resonant scanning two-photon microscopy to 

measure dendritic calcium signals, faithful indicators of climbing fiber input and complex 

spiking in Purkinje cells 28–31 . Our FOVs yielded 219 ± 27 (mean ± s.e.m., n = 13 different 

fields from nine mice) distinct dendritic ROIs corresponding to individual Purkinje cells 

(Fig. 1e). Individual dendritic ROIs exhibited fast calcium transients indicative of complex 

spikes and we extracted the size and timing of these events for each recorded neuron (Fig. 

1f).

As a first step toward understanding how Purkinje cell activity is related to different 

aspects of the behavior, we aligned the calcium responses of our neurons to two important 

time points in the task across trial outcomes: (1) movement initiation and (2) movement 

termination and reward delivery (which occurred with a fixed time interval), and sorted 

neurons by their response during these epochs on correct trials. Subsets of Purkinje cells 

exhibited elevated dendritic calcium signals in the interval immediately before movement 
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initiation and during the movement itself (Fig. 1g). Because animals usually initiated 

wheel movements immediately on object appearance, these signals may reflect either object 

appearance (a sensory signal) or the wheel movement (a motor signal). To distinguish 

these (not mutually exclusive) possibilities, we compared activity in trials where mice 

reacted rapidly from those in which they did not and wheel movement during trials to 

those made during inter-trial intervals (Supplementary Fig. 1). We found that while the 

object appearance itself could evoke responses in our recorded neurons, movement-aligned 

activity was similar for trials in which animals reacted quickly or slowly and also similar 

for wheel movements initiated within and outside trials. Furthermore, trial-by-trial analysis 

of population activity as a function of reaction time showed a tighter linkage between 

activity and movement onset than object appearance. Thus, movement onset-aligned activity 

is preferentially related to movement.

Many Purkinje cells also exhibited elevated calcium signals in the interval between the 

end of wheel movements and the reward, and at the time of the reward delivery itself 

(Fig. 1h). Overall, we found that movement onset-related activity was not predictive of 

trial outcome (Fig. 1i), while reward delivery on correct trials modulated our recorded 

populations potently (Fig. 1j). In subsequent experiments, we explored how reward-related 

signals were organized in Purkinje cell populations and how they could be modulated by 

reward context.

Topographic organization of reward-related signals

Microzones constitute a fundamental unit of cerebellar processing and are defined by the 

relationship between Purkinje cells and the climbing fibers that innervate them 7,8,28,30,32 . 

We asked whether the functional segregation of Purkinje cells activated by reward delivery 

maps onto microzones. To begin, instead of sorting ROIs on the basis of response 

magnitude, we sorted them on the basis of anatomy: orthogonally to the parasagittal axis 

of Purkinje cell dendrites. This sorting revealed groups of reward delivery-activated and 

reward delivery-suppressed Purkinje cells (Fig. 2a). To classify individual Purkinje cells 

into microzones systematically in all our recorded FOVs, we used PCA to reduce the 

dimensionality of each dataset and performed k-means clustering followed by a series of 

validation steps to identify microzonal clusters (see Methods and Supplementary Fig. 2). 

The clustering results for our example FOV are plotted for the first three components in 

Fig. 2b. These functionally defined clusters mapped onto anatomically clustered Purkinje 

cell populations, revealing almost perfect mediolateral segregation into microzones (Fig. 2c 

and Supplementary Fig. 3). This method yielded similar results to previously established 

correlation-based methods for identifying microzones, as evident from the blockdiagonal 

correlation matrix structure of our sorted Purkinje cells (see Methods and Supplementary 

Fig. 3). FOVs (670 μm × 670 μm) contained 5.3 ± 0.3 microzones (mean ± s.e.m., n = 

6 fields from six mice). Microzones were 170 ± 10 μm wide (~17 dendrites wide) and 

contained 34 ± 3 dendrites (n = 1,101 dendrites, 32 microzones), consistent with reported 

microzonal widths on the order of 100–200 μm 15,28,30 (Supplementary Fig. 3).

We used our microzonal groupings to ask how functionally related groups of Purkinje 

cells encoded reward-related activity in their complex spiking patterns. Most Purkinje 
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cells within a given microzone exhibited similar patterns of reward-related activity (Fig. 

2d) and microzones segregated into two groups—those that increased their activity on 

reward delivery (‘reward-activated’, Fig. 2d, Clusters 3, 5 and 6 and Fig. 2f) and those that 

decreased their activity on reward delivery (‘reward-suppressed’, Fig. 2d, Clusters 1, 2 and 

4 and Fig. 2g). Across our six FOVs, we found an equal proportion of reward-activated 

and reward-suppressed microzones (16 of each). These reward-related groupings were not 

strictly related to movement onset-related activity, with both reward-activated (11 of 16) 

and reward-suppressed (7 of 16) microzones showing significant activation at the time of 

movement onset (assessed across trials for intervals −300–0 ms before movement onset and 

compared to baseline firing rates; Wilcoxon signed-rank test). We also aligned a subset 

of our FOVs (four of six) to coarser anatomical maps of the cerebellar surface. These 

coarse maps showed a gross level of stereotypy between animals with alternating groups 

of reward-activated and reward-suppressed neurons that could contain multiple functionally 

identified microzones (Supplementary Fig. 4).

We next asked whether complex spikes in Purkinje cells, at the level of microzones, may 

encode upcoming reward predictively and whether they may signal lack of reward on 

incorrect trials. We found that both reward-activated and reward-suppressed microzones 

could exhibit elevated activity in the delay period between movement offset and reward 

(assessed across trials for delay intervals 0–200 ms and 200–400 ms after movement 

offset, and compared to interval 500 ms before movement offset; Wilcoxon signed-rank 

test, P<0.025 with Bonferroni correction), with a higher fraction of reward-suppressed 

microzones showing significant modulation (Fig. 2h). Activity during the delay period 

was similarly elevated on correct and incorrect trials (Fig. 2e–g), suggesting that mice 

used reward delivery as the ultimate signal reflecting trial outcome. Indeed, mice that 

licked predictively during the delay period (three of six mice) did so similarly for correct 

and incorrect trials. To rule out the possibility that delay-period activation was simply 

a reflection of this licking motor program, we correlated the level of activation in reward-

predictive microzones to the level of predictive licking that each animal exhibited and found 

no relationship (Supplementary Fig. 5). Thus, predictive licking cannot explain the elevated 

activity observed during the delay period.

Subsets of activated and suppressed microzones also exhibited elevated activity in the period 

after expected reward time on incorrect trials (assessed across trials for post-reward intervals 

100–300 ms and 300–500 ms after expected reward time compared to delay period 500–0 

ms before reward time; Wilcoxon signed-rank test, P < 0.025 with Bonferroni correction), 

with a higher proportion of reward-suppressed microzones showing significant modulation 

(Fig. 2h). Thus, complex spikes in Purkinje cell populations collectively encode reward-

related information in our task, including putatively predictive signals, bidirectionally 

modulated reactive signals and error-like signals associated with lack of reward on incorrect 

trials.

Predictability modulates reward-related sensory responses in trained mice

In some experiments, mice were occasionally provided with random rewards during inter-

trial intervals of the motor task to maintain their motivation. When we analyzed these 
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experiments and compared reward-related responses during the task to those given randomly 

during inter-trial intervals, we noticed that random rewards triggered significantly larger 

responses than rewards earned during correct trials of the task (Supplementary Fig. 6). 

We reasoned that this difference may reflect an expectation-dependent modulation of the 

reward-related sensory cue (solenoid sound), similarly to the suppression of climbing fiber 

responses to predicted periocular air puffs during eye-blink conditioning 33 .

To test this directly, most of the mice in our study (five of six mice from Fig. 2) were 

trained to perform the motor task with interleaved random or tone-cued rewards on a subset 

(10% each) of inter-trial intervals (Fig. 3a). Thus, we could compare how climbing fiber 

inputs to Purkinje cells convey information about random (not predictable), operant and 

tone-cued (fully predictable) rewards (Fig. 3b). Consistent with tone-cued rewards being 

more predictable (and carrying a greater degree of expectation) than operant rewards, all 

mice exhibited greater predictive licking during the delay between the tone cue and reward 

than during the delay between a correctly executed operant trial and reward (Supplementary 

Fig. 7). Predictive lick was, by definition, not present in the random reward condition. The 

level of reward predictability had a clear influence on reward-related sensory responses: 

random reward evoked the largest signals, operant rewards evoked signals of intermediate 

size and tone-cued rewards exhibited strong suppression of the sensory response typically 

associated with reward delivery (Fig. 3c,d). To further validate that reward predictability 

exerted a suppressive effect on reward-related sensory signals, we also analyzed data from 

two mice that were trained on an easier version of our task, where all vigorous wheel 

movements toward the midline produced a correct trial and were rewarded (see Methods). 

In these mice, we found that reward responses were suppressed even more than those mice 

trained on our normal task (Supplementary Fig. 8).

How does the predictability of reward alter the patterns of activity displayed by populations 

of Purkinje neurons? To answer this question, we computed correlations between the mean 

activity response vectors in each Purkinje cell over the interval 0–500 ms post-reward in our 

three reward conditions. Random and operant rewards triggered highly correlated activity 

patterns, confirming that similar subsets of Purkinje cell dendrites were activated in these 

two reward conditions. In contrast, the correlation between activity patterns recruited by 

either random or operant rewards with those recruited by tone-cued rewards was lower than 

between random and operant rewards (Fig. 3e), demonstrating that reward predictability 

modulated these responses in a similar manner. To test whether representations of reward 

predictability varied continuously or whether they were categorically different across our 

reward conditions, we performed trial-by-trial analysis of the reward responses in individual 

neurons for trials with different amounts of predictive licking. This analysis did not show 

any obvious trend of greater suppression of the reward response in trials with stronger 

predictive licking for either tone-cued or operant rewards (Supplementary Fig. 7). Thus, 

while predictive licking was categorically different across our different reward conditions, 

it was not sufficient to explain the differences in reward responses across different reward 

categories.

We also analyzed responses to random and cued rewards separately for Purkinje cells in 

reward-activated and reward-suppressed microzones (defined during the operant motor task; 
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Fig. 3f). We found that, on average, Purkinje cells from both groups were activated by 

the predictive tone cue and exhibited little modulation at the time of reward. In contrast, 

random reward delivery could activate not only those Purkinje cells that were activated by 

the reward cue in the operant task, but also Purkinje cells that were suppressed by operant 

rewards. Thus, the level of predictability exerts a bidirectional influence on reward-related 

activity across Purkinje cell populations, modulating responses when there is ambiguity in 

the outcome and remaining neutral when there is no ambiguity.

To validate that the reward-related modulation of Purkinje cell dendritic calcium signals 

does indeed reflect modulation in complex spiking and not some other process (for 

example, modulation of dendritic calcium signals by molecular layer interneurons 34 ), 

we complemented our imaging experiments with direct electrophysiological recordings 

of complex spikes in Purkinje cells (Fig. 4a) using Neuropixels probes. We performed 

these experiments in a minimal behavioral task in which we presented mice with tone-

cued and random rewards (without a motor task), and processed the electrophysiological 

recordings using automated spike sorting methods combined with post hoc manual curation 

(Supplementary Fig. 9 and see Methods). Recordings from Purkinje cells were readily 

identifiable by a range of criteria, including the presence of complex spikes (Fig. 4b, 

left) and high-frequency simple spikes (Fig. 4b, right), which exhibited characteristic 

pauses in firing after complex spikes (Fig. 4c). Most recorded neurons (56/61 cells, n = 

3 mice) exhibited an increase in complex spikes on delivery of random rewards (Fig. 4d). 

In agreement with our imaging experiments, the response to tone-cued rewards in these 

Purkinje cells was significantly suppressed (Fig. 4e,f, top). Furthermore, the minority of 

Purkinje cells in our recordings that exhibited suppressed complex spike response to random 

rewards also were activated by the tone cues and exhibited minimal modulation at reward 

time when rewards were cued (Fig. 4e,f). Thus, the results of our imaging experiments 

are highly consistent with those observed using direct electrophysiological recordings of 

complex spikes.

Modulation of reward-related responses develops with training

Reward expectation must, by definition, be associated with the development of trained 

behavior and expectation signals should be absent in naïve mice. To test this, we analyzed 

recordings from the first day of training, when mice could begin to form associations 

between rewards and the tone cues, wheel turns or solenoid clicks that preceded rewards. 

Naïve mice learned to lick to rewards over the course of this first session, but the majority 

of ‘within-trial’ rewards on this first day were given as auto-rewards (see Methods). In naïve 

mice, reward delivery evoked dendritic calcium events in Purkinje cells that were similar 

across all conditions (Fig. 5a–c). We observed the development of suppression of tone-cued 

rewards even on this first day of training. While random and within-trial rewards evoke 

similar responses, the response to tone-cued rewards was slightly reduced when averaging 

all tone-cued rewards (on average, ten) given on this first day. However, when we analyzed 

only the first three tone-cued rewards given in each session, we saw no difference in the 

response when we compared them to random rewards (Fig. 5d). Thus, the suppression of 

responses for predictable rewards was learned and could develop rapidly during training. 

To further support the idea that mice learned to associate task parameters and reward, we 

Kostadinov et al. Page 7

Nat Neurosci. Author manuscript; available in PMC 2022 February 17.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



compared the latency to the first lick for random rewards in naïve and trained mice. The lick 

latency in trained mice was significantly shorter than in naïve mice, consistent with a learned 

association that developed with training (Fig. 5e).

Fictive reward on operant trials triggers error signals across microzones

We next tested how omission of reward could produce an error response, similar to that 

observed at reward time on incorrect motor trials and to the reward-omission response 

recently reported by Heffley and colleagues 15 . We took advantage of the fact that the 

solenoid valve-associated sensory cue that was audible at reward time represents the most 

immediate signal that reward would be delivered across reward conditions in our task. 

We introduced perturbation trials on 10% of correct trials in our motor task in which we 

triggered an identical solenoid valve to the one that normally delivered our reward but 

was not coupled to reward: that is we gave a fictive reward (Fig. 6a). In five of our six 

mice, we recorded from FOVs that showed reward-related activity (Fig. 6b compared to Fig. 

2c) and measured the differences in neural activity and behavior between real and fictive 

reward presentation (Fig. 6c,d). Responses on trials with real and fictive reward were similar 

during the pre-reward delay period and the immediate post-reward period (Fig. 6c–g), 

demonstrating that mice could not distinguish between the sound of real and fictive reward. 

However, Purkinje cells exhibited strong activation in the later post-reward period (+100 to 

+200 ms) 15 , presumably when mice realized the lack of reward delivery (Fig. 6c–f). This 

reward-related error signal was present across our two groups of Purkinje cells (Fig. 6g). 

Thus, reward-related error signals transcend microzone boundaries: both reward-activated 

and suppressed microzones can convey these signals.

Feedback error signals caused by omission of tone-cued reward

Modulation of reward-related activity on tone-cued rewards is drastically reduced in trained 

animals. Given the cerebellum’s crucial role in motor timing 3,12,33,35 , we reasoned that 

mice may learn the delay interval between the cue and reward for tone-cued rewards and 

wondered how violations of this expectation would be represented in the climbing fiber 

input to Purkinje cells. To test this directly, we introduced tone cues in our task that were 

not followed by rewards (Fig. 7a). To obtain enough repetitions for each condition, we 

altered the likelihood of the reward event types during inter-trial intervals of our operant 

task, such that 30% of intervals contained a cued reward and 10% of intervals contained 

a cue but no reward (3:1 reward-to-omission ratio) and recorded from the same five mice 

subjected to fictive reward (Fig. 7b). In two of these mice, we also recorded video of 

orofacial movements during these experiments (Supplementary Fig. 10). Cued omission of 

reward evoked responses in many Purkinje cells (Fig. 7c,d) at the time of expected reward 

(computed over 0–200 ms post expected reward, Fig. 7e,f). These error signals were related 

to the expectation based on the tone cue, because we omitted any sensory signal at the time 

of the reward itself. Responses to the tone cue were similar for rewarded and unrewarded 

cues (Fig. 7e,f). We again asked if Purkinje cells defined as reward-activated and reward-

suppressed in our motor task encoded this reward omission differently and found that, as for 

our analysis of incorrect trials during the motor task, these error responses were expressed 

more strongly (but not exclusively) by neurons in reward-suppressed microzones (Fig. 7g). 

We also validated that these omission responses were present in our electrophysiological 
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recordings of Purkinje cells by omitting cued rewards in our simple conditioning task. 

We found neurons with significant increases in complex spike rates at expected reward 

time (Fig. 7h), confirming that omission-related error signals identified in our imaging 

experiments are reflected in the underlying complex spike patterns of Purkinje cells.

Discussion

The nature and variety of signals conveyed to Purkinje cell populations by climbing fibers 

has been vigorously debated. This debate has centered on whether climbing fibers carry 

feedback error signals or timing signals to sculpt ongoing and future actions 36 . Here we 

show that when mice learn to associate multiple parameters— operant wheel movements, 

tone cues and solenoid clicks—with reward, this reward context is encoded in climbing 

fiber input to Purkinje cells. Specifically, climbing fiber signals encode parameters related to 

internally generated expectations, namely those relating to reward expectation, delivery and 

evaluation. In this way, the cerebellum can use all relevant signals—be they self-generated 

or sensed—to make predictions about the future, evaluate these predictions and relay them 

to the rest of the brain.

Microzonal organization of reward signals in Purkinje cells

Our results demonstrate that climbing fiber inputs signal reward bidirectionally, as activation 

and suppression, via distinct but adjacent groups of microzones 7,32 . Purkinje cells in 

microzones that were suppressed by reward delivery were more likely to exhibit reward-

predictive activity, while Purkinje cells that exhibited reward-related sensory responses 

exhibited expectation-dependent modulation of these responses. However, when reward was 

expected but not delivered, both groups could exhibit error signals in response to this 

violated expectation. Notably, these error signals were strongest (that is, strongly engaged 

in both reward-activated and reward-suppressed microzones) in our fictive reward condition, 

when mice both made the correct action and were provided with the reward-associated 

sensory signal, and less prominent on incorrect motor trials and when tone-cued rewards 

were omitted. Mice also made larger, less stereotyped orofacial movements on omission of 

expected reward, presumably in search of the reward they were expecting. The generality 

of these error signals, which manifest both on a neural and behavioral level, suggests that 

when expectations are violated, climbing fibers may be activated in a heterogeneous manner 

to destroy previously created associations, since the outcomes of these expectations were not 

fulfilled.

Learned, temporally specific suppression of sensory responses to predictable rewards

The degree of predictability of upcoming reward exhibited a profound influence on reward-

related signals in our trained mice. The greater the likelihood of upcoming reward, the 

greater the suppression of responses to reward. Reward delivery elicited large climbing 

fiber responses in Purkinje cells when reward was delivered randomly, moderate responses 

when reward was delivered in a motor trial context in which success was not guaranteed 

and virtually no responses when reward was cued with a fully predictive tone. These 

reward-related expectations developed with training: responses to reward were similar at the 

very beginning of training and suppression of predictively reward-related signals developed 
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rapidly (during the first training session for fully predictable rewards). The mechanism 

of this suppression is unclear, but a potential source may be the cerebellum itself, whose 

output could exert either an indirect excitatory or direct inhibitory influence over the inferior 

olive 37 . These expectation signals were also temporally specific: omission of reward on 

tone-cued trials evoked omission-related activation of Purkinje cells specifically at the time 

of expected reward.

Relationship between reward-related signals in the two input streams to Purkinje cells

Cerebellar granule cells have recently also been shown to encode reward 26 , presumably 

driven by mossy fiber input of unknown origin. Assessing the similarity of these granule cell 

signals with reward-related climbing fiber signals will require a careful comparison of the 

reward contingencies of these signals, ideally using the same behavioral task. Specifically, a 

spatial organization of reward-related signals (Fig. 2a–d) and activity suppressed by reward 

(Fig. 2g) have not yet been observed in granule cells. If the granule cell and climbing 

fiber-mediated reward signals indeed exhibit similar behavioral contingencies, it will be 

interesting to examine whether these signals converge on the same Purkinje cells, as might 

be expected from microzonal functional organization 7 . Simultaneous encoding of reward-

related signals by granule cell and climbing fiber inputs to Purkinje cells parallels the 

acquisition of predictive signals in these inputs during delayed eye-blink conditioning 33,38 . 

Robust representation of reward signals in these two input pathways, which can drive 

plasticity mechanisms in Purkinje cells, may be crucial for the role of the cerebellar cortex in 

guiding learned behavior.

Relationship with reward signals elsewhere in the brain

Our data highlight the diversity of information about reward expectation and delivery 

provided by climbing fiber inputs to Purkinje cells. Reward-related complex spike responses 

are inversely scaled by reward predictability in both reward-activated and reward-suppressed 

microzones, consistent with temporal-difference prediction error models 39 invoked in 

studies of the midbrain dopaminergic system 40,41 and for Purkinje cells during eye-blink 

conditioning 33 . In this framework, unexpected stimuli should evoke stronger responses than 

predictable ones. However, in contrast to the predictions of temporal-difference models, in 

which neurons activated by reward delivery would be suppressed by omission of reward (and 

vice versa), we observed that reward omission was signaled as an increase in the climbing 

fiber input in both reward-activated and reward-suppressed Purkinje cells 15 .

The ramp-like increase in climbing fiber activity observed in some Purkinje cells in 

anticipation of reward (Fig. 2d–h) represents a non-canonical mode of firing for climbing 

fibers, which typically have been reported to exhibit brief changes in firing rates locked 

to sensory and motor events. The mechanism of this steady activation is not clear, but 

it may reflect a change in excitability of olivary neurons triggered by descending inputs 

from the cerebellum itself 37,42–44 . These patterns of activation are similar to those of 

GABAergic neurons in the ventral tegmental area 41 and serotonergic neurons in the dorsal 

raphe nucleus 45 , which progressively increase their activity in anticipation of upcoming 

reward.
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Understanding how cerebellar circuits engage with processing of reward in other parts of 

the brain is an important avenue for future research. The afferent inputs to the inferior olive 

arise from a variety of cortical and subcortical sources 37,46 . Cerebellar outputs target the 

midbrain dopaminergic system 47 and can influence both premotor 48,49 and basal ganglia 50 

circuits via the thalamus. Thus, the olivocerebellar system may interact with the canonical 

reward circuitry of the brain through these reciprocal connections. Overall, our findings 

lend further support to the idea that the cerebellum coordinates with the rest of the brain to 

process a range of cognitive functions.

Methods

Animals

All animal procedures were approved by the local Animal Welfare and Ethical Review 

Board at University College London and performed under license from the UK Home 

Office in accordance with the Animals (Scientific Procedures) Act 1986. We used male 

Pcp2(L7)-Cre mice (line Jdhu—B6.Cg-Tg(Pcp2-Cre)3555Jdhu/J) 51 aged between three and 

six months. Male mice were preferred in our task because they were larger and more 

willing to initiate wheel movements at the beginning of training, facilitating more rapid 

learning in our task. Mice were group housed before surgery, single-housed after surgery and 

maintained on a 12/12 day-night cycle. In total, data from 12 mice (nine imaging and three 

electrophysiology) were used in this study.

Headplating, virus injection and chronic window installation

A minimum of 2 h before surgery, mice were injected with dexamethasone to reduce 

swelling during surgery. A single procedure, during which mice were maintained under 1.5–

2% isoflurane anesthesia, was performed on each mouse lasting approximately 2 h to install 

a headplate over the cerebellar cortex, infect Purkinje cells with GCaMP6f and install a 

chronic window for chronic imaging experiments. Buprenorphine (1 mg kg−1, subcutaneous, 

Vetergesic) was administered peri-operatively for analgesia. Once mice were anesthetized, 

custom headplates with an oval inner opening 7 mm long and 9 mm wide were installed over 

the forelimb regions of the cerebellar cortex on the left side of each mouse (lobule simplex 

and adjacent paravermis lobules V and VI) and secured with dental cement (Super-Bond 

C&B, Sun-Medical). This corresponded to the posterior tip of the interparietal bone, 1.8 mm 

displaced from the midline (approximately 6 mm caudal and 1.8 mm lateral from bregma). 

Mice to be used for imaging experiments were next injected with virus and implanted with a 

cranial window, while mice used for electrophysiology experiments were allowed to recover 

at this point.

For mice used in imaging experiments, we performed a 3 mm craniotomy, centered 

in the middle of the headplate hole, to expose the cerebellar cortex for virus 

injection and window installation. We then injected Cre-dependent GCaMP6f 52 virus 

(AAV1.CAG.Flex.GCaMP6f.WPRE.SV40) diluted 1:12 from stock titer in three locations 

spanning paravermis and intermediate lobule simplex. At each location, ~100 nl of virus 

solution was pressure-injected at depths of 500, 375 and 250 μm below the cerebellar surface 

at 2 min intervals. We waited ~5 min after the final of set of three injections before retracting 
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the injection pipette. In total, ~1 μl of diluted virus was injected per mouse. Finally, a 3 mm 

single-paned coverslip was press-fit in to the craniotomy, sealed to the skull by a thin layer 

of cyanoacrylate (VetBond) and fixed in place by dental cement. The conical portion of a 

nitrile rubber seal (RS Components, stock number 749-581) was then glued to the headplate 

with dental cement and filled with Kwik-Cast to protect the window preparation during 

recovery and between recording sessions. Mice were allowed to recover for a minimum of 

7 days before beginning water restriction, during which time they were given post-operative 

analgesia as needed.

After mice had recovered from surgery, they were placed under water restriction for at 

least 5 days during which time they were acclimated to the recording setup and expression-

checked. All mice were maintained at 80–85% of their initial weight over the course of 

recording experiments. Trained mice typically received all their water for the day from 

rewards during the behavioral task, while naïve mice were supplemented to 1 g water per 

day with Hydrogel.

On the day of electrophysiology experiments, a small craniotomy (<1 mm diameter) was 

performed over the proximal part of lobule simplex under brief anesthesia (<20 min), 

a nitrile rubber seal was affixed to the headplate to act as a recording chamber and 

the chamber was filled with Kwik-Cast. Mice were allowed to recover for >2 h before 

experiments began.

Behavior

Motor task training protocol—Mice were head-fixed in front of an array of three 

monitors with screens arranged at 135° relative to each other and the central screen directly 

in front of the mouse (creating three sides of an octagon). Below their forepaws was a Lego 

rubber tire that could be rotated left and right and whose angle was measured using a rotary 

encoder coupled to the wheel’s axle. We used the MATLAB-based software ViRMEn 53 

to construct and operate the virtual reality environment. The rotation of the steering wheel 

translated the virtual object (a revolving black and white beach ball) displayed on the 

screens during each operant motor trial.

Mice were initially trained to translate the virtual object, which appeared in the middle of 

either the left or right screens (at +45° or −45°), toward the visual midline to receive a 

reward (inspired by the visual decision-making task of Burgess and colleagues 54 ), at a 

high wheel gain (9° per mm wheel rotation). On the first few days of training, the virtual 

object drifted toward the midline and triggered an auto-reward after a long delay (60–180 

s). These auto-reward sessions were useful to allow mice to make the initial associations 

necessary to perform the more difficult versions of the task. The data from naïve mice shown 

in Fig. 5 come from the first day of these auto-reward sessions. After several days (~1 

week of training), mice learned to make wheel turns on their own accord to receive rewards. 

At this point, they were switched to a unilateral version of the task (left trials only) and 

increased the difficulty in multiple steps. We decreased the gain to 6° per mm and rewarded 

all trials in which the mice moved the object past the visual midline. This simplified task 

version facilitated training mice to react rapidly to object appearance and to make vigorous 

movements. The data shown in Supplementary Fig. 8 come from this task version. We then 
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made the task slightly harder by decreasing the gain to 2.25° per mm, so that mice had to 

make more than one movement (typically two) to get the wheel to the target region (±15° 

from the visual midline) and only reward trials in which the object was left unmoved in the 

target region for 500 ms. After mice learned to do this consistently (on >70% of trials), we 

analyzed the wheel movements for each mouse and identified a gain for each mouse that 

was most likely to produce a correct trial in a single movement—defined as one where the 

wheel is stopped in the target region for 100 ms. The mean gain across the mice used in 

this study was 3.3 ° per mm corresponding to a 13.6 mm translation of the wheel to hit the 

center of the target (range 2.5–4° per mm). On the first day that mice were trained on this 

final task version, their performance was 30–50% and plateaued at ~60% after about 1 week 

of training on this final task version. All recordings in ‘trained’ mice were performed after 

behavior had plateaued.

Rewards on correct trials consisted of ~3 μl of a sugar water solution (5% sucrose) and 

were delivered through a solenoid valve (NResearch, part number 225PNC1-21) whose click 

was audible to the mouse. Reward delivery on correct motor trials was delivered 400 ms 

after trial evaluation (500 ms after the wheel stopped moving) and were followed by short 

(0–2 s) timeout, while incorrect motor trials were followed by a long (5–7 s) timeout. After 

completion of the timeout, a variable withhold period (1.5–2.5 s) was enforced, in which 

time mice were obligated to not lick or turn the steering wheel. Licks were detected using 

an electrical lick circuit 55 . As indicated in the main text, random or tone-cued reward 

were administered on the completion of these withhold periods. Tone cues for reward trials 

consisted of a 100 ms long, 4 kHz tone followed by 400 ms of silence before reward 

delivery. The timing of these cued reward was designed to mimic those of the operant motor 

rewards, which required the wheel to be stopped for 100 ms to trigger a reward 400 ms later 

(same 500 ms total delay). Random rewards were given immediately on the completion of 

the withhold period. In all mice used for the analyses in this study, random and tone-cued 

reward were included throughout training with 10% probability of each extra reward type 

being given on any single inter-trial interval, except in perturbation experiments as indicated. 

Behavioral parameters and task-related triggers were fed back to the virtual reality system 

through an Arduino and National Instruments DAQ card (NI USB-6212).

Pavlovian conditioning protocol—Mice used for Neuropixels electrophysiology 

experiments were trained on a Pavlovian conditioning protocol consisting of an equal 

mixture of cued and random rewards during training (nine training sessions). The same 

tone cues, timing intervals and solenoid valves were used for these experiments as for the 

tone-cued and random reward imaging experiments. On the day of recording (session 10), 

mice were presented with 50 baseline trials of cued and random rewards (equal probability), 

after which 20% of rewards were randomly omitted.

Data acquisition

Two-photon calcium imaging—Imaging experiments were performed through a 

16×/0.8 NA objective (Nikon) using a Sutter MOM microscope equipped with the Resonant 

Scan box module. A Ti:Sapphire laser tuned to 930 nm (Mai Tai, Spectra Physics) was raster 

scanned using a resonant scanning galvanometer (8 kHz, Cambridge Technologies) and 
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images were collected at 512 × 512 pixel resolution over FOVs of 670 μm × 670 μm at 30 

Hz. Sample plane power used for recordings ranged from 30 to 70 mW and recordings were 

performed midway between the pial surface and the Purkinje cell body layer, at depths of 

~75 μm. The microscope was controlled using ScanImage (v.2015, Vidrio Technologies) and 

tilted to ~10° so that the objective was orthogonal to the surface of the brain and coverglass. 

Blood vessel landmarks were used to approximately find the same FOV across imaging 

sessions and fine scale adjustments were made to maximize day-to-day overlap by taking 

short imaging movies (10 s) and aligning them to the previous day’s recordings.

Electrophysiological recordings—Electrophysiological recordings were made using 

Neuropixels (‘Phase 3A’) electrode arrays 56 mounted on a custom three-dimensionally 

printed plastic piece and affixed to a three-axis micromanipulator with one axis tilted to be 

perpendicular to stereotaxic coordinates in the sagittal plane. This manipulator axis was used 

to lower the probe into the cerebellum at ~8 μm.s−1 to a final depth of ~3 mm. Electrodes 

were allowed to settle for a minimum of 20 min before beginning experiments. Signals were 

recorded from the distal 384 channels (covering ~3.84 mm of linear distance). Recordings 

were made in external reference mode with gain of 500 for the action potential band (300 Hz 

high-pass filter) and acquired at 30 kHz using SpikeGLX software (http://billkarsh.github.io/

SpikeGLX/). Electrodes were coated with a lipophilic dye (DiI) to facilitate histological 

identification of electrode tracks.

Video analysis of orofacial movements—Frontal video of mice on omission trials 

was recorded at 100 Hz using an Allied Vision Mako U-130B camera. To analyze orofacial 

movements, the brightness of a region of interest surrounding each mouse’s mouth (~4 

× 8 mm) was averaged, baseline-subtracted (eighth percentile of a 2 s rolling average 

surrounding each data time point) and aligned to behavior. Because the mice tongues 

appeared bright in these videos, we could use the brightness value at each time point as 

a proxy for tongue movements.

Anatomical mapping and histology

The anatomical maps shown in Supplementary Fig. 4 were made by taking tiled z-stacks 

of the exposed portions of the cerebellum (in live mice) and stitching them to create a 

panoramic image of the cerebellar cortical surface. Imaging FOVs were manually aligned to 

these reference images.

For histological experiments requiring post-mortem histology, mice were deeply 

anesthetized with ketamine/xylazine then transcardially perfused with PBS then 4% 

paraformaldehyde in PBS. Brains were removed and post-fixed overnight in 4% 

paraformaldehyde in PBS.

Data analysis

Extraction of Purkinje cell dendritic ROIs and identification of putative 
complex spikes—ROIs corresponding to single Purkinje cells were extracted using a 

combination of Suite2p software in MATLAB 57 for initial source extraction and custom-
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written software to merge over-segmented dendrites. For each recorded FOV, we identified 

individual dendrites using the following protocol:

(1) After running initial segmentation using Suite2p, all dendritic segments 

corresponding to a fluorescent portion of a Purkinje cell dendrite in the mean 

fluorescence image were selected for further processing using Suite2p’s built-in 

user interface.

(2) Correlations of the baseline-subtracted (eighth percentile of a 2 s rolling average 

surrounding each data time point) fluorescence traces of all selected dendritic 

segments were computed. Dendritic segments that did not exhibit correlations 

above 0.5 with any other dendritic segments were classified as unique Purkinje 

cell ROIs.

(3) The dendritic segments that did exhibit correlations above 0.5 with any other 

segment were classified into non-redundant groups. These groups were then 

visualized in a custom-written MATLAB graphical user interface that displayed 

each segment in a different color and overlaid it and its correlated partners on 

the mean fluorescence image. Segments that originated from the same single 

dendrite (that is, had highly correlated fluorescence traces and were aligned in 

the axis of Purkinje cell dendrites) were merged. A weighted average of the 

fluorescence trace of each group of merged dendritic segments was computed on 

the basis of the number of pixels in each segment.

An event detection algorithm, MLspike 58 , was used to identify fast dendritic calcium 

transients, faithful indicators of complex spiking activity in Purkinje cells 28–30,59–61 , in 

each dendritic ROI. As input to MLspike, we used baseline-subtracted fluorescence traces 

(ΔF) to which we added the maximum value of each trace (input values near zero are 

problematic for MLspike). The baseline fluorescence parameter (F 0) was set as the 25th 

percentile of each fluorescence trace, the sampling rate (dt) was set at 1/30 (30 Hz) and the 

indicator decay parameter (tau) was set to 0.15. The output of MLspike is an event time, as 

well as an amplitude (an integer multiple of the unitary event size detected of each trace). 

Events detected in consecutive bins, which are very likely to reflect a large dendritic event 

corresponding to a single complex spike rather than multiple separate complex spikes at our 

imaging rates (30 Hz), were summed and binned in to the first time point of each sequence. 

Event amplitudes for each ROI were normalized by the mean amplitude of detected events 

for that ROI. The absolute event rate across all recorded Purkinje cell dendritic ROIs in this 

study was 1.4 ± 0.4 Hz (mean ± s.d., n = 2,854 ROIs from 13 FOVs in nine mice), consistent 

with previously reported rates of complex spiking during behavior 62 . Event amplitudes 

were converted into rates by multiplying by the imaging frequency (30 Hz), creating a 

complex spike firing rate weighted by event amplitude. Treating all detected complex spike 

events the same (that is, setting their magnitude equal to 1) produced very similar results 

(Supplementary Fig. 11).

Synchronization of behavior and recordings—All behavioral parameters—trial 

onset and offset triggers, wheel translation, reward deliveries, tone cues, virtual reality frame 

update times, two-photon imaging frame times and video frame times— were acquired 
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simultaneously and digitized at 5 kHz using a National Instruments (NI USB-6212) and 

saved using PackIO software 63 . Subsequent analysis was conducted off-line using custom-

written scripts in MATLAB (v.2017a or 2018a).

Recorded dendritic fluorescence traces and extracted events (complex spikes) were aligned 

to different behavioral events of interest at the first frame whose acquisition began after each 

event and averaged across occurrences of each of these behavioral events. Wheel movement 

initiation was defined as the first time on each motor trial that wheel velocity exceeded 1 

mm s−1. Binary licking traces, whose value was one when the mouse’s tongue contacted 

the lickport and was zero otherwise, were averaged in their raw format in all plots and 

quantifications.

Identification of Purkinje cell microzones

Initial spatial sorting of Purkinje cells was by (1) fitting a line through the pixels comprising 

each ROI and using this line to create a local direction vector for each ROI, (2) binning 

these ROI vectors at a density of 32 × 32 pixels—creating a 16 × 16 grid from our 512 × 

512 pixel images with one mean vector per square, (3) fitting local contour lines to this grid 

using MATLAB’s ‘streamline’ function and (4) grouping ROIs by their closest local contour 

line, sorting ROIs orthogonally to this contour line and concatenating groups closest to each 

contour line. ROIs were organized and indexed from medial to lateral, by convention. This 

analysis demonstrated clearly that parasagittal clusters of Purkinje cells exhibited uniformity 

in their responses to reward.

To systematically identify functional clusters of Purkinje cells (microzones) in our 

recordings, we devised the following analysis pipeline:

(1) We normalized our recordings by z-scoring our baseline-normalized 

fluorescence data matrices and performed PCA on both our whole baseline data 

matrix (‘all data’) as well as just spontaneous activity obtained by concatenating 

the withhold periods before the start of each trial (‘spontaneous only’).

(2) To determine the relevant principal component subspace in which to cluster 

our data, we performed 1,000 shuffles of our ‘all data’ matrix where each 

neuron’s activity was jittered in time over the interval ±400 ms (±12 imaging 

frames). We computed a mean and standard deviation of the variance explained 

by the principal components of these temporally jittered data and took the first 

n principal components of our real data whose variance explained exceeded the 

mean + 2 s.d. of the shuffled data. The number of principal components with 

significant information varied between four and seven, depending on the FOV.

(3) The coefficients associated with this number of principal components (p) were 

used for k-means clustering of the ‘all data’ matrix and ‘spontaneous only’ 

matrix. The number of clusters in this p-dimensional subspace of our data 

was chosen programmatically using silhouette criterion values to identify the 

optimal number from a range 1–12. To optimize clustering, centroid positions 

were re-seeded 1,000 times and the solution yielding the lowest within-cluster 

distances was used for further analysis.
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(4) Identified clusters were mapped on to anatomy and all further analysis was 

conducted using the ‘spontaneous only’ matrix to align with the original 

conception of microzones, but results from the ‘all data’ matrix were used as 

comparison.

(5) The following criteria were applied sequentially to refine identified microzones:

(a) Clusters with fewer than five members were merged with their closest 

neighbor.

(b) Clusters with clear multipeaked spatial distributions in the 

mediolateral axis were split into separate clusters. To identify 

multipeaked distributions, the mediolateral coordinates of ROI 

centroids were binned at ~80 μm per bin (64 pixels per bin) and 

normalized to the peak bin. Secondary peaks were defined as those 

containing counts greater than 40% of the largest bin of the histogram.

(c) ROIs that were spatial outliers along the mediolateral axis of a 

given cluster were excluded from further analysis. These outliers 

were defined as having a mediolateral centroid position greater than 

three scaled median absolute deviations from the median mediolateral 

centroid of the cluster.

(6) We sorted Purkinje cells within each cluster’s spatial as described above and 

also sorted microzones relative to each other on the basis of median ROI 

position. Thus, we sorted ROIs inside each microzone on the basis of their 

mediolateral position and also sorted microzones relative to each other on the 

basis of their mediolateral position.

Electrophysiological analysis

Data from Neuropixels recordings were automatically spike sorted with Kilosort 2 (https://

github.com/MouseLand/Kilosort2) 64 and manually curated using the ‘Phy’ GUI (https://

github.com/kwikteam/phy). Given the foliation of the cerebellar cortex, recordings typically 

yielded multiple crossings of the Purkinje cell layer and we were usually able to isolate 

4–5 Purkinje cell units from each layer. Purkinje cells were identified by their characteristic 

electrophysiological signature 65,66 , including the presence of complex spikes and simple 

spikes. The rate of complex spikes was 1.4 ± 0.5 Hz (mean ± s.d., n = 61 units, three 

recordings from three mice). As shown in Supplementary Fig. 9, complex spikes exhibited 

either a narrow waveform followed by spikelets if the recording site was perisomatic, 

or a broader waveform when the recording site was dendritic, i.e., in the molecular 

layer 66 . All recording sites were confirmed by post-hoc histology, in which recording 

tracks (labeled with DiI coating the recording electrode) were identified in 100 μm coronal 

cerebellar sections in brains fixed after recording and counterstained using Neurotrace 

435/455 (Supplementary Fig. 9a). Recording tracks were aligned to the Allen Mouse 

Common Coordinate Framework (CCF 67,68 ) using ‘Allen CCF tools’, a custom GUI for 

three-dimensional alignment of electrode tracks to histology 69 . Spike sorting analysis and 

complex spike identification were performed with the experimenter blind to task conditions. 

After these sorting procedures, units were aligned to behavior and grouped into reward-
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activated and reward-suppressed categories on the basis of responses to random reward. 

Units activated at reward omission were identified by inspection.

Statistical analysis

No statistical methods were used to pre-determine sample sizes, but our sample sizes are 

similar to those reported in previous publications 15,20,26 . No randomization of experimental 

subjects was necessary as all mice were trained and recorded under the same conditions. 

Behavioral events in each training session were randomized on a trial-by-trial basis within 

the temporal ranges and incidence rates described in the text. Data collection and analysis 

were not performed blind to the conditions of the experiment, but analysis relied on code 

that was standardized for all experimental conditions.

Categorical comparisons between proportions were made using the Chi-squared test. Data 

distributions were not assumed to be normally distributed and all statistical comparisons 

between groups of continuous variables were performed using non-parametric tests—the 

Wilcoxon rank-sum test and sign test were used to study differences between two groups of 

unpaired and paired data, respectively, and the Kruskal–Wallis test was used when more than 

two groups were compared. Bonferroni correction was applied for multiple comparisons. In 

general, 95% confidence intervals (P < 0.05) were used to define statistical significance.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Reporting Summary

Further information on research design is available in the Nature Research Reporting 

Summary linked to this article.
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Fig. 1. Population Purkinje cell complex spike imaging during a sensorimotor task.
a, Behavioral setup: mice were head-fixed in front of three monitors and trained to use a 

steering wheel to translate a virtual object from an eccentric visual position (45° left of 

midline) to the midline (±15° target) to obtain a delayed reward. b, Example behavioral 

trials: single undershoot (left), correct (middle) and overshoot (right) wheel trajectories, 

along with reward time and licking behavior. c, Behavioral performance in well-trained 

mice. Colored lines represent performance of individual mice (averaged across sessions), 

and thick black line represents average performance across mice. Data are shown as 

Kostadinov et al. Page 23

Nat Neurosci. Author manuscript; available in PMC 2022 February 17.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



mean±s.e.m. (n = 6 mice). d, GCaMP6f-labeled Purkinje cells in lobule simplex and 

adjacent vermis. A field of view (FOV) in a typical lobule simplex recording location is 

shown in cyan. Scale bar, 300 μm. e, Extracted Purkinje cell dendritic regions of interest 

(ROIs) from field highlighted in d. Scale bar, 100 μm. f, Six example Purkinje cell dendrite 

fluorescence traces (black) and extracted dendritic events (blue). The thickness of the 

blue line denotes event amplitude. g, Top: trial-averaged Ca2+ responses in Purkinje cell 

population aligned to wheel movement onset for undershoot, correct and overshoot trials. 

Cells are sorted by the first coefficient of principal component analysis (PCA) performed 

over the interval ±500 ms from movement onset on correct trials. Middle: trial-averaged 

steering wheel position. Bottom: trialaveraged licking. Position and licking traces are shown 

as mean±s.e.m. (n = 97 undershoots, 156 corrects and 18 overshoots). h, Same as g, 

but aligned to reward delivery and sorted by over the interval ±500 ms. Scale bar, 500 

ms. Purkinje cell dendritic responses were sorted independently in g and h. i, Mean time 

course of fluorescence responses (top) and detected events (bottom) aligned to movement 

onset (vertical dashed line). Mean response for statistical comparisons was computed on 

detected events over an interval of −300 to 0 ms from movement onset (bar above traces). 

Data are shown as mean±s.e.m. (n = 1,101 neurons from 6 FOVs in 6 mice). No group 

was significantly different from any other group (NS; Kruskal-Wallis test, H = 4.6, d.f. 

= 2, P = 0.1). j, Same as i, but aligned to reward time (500 ms after wheel stop). Mean 

response for statistical comparisons was computed on detected events over the interval of 

0 to +100 ms post-reward (bar above traces). Data are shown as mean ± s.e.m. (n = 1,101 

neurons from 6 FOVs in 6 mice). Response on correct trials was significantly different from 

response on undershoot and overshoot trials (Kruskal–Wallis test, H = 22.7, d.f. = 2, P = 

1×10−5, significance values for Bonferroni-corrected individual comparisons: correct versus 

undershoot trials, P = 0.004; correct versus overshoot trials, P=1×10−5; undershoot versus 

overshoot, P = 0.5). Statistics summary: n.s., not significant, **P<0.01.
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Fig. 2. Reward-activated and suppressed Purkinje cells segregate to distinct cerebellar 
microzones.
a, Trial-averaged Ca2+ responses in example FOV aligned to reward delivery on correct 

trials (left) or reward delivery time on incorrect trials (right), sorted anatomically from 

medial to lateral and warped by the local curvature of our recorded Purkinje cell ROIs. 

Scale bar, 500 ms. b, PCA projection of z-scored Purkinje cell dendritic Ca2+ activity 

(spontaneous activity only) onto first three components. Individual ROIs are colored on 

the basis of k-means clustering (k = 6) of neuronal projections onto first six principal 
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components (p = 6). Outlier ROIs shown in gray; n = 273 neurons. c, Anatomical mapping 

of functionally identified clusters. Colors correspond to those in b (outlier ROIs shown in 

gray). Scale bar, 100 μm. d, Trial-averaged dendritic events plotted separately for neurons 

within a cluster (left) and as the average microzone response (right) on correct trials. Data in 

right panels are shown as mean ± s.e.m. across trials. Group correspondence is denoted by 

color of y axis labels. e, Same as d for incorrect trials. Note that correct trial responses 

are cropped to better illustrate responses on incorrect trials. f, Time course of mean 

microzonal event rates on correct trials (black) and incorrect trials (red) for reward-activated 

microzones. Data are shown as mean ± s.e.m. across microzones (n = 16 microzones, 6 

mice). g, Same as f for reward-suppressed microzones (n = 16 microzones, 6 mice). d–g, 

Scale bars, 500 ms. Gray bars indicate mean ± 2 s.d. of baseline event rate. h, Fraction 

of reward-activated (gray) and reward-suppressed (cyan) microzones that show elevated 

activity during the delay period on correct trials (assessed using two-sided Wilcoxon signed-

rank test with Bonferroni correction), at the time of expected reward on incorrect trials 

(assessed using two-sided Wilcoxon signed-rank test with Bonferroni correction) and during 

the movement onset period on all trials (assessed using two-sided Wilcoxon signed-rank 

test). Statistical significance between proportions was assessed using a Chi-squared test (n = 

16 reward-activated and 16 reward-suppressed microzones, significance values for individual 

comparisons: delay period (correct trials), P = 0.03; expected reward time (incorrect trials), 

P = 0.03; movement onset (all trials), P=0.15). Statistics summary: n.s.,not significant, 

*P<0.05.
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Fig. 3. Predictability modulates reward responses in trained mice.
a, Schematic of reward perturbation experiments: during each behavioral session, we 

randomly interspersed random rewards (10% of inter-trial intervals) or tone-cued rewards 

(also 10% of inter-trial intervals; 500 ms delay between cue onset and reward). b, Top: 

trial-averaged population response of a representative FOV (same as Fig. 2) to random, 

operant and tone-cued rewards. ROIs are sorted first by mediolateral position of identified 

microzones, then mediolaterally within each microzone. Color blocks adjacent to each 

heatmap denote microzonal designation, following the color scheme of Fig. 2 (gray, 
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unclustered). Middle: trial-averaged steering wheel velocity. Bottom: trialaveraged licking. 

Velocity and licking are shown as mean ± s.e.m. across trials (n = 30 random rewards, 

156 trial rewards and 30 tone-cued rewards). Scale bar, 500 ms. c, Scatter plots showing 

pairwise comparisons of response amplitude (computed as mean over 0 to +100 ms after 

each event) across different reward conditions; n = 891 neurons from 5 FOVs in 5 mice. 

Data points from representative FOV (b) are shown in darker gray. d, Cell-wise average 

of Purkinje cell dendritic response to each reward-related event. Data are shown as mean 

± s.e.m. (n = 891 neurons from 5 FOVs in 5 mice, Kruskal-Wallis test, H = 460, d.f. = 3, 

P = 2×10−99, significance values for Bonferroni-corrected individual comparisons: random 

versus trial reward, P = 2×10−18; random versus cued reward, P = 3×10−33; trial versus 

cued reward, P= 0.009; trial reward versus tone cue, P = 1×10−57; cued reward versus tone 

cue, P= 5×10−82). e, Summary of Pearson’s correlations between pairs of reward-related 

events. Data are shown as box plots: center line, median; box edges, interquartile range; 

whiskers, range without outliers; gray points, outliers (n = 891 neurons from 5 FOVs 

in 5 mice, Kruskal-Wallis test, H = 237, d.f. = 3, P = 5×10−51, significance values for 

Bonferroni-corrected individual comparisons: random and trial reward versus random and 

cued reward, P= 7×10−32; random and trial reward versus trial and cued reward, P = 

3×10−35; random and cued reward versus trial and cued reward, P>0.9; random and cued 

reward versus random reward and tone cue, P = 1×10−17; trial and cued rewards versus 

random reward and tone cue, P = 4×10−20). f, Time course of mean responses across reward 

conditions for Purkinje cells in reward-activated microzones (top, n = 361 neurons) and 

reward-suppressed microzones (bottom, n = 470 neurons). Scale bar, 250 ms. Note that 

60 neurons were not clustered into a microzone and excluded from this analysis. Data are 

shown as mean ± s.e.m. Statistics summary: n.s., not significant, **P<0.01, ***P<0.001.
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Fig. 4. Electrophysiological recordings of complex spikes during cued and random reward 
presentation.
a, Example raw traces (gray) recorded on three adjacent vertically consecutive sites (20 μm 

vertical separation) of a Neuropixels probe within a Purkinje cell layer. The simple spikes 

and complex spikes of a single Purkinje cell are highlighted in black and red, respectively. 

Scale bar, 500 μV. Several other Purkinje cells were identified in this recording but are 

not highlighted. b, Examples of waveforms of complex spikes (CS waveform, left) and 

simple spikes (SS waveform, right) recording using Neuropixels probes (same recording 

as in a). Each panel shows detected spike waveform (mean ± s.d.) and 20 overlaid raw 

traces. c, Normalized histogram of simple spike firing rate (same neuron as a and b) aligned 

to time of complex spikes, demonstrating the characteristic post-CS pause. d, Peristimulus 

time histogram (bin size = 10 ms) of complex spikes in example units that were activated 

(top) and suppressed (bottom) by random reward delivery on random reward trials (left) 

and cued reward trials (right); n = 146 random rewards and 154 cued rewards. e, Same as 

d but for all recorded units that showed activation (top, n = 56 neurons from three mice) 

and suppression (bottom, n = 5 neurons from three mice) to random reward delivery. Data 

are shown as mean±s.e.m. f, Random and tone-cued reward responses (imaging data) in 

Purkinje cells (PCs) activated by random reward (top, n = 280 neurons, 236 of 361 from 

trial reward-activated microzones and 44 of 470 from trial reward-suppressed microzones) 

and Purkinje cells suppressed by random reward (bottom, n = 273 neurons, 28 of 361 from 
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trial reward-activated microzones and 245 of 470 from trial reward-suppressed microzones). 

Modulation of individual Purkinje cells was assessed by comparison of response in post-

reward period (33–133 ms post-reward) to pre-reward withhold period (1 s). Scale bar, 250 

ms. Data are shown as mean ± s.e.m.
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Fig. 5. Modulation of reward-related responses develops with training.
a, Top: trial-averaged population response of a representative FOV (same as Fig. 2) to 

random, operant and tone-cued rewards in naïve mice (first training session). ROIs are sorted 

first by mediolateral position of identified microzones, then mediolaterally within each 

identified microzone. Color blocks adjacent to each heatmap denote microzonal designation, 

following the color scheme of Fig. 2 (gray, unclustered). Middle: trial-averaged steering 

wheel velocity. Bottom: trial-averaged licking. Velocity and licking are shown as mean ± 

s.e.m. across trials; n = 8 random rewards, 70 trial rewards and 10 tone-cued rewards. 

Scale bar, 500 ms. b, Scatter plots showing pairwise comparisons of response amplitude 

(computed as mean over 0 to + 100 ms after each event) across different reward conditions; 

n = 1,187 neurons from 5 FOVs in 5 mice. Data points from a representative FOV (a) 

are shown in darker gray. c, Cell-wise average of Purkinje cell dendritic response to each 
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reward-related event, pooled over the same 1,187 cells in 5 mice. Data are shown as mean 

± s.e.m. d, Relative response magnitude in neurons responsive to random reward (mean 

response over 0–100 ms after random reward >2 s.d. above baseline) in trained (black), 

naïve mice (whole first session, cyan) and naïve mice (first three trials only, red). Data are 

shown as mean ± s.e.m.; n = 400 neurons (of 891) in trained mice and n = 710 neurons 

(of 1,187) in naïve mice (Kruskal-Wallis test, H = 1857, d.f. = 11, P<1×10−99, significance 

values for Bonferroni-corrected individual comparisons: trained versus naïve mice (trial 

reward), P = 1×10−73; trained versus naïve mice (cued reward), P = 1×10−59; trained versus 

naïve mice (tone cue), P = 3×10−15; naïve mice (all trials) versus naïve mice (first three 

trials) (cued reward), P = 2×10−91; naïve mice (all trials) versus naïve mice (first three trials) 

(tone cue), P = 7×10−43). e, Comparison of latency to first lick in trained mice (gray) and 

naïve mice (cyan). For naïve mice, trials in which mice did not produce a lick to reward 

delivery (typically the first 5–10 rewards) were excluded (n = 5 trained mice and 4 naïve 

mice; licks were not registered for one naïve mouse). Data are shown as mean ± s.e.m., P = 

0.02 (two-side Wilcoxon rank-sum test). Statistics summary: *P<0.05, ***P<0.001.
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Fig. 6. Fictive rewards on operant trials trigger error signals across microzones.
a, Schematic of fictive reward experiments: on 10% of correct motor trials, correct trials 

triggered a second solenoid that mimicked the reward sound. b, Anatomical mapping of 

functionally identified microzones from an example FOV (same as Fig. 2 on different 

recording day). Outlier ROIs shown in gray. Scale bar, 200 μm. c, Top: population response 

heatmap (trial-averaged events) of FOV from b to real (left) and fictive (right) rewards. 

ROIs are sorted first by mediolateral position of identified microzones, then mediolaterally 

within each identified microzone. Color blocks adjacent to each heatmap denote microzonal 
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designation, following the color scheme in b. Middle: trial-averaged steering wheel velocity. 

Bottom: trial-averaged licking. Velocity and licking are shown as mean ± s.e.m. across trials; 

n = 141 real rewards and 16 fictive rewards. Scale bar, 500 ms. d, Mean difference image 

(smoothed over three frames) comparing responses to real and fictive rewards. e, Pairwise 

comparisons of reward-related responses at different time intervals after delivery of real 

and fictive rewards. Data pooled from 832 Purkinje cell dendritic ROIs from 5 FOVs in 5 

mice (1 FOV per mouse). Data points from a representative FOV (b) are shown in darker 

gray. f, Cell-wise average of Purkinje cell dendritic response to each reward-related event. 

Data are shown as mean ± s.e.m. (n = 832 neurons from 5 FOVs in 5 mice, Kruskal-Wallis 

test, H = 333, d.f. = 3, P = 8×10−72, significance values for Bonferroni-corrected individual 

comparisons: real reward (0–100 ms) versus real reward (100–200 ms), P = 3×10−40; real 

reward (0–100 ms) versus fictive reward (0–100 ms), P = 0.7; real reward (100–200 ms) 

versus fictive reward (100–200 ms), P = 4×10−56). g, Time course of mean responses on 

real reward trials (black) and fictive reward trials (red) for Purkinje cells in reward-activated 

microzones (left, n = 368 neurons) and reward-suppressed microzones (right, n = 405 

neurons). Scale bar, 250 ms. Note that 59 neurons were not clustered into a microzone 

and excluded from this analysis. Data are shown as mean ± s.e.m.; n.s., not significant, 

***P<0.001.
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Fig. 7. Omission of cued rewards triggers feedback error signals.
a, Schematic of cued reward omission: during each behavioral session, we randomly 

interspersed random rewards as in previous experiments (10% of inter-trial intervals), 

tone-cued rewards (30% of inter-trial intervals) or tone cues with reward omitted (10% of 

inter-trial intervals). b, Anatomical mapping of functionally identified microzones from an 

example FOV (same as Fig. 2 but on a different recording day). Outlier ROIs shown in gray. 

Scale bar, 200 pm. c, Top: trial-averaged population response of a representative FOV to 

tone-cued rewards and omissions. ROIs are sorted first by mediolateral position of identified 
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microzones, then mediolaterally within each identified microzone. Color blocks adjacent to 

each heatmap denote microzonal designation. Middle: trial-averaged steering wheel velocity. 

Bottom: trial-averaged licking. Velocity and licking are shown as mean±s.e.m. across trials; 

n = 59 cued rewards and 20 cued omissions. Scale bar, 500 ms. d, Mean difference image 

(smoothed over three frames) comparing responses to real and fictive rewards. e, Pairwise 

comparisons of reward-related responses at different time intervals after delivery of real and 

fictive rewards. Data pooled from 765 Purkinje cell dendritic ROIs from 4 FOVs in 4 mice 

(1 FOV per mouse). Data points from a representative FOV (b) are shown in darker gray. f, 
Cell-wise average of Purkinje cell dendritic response to each reward-related event measured 

over interval 0–200 ms after each event. Data are shown as mean ± s.e.m. and statistical 

significance between cued rewards and cued omissions was assessed using the two-sided 

Wilcoxon signed-rank test (n = 765 neurons from 4 FOVs in 4 mice, P = 2×10−42). g, Time 

course of mean event rates (from imaging experiments) on real reward trials (black) and 

fictive reward trials (red) for Purkinje cells in reward-activated microzones (left, n = 349 

neurons) and reward-suppressed microzones (right, n = 362 neurons). Note that 54 neurons 

were not clustered into a microzone and excluded from this analysis. h, Time course of mean 

complex spike rates (from electrophysiology experiments) on real reward trials (black) and 

fictive reward trials (red) (n = 7 neurons from 3 mice). Electrophysiological complex spike 

recordings were acquired without a motor task. g,h, Scale bars, 250 ms. Data are shown as 

mean ± s.e.m. (P=0.02, two-sided Wilcoxon signed-rank test). Statistics summary: *P<0.05, 

***P<0.001.
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