
The TREES Toolbox—Probing the Basis of Axonal and Dendritic 
Branching

Hermann Cuntz,
Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology 
and Pharmacology, University College London, London, UK; Department of Systems and 
Computational Neurobiology, Max Planck Institute of Neurobiology, Martinsried, Germany; 
Wolfson Institute for Biomedical Research, University College London, Gower Street, London 
WC1E 6BT, UK

Friedrich Forstner,
Department of Systems and Computational Neurobiology, Max Planck Institute of Neurobiology, 
Martinsried, Germany

Alexander Borst,
Department of Systems and Computational Neurobiology, Max Planck Institute of Neurobiology, 
Martinsried, Germany

Michael Häusser
Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and 
Pharmacology, University College London, London, UK

Keywords

Morphology; Trees; Computational neuroanatomy; Dendrites; Axons; Toolbox; Matlab

It has now been 100 years since Ramon y Cajal described the remarkable diversity of 

neuronal branching. Only recently, however, have a number of rigorous formalisms emerged 

providing an accurate quantitative description of axonal and dendritic morphologies. We 

have launched a freely distributed open-source software package, the TREES toolbox, 
written in Matlab (Mathworks, Natick, MA), in order to help to pool together the resources 

offered by a wide variety of novel approaches to studying dendritic and axonal branching 

that have recently become available. This package introduces a simple general description 

of neuronal morphology as a graph and provides the basic tools to edit, visualize and 

analyze neuronal trees in the basis of this description. We then implement our own approach, 

assuming that neuronal branching can largely be expressed by local optimization of total 

wiring and conduction distances. We provide the corresponding modular extendable tools to 

automatically reconstruct neuronal branching from microscopy image stacks and to generate 

synthetic branched structures. The package is complemented by an extensive user interface 

to facilitate the generation, visualization and editing of neuronal tree structures. The TREES 

Correspondence to: Hermann Cuntz.

h.cuntz@ucl.ac.uk . 

Europe PMC Funders Group
Author Manuscript
Neuroinformatics. Author manuscript; available in PMC 2022 February 17.

Published in final edited form as:
Neuroinformatics. 2011 March 01; 9(1): 91–6. doi:10.1007/s12021-010-9093-7.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



toolbox is structured to make it easy for other groups to integrate their own code in order to 

implement their own specific applications.

Accurate predictions of computation in single neurons are nowadays well known to 

require detailed morphological representations. Tools for compartmental modelling such as 

NEURON, 1 Genesis 2 and neuroConstruct 3 have recently facilitated the modelling of small 

and large neural circuits involving detailed compartmental models of the neurons. Also, a 

new trend highlighting the importance of morphology for better understanding of network 

connectivity adds to the appeal of acquiring morphologies in their full level of detail. 
4 However, obtaining the morphologies of all neurons present in one network currently 

remains an insurmountable hurdle. On the other hand, a number of computational methods 

have recently emerged to face this challenge. The corresponding approaches can broadly be 

divided into two groups:

1. Strategies for faithful reconstruction of dendrites and axons directly from the 

experimental preparation. 5

2. Approaches for dealing with the more general understanding of neuronal 

branching and the generation of synthetic morphologies indistinguishable from 

their biological counterparts, thereby reproducing branching statistics and their 

variability observed in nature. 6

Both approaches are complementary and can each be subdivided into characteristic 

sequential steps: neuronal reconstruction typically can be decomposed into a sequence 

of image enhancement, skeletonization, tracing and post-processing, while the generation 

of synthetic branching structures involves a sequence of analyzing branching statistics, 

a growth process and several steps of postprocessing concerning pruning, diameter 

corrections and more. Constructing synthetic dendrites depends heavily on statistics 

1Hines ML, Carnevale NT (1997) The NEURON simulation environment. Neural Comput 9:1179−1209.
2Bower JM, Beeman D (1998) The book of Genesis: Exploring realistic neural models with the GEneral NEural SImulation System. 
Springer; New York.
3Gleeson P, Steuber V, Silver RA (2007) neuroConstruct: a tool for modeling networks of neurons in 3D space. Neuron 54:219−235.
4Lichtman JW, Sanes JR (2008) Ome sweet ome: what can the genome tell us about the connectome? Curr Opin Neurobiol 
18:346−353.
Ascoli GA (2010) The coming of age of the hippocampome. Neuroinformatics 8:1−3.
5e.g.
Evers JF, Schmitt S, Sibila M, Duch C (2005) Progress in functional neuroanatomy: precise automatic geometric reconstruction of 
neuronal morphology from confocal image stacks. J Neurophysiol 93:2331−2342.
Losavio BE, Liang Y, Santamaria-Pang A, Kakadiaris IA, Colbert CM, Saggau P (2008) Live neuron morphology automatically 
reconstructed from multiphoton and confocal imaging data. J Neurophysiol 100:2422−2429.
Oberlaender M, Bruno RM, Sakmann B, Broser PJ (2007) Transmitted light brightfield mosaic microscopy for three-dimensional 
tracing of single neuron morphology. J Biomed Opt 12:064−029.
Lu J, Fiala JC, Lichtman JW (2009) Semi-automated reconstruction of neural processes from large numbers of fluorescence images. 
PLoS One 4:e5655.
Vasilkoski Z, Stepanyants A (2009) Detection of the optimal neuron traces in confocal microscopy images. J Neurosci Methods 
178:197−210.
6e.g.
Ascoli GA (1999) Progress and perspectives in computational neuroanatomy. Anat Rec 257:195−207.
Ascoli GA, Krichmar JL, Scorcioni R, Nasuto SJ, Senft SL (2001) Computer generation and quantitative morphometric analysis of 
virtual neurons. Anat Embryol (Berl) 204:283−301.
Luczak A (2006) Spatial embedding of neuronal trees modeled by diffusive growth. J Neurosci Methods 157:132−141.
Koene RA, Tijms B, van HP, Postma F, de RA, Ramakers GJ, van PJ, van OA (2009) NETMORPH: a framework for the stochastic 
generation of large scale neuronal networks with realistic neuron morphologies. Neuroinformatics 7:195−210.
Cuntz H, Forstner F, Borst A, Hausser M (2010) One rule to grow them all: a general theory of neuronal branching and its practical 
application. PLoS Comput Biol 6:e1000877.

Cuntz et al. Page 2

Neuroinformatics. Author manuscript; available in PMC 2022 February 17.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



obtained from original reconstructions, while reconstruction algorithms can perform better 

when they incorporate general knowledge about morphology. The sequential character of 

these methods and their interdependence provide an excellent starting point for a more 

collaborative approach linking these neighbouring lines of research.

Specific functions for extracting statistics from trees, editing them and visualizing them 

are among the most elementary steps that are used throughout all approaches. With the 

TREES toolbox we have assembled a software package which contains most of these 

ubiquitous procedures, described in code that is simple and flexible in its usage. The 

software package is written in Matlab (Math-works, Natick, MA), the most widely used 

scientific programming language. This should allow these functions to be easily combined in 

order to generate highly sophisticated yet comprehensible code.

Most functions of the TREES toolbox take as a first input argument a representation of a 

neuron’s morphology as a tree, a simple structure with only few entries easily accessible 

from the command line or any Matlab script (Fig. 1a). We provide a few lines of code in 

Fig. 1 (see caption for further details) to demonstrate the use of the visualization function 

plot_tree (Fig. 1b), and both a branching statistics function BO tree and an editing function 

delete_tree (Fig. 1c).

The TREES toolbox contains separate topology-related functions (e.g. branch order or 

topological path length) or metric-related functions (e.g. segment length or branch density) 

to obtain simple branching parameters. Together with more general meta-functions (for 

example to sum up any quantity along the paths of a tree) these complement each other to 

allow the implementation of a wide variety of traditional measures available within one line 

of code. The TREES toolbox enables editing at the level of single or groups of nodes but 

also at the level of entire trees or groups of trees within a network. Deleting or inserting 

groups of nodes is straightforward but also more sophisticated functions are available 

such as concatenation, morphing, resampling, smoothing, and many others. These all are 

implemented each in their own dedicated Matlab function. Any set of branching statistics or 

electrotonic properties can be visualized in a multitude of different ways, mapped as colours, 

as morphometric transforms, in density plots or different contours and tree surrounding 

hulls. These visualization functions output simple Matlab graphic handles whose properties 

can be directly accessed at the command line or by a user in an interactive way. Also 

simple movies can be created in the scripting environment of the TREES toolbox. More 

sophisticated movies can be designed by exporting to Blender (http://www.blender.org/) or 

to the Persistence of Vision Raytracer, POV-Ray (http://www.povray.org/). Corresponding 

export functions are available via the.x3d format to Blender and for raytracing to POV-Ray 
with a number of features such as the preservation of a viewpoint from Matlab and a choice 

of various layouts. OpenGL (http://www.opengl.org/) rendering of cylinder-based neuronal 

tree models is directly available in the Matlab environment of the TREES toolbox.

To design a compartmental model and simulate current propagation in a branched structure, 

steady-state electrotonic features such as local input resistances, current transfer or steady-

state synaptic integration can be studied directly using the TREES toolbox in an interactive 

manner. This can for example be done using the sse_tree function (Fig. 2a). This function 

Cuntz et al. Page 3

Neuroinformatics. Author manuscript; available in PMC 2022 February 17.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

http://www.blender.org/
http://www.povray.org/
http://www.opengl.org/


computes the electrotonic signature 7 which is a matrix containing the current transfer from 

any node to any other node. Local input resistances can therefore be read out in the diagonal 

of this matrix (Fig. 2b). The impact of a current injection in one specific location on local 

voltages throughout the cell can be obtained from a single column out of the sse matrix 

(Fig. 2c). Changes in electrotonic properties can also be observed in real time while editing 

the morphology of a tree in the user interface. For more sophisticated electrotonic analysis, 

morphology and passive membrane properties of trees or groups of trees can be exported to 

Neuron with a set of dedicated functions.

In our own approach, synthetic neuronal trees are generated using optimized graphs. 8 The 

ease of use and the modularity of the construction process is demonstrated in Fig. 3 (see 

caption for the full details). In our approach, nodes are connected to minimize cable length 

and path distances along the tree towards the root. Figure 3a depicts the corresponding 

code and resulting tree when connecting nodes distributed on random locations (as a 

simplification instead of using more realistic synaptic target locations). In the next step 

nodes are redistributed on the tree to lay more densely along the branches and the paths 

along the tree are subsequently smoothed (Fig. 3b). Adding spatial noise is just another 

line of code (Fig. 3c). In a few final steps, diameter values are mapped onto the nodes, 

spine-like structures are added and the resulting tree structure is directly sent to be rendered 

by POV-Ray (Fig. 3d).

A similar modular and extendable approach is applicable to automated reconstruction from 

microscopy image stacks. There, image processing tools are first required to extract carrier 

points of the morphology. These are then connected and processed in similar ways as for the 

generation of synthetic neuronal trees. This flexible version of a modular algorithm should 

allow everybody in the community to append their own code. The ultimate goal is a method 

developed by the community to obtain multiple cylinder-based neuronal tree reconstructions 

from multiple tiled image stacks in a fully automated way. However, since fully automated 

reconstruction is still out of our reach for most preparations, the corresponding tool in the 

TREES toolbox is embedded in an extensive but well documented user interface (Fig. 4) 

which allows for complementary manual reconstructions of neuronal tree models from tiled 

image stacks. The user interface also allows the user to browse through directories of trees, 

edit them, and explore their properties. It is particularly useful for exploring the possibilities 

of the TREES toolbox before employing the corresponding functions in the command 

line interaction. Also, with the import and export functions within the user interface, the 

NEURON model and the POV-Ray rendering are just one click away.

The TREES toolbox is currently composed of 22,000 lines of commented Matlab code 

distributed over 120 functions. We invite users to incorporate any extensions and/or related 

code which they will develop. We hope that other groups can easily add to the TREES 

7Cuntz H, Forstner F, Borst A, Hausser M (2010) One rule to grow them all: a general theory of neuronal branching and its practical 
application. PLoS Comput Biol 6:e1000877.
8see
Cuntz H, Borst A, Segev I (2007) Optimization principles of dendritic structure. Theor Biol Med Model 4:21.
Cuntz H, Forstner F, Haag J, Borst A (2008) The morphological identity of insect dendrites. PLoS Comput Biol 4:e1000251.
Cuntz H, Forstner F, Borst A, Hausser M (2010) One rule to grow them all: a general theory of neuronal branching and its practical 
application. PLoS Comput Biol 6:e1000877.

Cuntz et al. Page 4

Neuroinformatics. Author manuscript; available in PMC 2022 February 17.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



toolbox their own code for their own specific applications. The code is therefore freely 

distributed. The contributor’s name will be mentioned in the header of the function 

when integrated in the toolbox and in the toolbox documentation. To make contributions 

more attractive, the core function of a new method to either generate artificial neurons 

or reconstruct neuronal morphology from image stacks could be called “lastnameofcon-

tributor_tree” to acknowledge the author’s involvement.

Information Sharing Statement

The TREES toolbox including an extensive website and documentation are freely available 

as open-source at http://www.treestoolbox.org. We encourage users of the toolbox software 

to recommend the toolbox to their peers but also to funding and award agencies.

Acknowledgements

We thank Karl Farrow, Yihwa Kim, Philipp Rautenberg, Martin O’Reilly and Sarah Rieubland for testing parts of 
the software package; Jan Grundemann for providing the Purkinje cell used in the TREES toolbox logo; Idan Segev, 
Erik de Schutter and Alanna Watt for helpful discussions.

Cuntz et al. Page 5

Neuroinformatics. Author manuscript; available in PMC 2022 February 17.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

http://www.treestoolbox.org


Fig. 1. Basic handling of a dendritic tree using the TREES toolbox. 
a A tree is represented as a structure with: a directed adjacency matrix dA attributing a 

parent to each node in the tree; a set of vertical vectors, such as X, Y and Z coordinates 

and diameter values D, each assigning a value to every node in the tree; an array rnames 
containing sub-region names; arbitrary optional quantities such as the global electrotonic 

properties Ri, Gm and Cm, specific axial resistance, membrane conductance and membrane 

capacitance respectively. b Most functions in the TREES toolbox take a tree as their first 

argument. This is the case for example for the function plot_tree, which allows a 3D 

interactive visualization of the sample tree loaded in (a). c Statistics and tree edit functions 

are generally simple and easy to use. Here the branch order (BO) values of the tree are 

Cuntz et al. Page 6

Neuroinformatics. Author manuscript; available in PMC 2022 February 17.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



obtained using BO_tree and all nodes with BO larger than 5 are deleted using delete_tree. 
The remaining tree is visualized and BO values are mapped in pseudo-colour onto the tree 

using the optional second argument of the function plot_tree. Axis labels were added for 

clarity

Cuntz et al. Page 7

Neuroinformatics. Author manuscript; available in PMC 2022 February 17.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Fig. 2. Studying the electrotonic properties of a neuron.
a A sample morphology of an insect interneuron, the HSN cell, is loaded into the Matlab 

workspace. Specific axial resistance and membrane conductance are defined. Finally the 

electrotonic signature is calculated using the function sse_tree (run time: 100 ms) and 

displayed. This matrix shows the current transfer from any node to any other. b Measuring 

the potential at the same node at which the current was injected returns the local input 

resistance. It can therefore be read out in the diagonal of the electrotonic signature (diag 
(sse)). These values are mapped as false colours onto the segments of the morphology using 

the plot_tree function. c The potential spread as a result of injecting current into one node 

is obtained simply from a column in the electrotonic signature. The location of current 

injection is indicated by a blue pointer

Cuntz et al. Page 8

Neuroinformatics. Author manuscript; available in PMC 2022 February 17.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Fig. 3. The modular process of generating synthetic neuronal trees.
a 100 points at random locations in the range between -100 and 100 μm are connected to 

a root in (0, 0, 0) using the extended minimum spanning tree algorithm implemented in 

MST_tree. This step is quick: run time of 50 ms on a standard computer. b The resulting 

tree is resampled using resample_tree to produce densely distributed nodes along the tree at 

5 μm intervals. This allows the node locations to be altered to smooth the tree structure with 

smooth_tree (run time: 200 ms). c And, subsequently, to add biologically realistic spatial 

noise with jitter_tree. This step can take a bit longer (run time: 1 s in this case). d In a last 

Cuntz et al. Page 9

Neuroinformatics. Author manuscript; available in PMC 2022 February 17.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



step, a diameter taper is mapped onto the tree structure using quaddiameter_tree, a soma-like 

diameter protuberance is mapped onto the root of the tree using soma_tree and spines_tree 
distributes spine structures randomly along the tree. Finally, the morphology is sent in one 

command (pov_tree) to the POV-Ray renderer for visualization. Note that this entire process 

is modular and each step can be replaced by alternative algorithms. The artificial neuron 

generated in this figure does not reproduce a particular real counterpart since the target 

points were simply chosen randomly within a 200×200×200 μm cube. Axis labels were 

added for clarity

Cuntz et al. Page 10

Neuroinformatics. Author manuscript; available in PMC 2022 February 17.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Fig. 4. 
The TREES toolbox CONTROL CENTER, an extensive user interface. A complex but 

extensive (and well documented) graphical user interface allows to manually interact with 

the construction stages of a neuronal tree. Image stacks can be visualized and trees can 

be traced or cloned. Individual trees and groups of trees can be visualized and edited in 

a variety of different ways, manually and semi-automatically. The user interface is also 

useful for exploring the functions provided with the TREES toolbox. a Control panels of 

the user interface. b Screenshot of the axis when a sample reconstruction of a neuron 

in the medial superior olive and the corresponding fluorescent image stacks (courtesy 

of Philipp Rautenberg. Rautenberg PL, Grothe B, Felmy F (2009) Quantification of the 

three-dimensional morphology of coincidence detector neurons in the medial superior olive 

of gerbils during late postnatal development. J Comp Neurol 517:385−396.) containing the 

morphological information were loaded in the user interface

Cuntz et al. Page 11

Neuroinformatics. Author manuscript; available in PMC 2022 February 17.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts


	Information Sharing Statement
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4

