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Abstract

One of the fundamental processes that determine cellular fate is regulation of gene transcription. 

Understanding these regulatory processes is therefore essential for understanding cellular 

responses to changes in environmental conditions. At the core promoter, the regulatory region 

containing the transcription start site (TSS), all inputs regulating transcription are integrated. Here, 

we used Cap Analysis of Gene Expression (CAGE) to analyze the pattern of transcription start 

sites at four different environmental conditions (limited in ethanol, limited in nitrogen, limited in 

glucose and limited in glucose under anaerobic conditions) using the Saccharomyces cerevisiae 
strain CEN.PK113-7D. With this experimental setup we were able to show that the TSS landscape 

in yeast is stable at different metabolic states of the cell. We also show that the spatial distribution 

of transcription initiation events, described by the shape index, has a surprisingly strong negative 

correlation with measured gene expression levels, meaning that genes with higher expression 

levels tend to have a broader distribution of TSSs. Our analysis supplies a set of high quality TSS 

annotations useful for metabolic engineering and synthetic biology approaches in the industrially 

relevant laboratory strain CEN.PK113-7D, and provides novel insights into yeast TSS dynamics 

and gene regulation.
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Abstract

Introduction

Regulation of gene transcription is one of the fundamental processes that determine cellular 

fate. Transcription of protein encoding genes in eukaryotic cells is governed by RNA 

polymerase II in concert with the general transcription initiation factors (GTFs), namely 

TFIIA, TFIIB, TFIID, TFIIE, TFIIF and TFIIH (reviewed in (Smale and Kadonaga 2003)). 

These proteins assemble at the core promoter of a gene, which is commonly defined as the 

minimal region necessary to trigger transcription (Danino et al. 2015; Haberle and Lenhard 

2016; Haberle and Stark 2018). This region encompasses the transcription start site (TSS), 

defined as the nucleotide position where transcription is initiated (Sandelin et al. 2007).

It was previously shown that transcription of a gene in eukaryotic cells is not always 

initiated from the same nucleotide, but that it can be initiated from a range of positions in the 

core promoter region, with an individual, sequence-influenced pattern for each gene (Suzuki 
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et al. 2001; Sandelin et al. 2007; Haberle and Lenhard 2016; Haberle and Stark 2018). This 

important finding reshaped the view on transcription initiation showing that there is a higher 

complexity to this process than previously anticipated.

In addition to the TSS positions being a cornerstone of fundamental knowledge on genome 

organization, there are numerous applications where an exact mapping of TSS positions is 

important. One is in the field of synthetic biology, where synthetic promoters are created to 

obtain a variable range of expression levels. Synthetic promoters are designed by combining 

core promoters with different upstream regulatory sequences. In order to do this, accurate 

definition of the promoter regions are needed to place upstream regulatory sequences at 

the optimal distance to the core promoters. Another application is the modulation of gene 

expression by CRISPR interference (CRISPRi). An effective strategy for downregulation 

that has been documented to work for many genes is to target the catalytically inactive Cas9 

protein directly to the TSS of the target gene (Qi et al. 2013).

The most accurate way to map transcription start sites is to selectively sequence intact 

capped 5’ ends of mRNA. In this study we choose the Cap Analysis of Gene Expression 

method (CAGE) (Shiraki et al. 2003), which was also shown to be the best performing 

method in a recent comparison of different 5’ end RNA sequencing methods by Adiconis 

et al., (Adiconis et al. 2018). This method gives a quantitative count of transcription 

start events with a single base pair resolution, allowing a more detailed interrogation of 

these events than with traditional RNA sequencing techniques. CAGE can also be used to 

determine the total expression of a given gene with results showing high correlations with 

traditional RNA sequencing techniques (Kawaji et al. 2014). With these high resolution data 

it is possible to accurately determine all TSSs of all expressed genes transcribed by RNA 

Polymerase II and to determine which TSS is the dominant one in a quantitative manner.

Previous work to annotate TSSs has been carried out in different yeast strains using 

techniques like SMORE-seq (Parky et al. 2014), or an earlier low-coverage protocol of 

CAGE (Wery et al. 2016). These studies used cells grown in shake flasks at only one 

environmental condition. Therefore, it was not possible to assess how the TSS landscape 

changes in response to environmental conditions.

Here, we describe the first analysis of the content and dynamics of the yeast promoterome 

across four different metabolic states. For this, we used an updated CAGE protocol, called 

non-amplification non-tagging CAGE for Illumina sequencing (nAnT-iCAGE) (Murata et 
al. 2014), which is a more unbiased approach compared to the earlier protocol used by 

Wery et al. (Wery et al. 2016) as it omits the use of restriction enzymes to produce short 

tags and does not include a PCR amplification step of the cDNA. We performed CAGE 

on the industrially relevant S. cerevisiae laboratory strain CEN.PK113-7D (van Dijken et 
al. 2000), grown in four distinct chemostat conditions at a fixed dilution rate of 0.1/h. 

The four chemostat conditions were selected to cover a diverse range of metabolic states, 

namely: respiratory glucose metabolism using glucose limitation, gluconeogenic respiration 

using ethanol limitation, aerobic fermentation using nitrogen limitation and fermentative 

glucose metabolism using anaerobic conditions. With this setup, we were able to obtain 

highly reproducible condition-specific data and to assess changes in the TSS landscape in 
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different environmental conditions of the cells, as well as providing a high quality set of TSS 

annotations for the research community.

Experimental Procedures

Gene annotations

To transfer the annotations from the reference genome of S288C (Engel et al. 2014) to 

the recently published genome of CEN.PK113-7D (Salazar et al. 2017), first the coding 

sequences for all verified and uncharacterized ORFs available in the Saccharomyces 

Genome Database (SGD, www.yeastgenome.org) (Cherry et al. 2012) were obtained using 

YeastMine, the data API of SGD. Then, using the NCBI software tool Blast+ (Camacho et 
al. 2009), every obtained sequence was blasted against the CEN.PK genome. Hits covering 

at least 95% of the sequence length showing at least a 95% sequence identity were retained 

and transferred if only a single hit existed for that sequence. In case of multiple strong 

hits, the hit that was found to be on the same chromosome and surrounded by the same 

neighboring genes as in the reference genome was transferred. In case of large genes where 

for multiple fragments a hit was found, a manual curation step was performed to check if 

these fragments could be reassembled into the full gene. Successfully reassembled genes 

were also transferred, all other hits were discarded. Using this approach, we were able to 

transfer 99% (5113 out of 5159) of the verified ORF annotations and 96% (727 out of 

756) of all uncharacterized ORF annotations. The gene YCL018W, which was found to 

be duplicated in the originally published sequence, was also found to be duplicated using 

our approach (Salazar et al. 2017). In addition to that, the genes YHR055C and YHR054C 

were also found to be duplicated. The complete set of updated annotations can be found in 

Supplementary table S1.

Chemostat cultures and RNA extraction

The S. cerevisiae strain CEN.PK113-7D (van Dijken et al. 2000) was pre-cultured in a batch 

culture in 100 ml of minimal medium with 2% glucose (See Supplementary table S2 for 

media composition and recipe) at 30°C and 200 rpm in 250 ml shake flasks for 24 hours. 

The pre-culture was then transferred to the mini-bioreactors (40 ml volume) in triplicates to 

an initial OD600 above 3. For each of the four conditions, a single pre-culture was used. 

Four different media compositions with a limitation in a different nutrient were employed 

in the chemostat runs (See Supplementary table S2 for media composition and recipe). The 

medium volume in the chemostat runs was 40 ml and the temperature was set to 30°C. 

One hour after the transfer, the pumps where started with the dilution rate fixed to 0.1/h. 

Dissolved oxygen was kept above 30% of air saturation. For the anaerobic condition, the 

culture vessels were flushed with nitrogen gas. The cells were grown for 4 days to achieve 

stable cell numbers in the culture. An amount of cells corresponding to a 10 ml culture with 

an OD600 of 1 were collected, pelleted and snap frozen in liquid nitrogen for both RNAseq 

analysis and the CAGE experiment.

Cells were mechanically disrupted using a FastPrep®-24 from MPbio (Santa Ana, 

California, USA) in combination with the lysing matrix tubes type C from MPbio. The 

FastPrep was run 3 times for 20 seconds with 4.0 m/s settings and a 5 min break in between 
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each run. RNA was subsequently extracted using the RNeasy® Mini Kit from QIAGEN 

(Hilden, Germany). RNA quality was assessed using a ThermoFischer NanoDrop (Waltham, 

Massachusetts, USA) and an Agilent2100 Bioanalyzer (Santa Clara, California, USA) to 

ensure high quality RNA.

RNA sequencing

All three biological replicates for each condition were sequenced using the NextSeq500 

System from Illumina (San Diego, California, USA) at the Novo Nordisk Foundation 

Center for Biosustainability, Technical University of Denmark, with paired-end reads of 

75 bp length. Library preparation was done using the Illumina TrueSeq stranded total 

RNA HT kit following the manufacturer’s instructions. Obtained reads were mapped to the 

CEN.PK113-7D genome using bowtie2 (Langmead and Salzberg 2012). Mapped reads were 

filtered using a quality threshold of 20 and converted to .bam files using samtools (Li et al. 
2009). FeatureCounts was used to obtain expression values for each gene (Liao, Smyth and 

Shi 2014), which were subsequently converted into TPM values. The raw counts obtained by 

FeatureCounts were also used for differential gene expression analysis using DEseq2 (Love, 

Huber and Anders 2014), where the threshold for detecting differential expressed genes was 

set to an adjusted pValue of 0.001.

Cage

For the CAGE experiment the non-amplification non-tagging CAGE protocol for Illumina 

sequencing (nAnT-iCAGE) as previously published by Murata et al. (Murata et al. 2014), 

was used on two biological replicates of each condition, starting with 5 μg of extracted 

total RNA. The 8 barcoded samples were pooled together and sequenced using the Illumina 

HiSeq 2500 at Genomics Core Facility (MRC, London Institute of Medical Sciences). 

Between 2.6 to 22.1 million reads per sample were obtained, with an average of 9 million, 

showing a very high coverage of the yeast transcriptome. Sequencing reads were mapped to 

the CEN.PK113-7D genome using bowtie2 (Langmead and Salzberg 2012). Mapped reads 

were filtered using a quality threshold of 20 and converted to .bam files using samtools 

(Li et al. 2009). 29% of all reads mapped to a 7.2 kb region with ribosomal repeats on 

chromosome 12, which was excluded from further analysis, leaving an average mapped read 

count of 5.4 million reads per replicate. An overview of the sequencing read numbers is 

shown in Supplementary table S3.

CAGE data were analyzed using the R/Bioconductor package CAGEr (Haberle et al. 2015; 

Huber et al. 2015). The .bam files were imported into R and the biological replicates were 

merged together. Default CAGEr correction of the first G nucleotide was used. The data 

were then normalized for library size using the “powerLaw” method (Balwierz et al. 2009) 

with a fit range from 5 to 10000 and an alpha value of 1.10. The CAGE tags were clustered 

together using the “clusterCTSS” function of CAGEr with the “distclu” setting, a maximum 

distance of 20 and a TPM threshold of 1. These clusters were then aggregated across the 

conditions to obtain a set of consensus clusters using the “aggregateTagClusters” function 

with a TPM threshold of 3 and a maximum distance of 100. For each consensus cluster the 

expression level in every condition was calculated as TPM and the dominant TSS position 
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was calculated based on the normalized tag count per base. Changes in TSS distribution 

patterns were calculated using the getShiftingPromoters function from CAGEr, which uses 

the Kolmogorov-Smirnov test to measure if the cumulative sum of TSS events is different 

between two conditions. As thresholds we used a minimal shifting score of 0.6 and an 

adjusted pValue from the Kolmogorov-Smirnov test of 0.01. Additionally, the shape index of 

each cluster was calculated by the formula described by Hoskins et al. (Hoskins et al. 2011): 

SI = 2 + Σi
Lpi * log2 (pi) . A graphical example for this with two artificial promoters can be 

found in Supplementary Figure S1.

pi = proportion of counts at position i in the cluster

L = position with at least 1 tag

Annotation of CAGE clusters to genes

The obtained CAGE consensus clusters were assigned to the gene annotations using the 

following set of rules: The consensus cluster must be on the same strand as the gene 

annotation, the cluster is not more than 1 kb away from the start of the gene annotation and 

if the cluster is upstream of the gene annotation, RNAseq reads must be present covering the 

region between the cluster and the gene annotation.

Expression-based clustering of genes

For creating the four gene clusters based on the expression profiles, we normalized the 

RNAseq expression levels across the four conditions and a gene was assigned to one of 

the four clusters if it met the following requirements: Cluster “Always”: The expression 

level in each condition must account for 23 to 27% of the total observed expression 

(sum of TPM values from RNAseq of the four conditions). Cluster “Glu+Eth”: At least 

83.3% of the observed total expression must come from the two respiratory conditions 

(respiratory glucose metabolism using glucose limitation and gluconeogenic respiration 

using ethanol limitation). Cluster “Nit”: At least 75% of the observed total expression must 

come from aerobic fermentation using nitrogen limitation. Cluster “Ana”: At least 75% 

of the observed total expression must come from fermentative glucose metabolism using 

anaerobic conditions.

Results and Discussion

CAGE data are highly reproducible and reveal promoters and TSS for 88% of all annotated 
genes

In order to gain insights into the promoter structure of the yeast strain CEN.PK113-7D 

and to obtain accurate positions of the transcription start sites (TSSs) we performed a cap 

analysis gene expression (CAGE) experiment on yeast grown in four different chemostat 

conditions. The conditions were: respiratory glucose metabolism using glucose limitation 

(Glu), gluconeogenic respiration using ethanol limitation (Eth), aerobic fermentation using 

nitrogen limitation (Nit) and fermentative glucose metabolism using anaerobic conditions 

(Ana).
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Using the R/Bioconductor package CAGEr (Haberle et al. 2015), for each of the four 

conditions we assembled the single position read tags into clusters and then merged 

overlapping clusters together to form a consensus cluster, combining information from 

all four conditions. This resulted in a total of 6565 consensus clusters which were then 

assigned to the gene annotations. For 5245 clusters a matching gene annotation could be 

found, of which 4975 genes were assigned a single cluster and 132 genes were assigned 

multiple clusters (ranging from 2 to 4 clusters per gene, a total of 270 clusters). This 

means that from a total of 5843 gene annotations in the genome, we could assign 5107 

(88%) to at least one cluster. The complete set of results for each individual cluster 

can be found in Supplementary table S4. A representative display of the CAGE data, in 

the Integrative Genomics Viewer (IGV) (Robinson et al. 2011; Thorvaldsdottir, Robinson 

and Mesirov 2013), is shown in Figure 1A-B. The two genes were selected to showcase 

different distributions of CAGE reads for condition independent genes, with Figure 1A 

showing a broad TSS distribution, while Figure 1B displays a peaked TSS distribution. 

Screenshots for two condition dependent genes, showing also one broad and one peaked 

TSS distribution, can be found in Supplementary Figure S2, highlighting that a broad or 

peaked TSS distribution is not unique for condition independent or specific genes.

To assess the quality of our obtained CAGE data, we first analyzed the location of the 

sequencing reads in relation to the annotated genes (Figure 1E) and found that the majority 

of all reads (77% to 82%) mapped to the promoter region of annotated genes, which was 

defined as the 500 bp region upstream of the start of the coding sequence. As the TSS of a 

gene is expected to be upstream of the coding sequence, this also indicates that we obtained 

high quality CAGE data.

179 clusters were annotated as possible antisense transcription events to a total of 169 genes, 

as they were located at the 3’ end of the gene on the opposite strand. It has been shown 

before that anti-sense transcription occurs widely in yeast (Yassour et al. 2010). Yassour 

et al. reported for every gene what proportion of the coding sequence was covered by 

anti-sense transcription, and in their study 1523 genes had at least 10% of their sequence 

covered by anti-sense reads. Comparing these 1523 genes with our list of 169 genes with 

possible anti-sense initiation we find a high degree of overlap of 75% (122 out of 163 

genes that are in both lists). As this finding is in line with the already known wide-spread 

anti-sense transcription, we focused on the sense transcription events. From the total of 

6565 consensus CAGE clusters, 1115 clusters could not be assigned to any gene. These 

clusters could indicate missing gene annotations but it is more likely that they originate 

from non-annotated small RNA species and from cryptic unstable transcripts that have been 

shown to be transcribed widespread from the yeast genome (Berretta and Morillon 2009).

To further analyze the quality of the obtained CAGE data, the individual samples were 

clustered together using hierarchical clustering based on their genome-wide expression 

profile at each base pair. For each condition the replicates cluster together (Figure 

2A), showing the high reproducibility of the data. This clustering also shows that 

the two respiratory conditions (respiratory glucose metabolism using glucose limitation, 

gluconeogenic respiration using ethanol limitation) are more similar to each other than to the 

two fermentative conditions, as one would expect. In addition, the correlations between the 
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biological replicates were calculated and with a minimum Pearson correlation coefficient of 

0.9 the replicates are in high agreement with each other (Figure 2A).

Subsequently the expression values per gene promoter region obtained from CAGE was 

compared with gene expression values obtained from a control RNAseq experiment in the 

same chemostat conditions (Figure 2B). For genes with multiple assigned CAGE clusters, 

the expression values for all clusters were summed up prior to the comparison. The results 

show a strong correlation with a Pearson Correlation Coefficient of 0.82 between the 

RNAseq and the CAGE expression values, further demonstrating the high quality of our 

CAGE data.

The yeast TSS landscape shows stability across metabolic conditions in a variety of 
characteristics

To assess if and how much the TSS landscape changes between the four different conditions 

used in our study, a baseline of how much gene expression levels change between the 

conditions had to be calculated. For this we used the RNAseq dataset and determined 

differentially expressed genes using DEseq2 (Love, Huber and Anders 2014) for each 

pairwise condition comparison, resulting in 6 comparisons. The results for this analysis are 

shown in Figure 2C, where for each of the 5107 genes in our CAGE dataset, we counted in 

how many of the 6 pairwise comparison this gene was detected as differentially expressed 

based on an adjusted pValue threshold of 0.001. Only 0.9% of all genes were differentially 

expressed in all 6 comparison, meaning that those 46 genes showed completely different 

expression levels in all four condition. Furthermore, less than 40% of all genes were not 

changed between the four conditions. However, this means that more than 60% of the genes 

were differentially expressed in at least one comparison, and this demonstrates that the 

four condition chosen in our study led to very diverse gene expression patterns and were 

therefore suitable to assess changes in the TSS landscape.

For a first assessment of the stability of the TSS landscape we compared the distribution of 

TSS events in each consensus cluster assigned to a gene using the Kolmogorov-Smirnov test 

on the cumulative sum of TSS events. This was performed using the getShiftingPromoters 

function of CAGEr with a shifting score threshold of 0.6 and adj. pValue threshold of 

the Kolmogorov-Smirnov test of 0.01). As for the differential gene expression analysis 

we performed this analysis on all 6 pairwise comparisons and the results are shown in 

Figure 2D. Nearly all genes (99.7%) showed no differential distribution in any of the 

pairwise comparisons, showing that the TSS distribution was very stable in the four chosen 

conditions, even though the gene expression patterns were quite diverse.

One rather cluster centered analysis of CAGE clusters is to look at the cluster width, which 

describes for each condition over how many bases the TSS are distributed in the consensus 

cluster, or to look at the interquantile cluster width for the quantiles 0.1 to 0.9, as established 

by Haberle et al. (Haberle et al. 2015). The interquantile cluster width was calculated based 

on the cumulative distribution of TSS events inside the consensus cluster and is the span 

of bases that contains every read from the 0.1 to 0.9 quantile. As this metric leaves out 

the extreme borders it is more robust to noise and therefore this approach was chosen for 

subsequent analysis. For each gene, an average cluster width across the four conditions was 
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calculated. The distribution of the average widths (Figure 3A) shows a unimodal distribution 

with an average width of 31 bp. The interquantile cluster width is also stable across the four 

conditions, as shown in a pairwise comparison between conditions, with a minimum Pearson 

correlation coefficient of 0.84 (Figure 3B).

It has been shown that the cluster width is not always sufficient to classify clusters as either 

peaked or broad. Clusters that are very wide but where the dominant positions contribute 

the majority of reads exist, as well as narrow clusters with multiple near equally strong 

positions. To overcome this issue, Hoskins et al. established the shape index as a more 

informative tool for this classification (Hoskins et al. 2011). The formula used to calculate 

the shape index can be found in the method section and an example classification of two 

artificial clusters is shown in Supplementary Figure S1. In short, for each gene the shape 

index is calculated based on the distribution of TSS in the consensus cluster for each 

individual condition. It results in a continuous variable with possible values from less than 

-5 up to 2 describing how peaked a TSS cluster is. As previously set by Hoskin et al., the 

threshold distinguishing genes with a peaked and broad TSS distribution is -1, therefore a 

gene with a shape index higher than -1 is a gene with a peaked TSS distribution, while a 

gene with a value lower than or equal to -1 has a broad TSS distribution. We classified the 

peaks detected by our analysis by the average shape index across the conditions and found 

that the majority of clusters classified as peaked, i.e. had a shape index higher than - 1 

(Figure 3C). The shape index was also very stable between the conditions, with a minimal 

pairwise Pearson correlation coefficient of 0.96 (Figure 3D).

Calculating the 5’ UTR length (Figure 3E) showed that most clusters are quite close to the 

start of the coding sequence, with 70% of them being less than 75 bp away, which is in line 

with previously published average 5’ UTR lengths in yeast (Parky et al. 2014). This 5’ UTR 

length is again very stable across the different conditions with a minimal Pearson correlation 

coefficient of 0.99 between two individual conditions (Figure 3F). We further compared the 

published TSS dataset from Parky et. al. (Parky et al. 2014), obtained using the yeast strain 

BY4741 in YPD, with our TSS annotations for CEN.PK113-7D. For the 4872 genes that 

are present in both data sets we calculated the 5’ UTR lengths (using sacCer3 annotations 

for the dataset from Parky et al. and our CEN.PK113-7D annotations for our dataset) and 

compared them. The 5’ UTR lengths are in high agreement with each other, with an average 

difference of less than 9 bp. Both datasets have around 250 TSS annotations for genes 

not found in the other dataset, these differences are most likely due to different expression 

profiles caused by different media and growth conditions (YPD in shake flasks vs synthetic 

minimal media in chemostats) or strain differences (BY4741 vs CEN.PK113-7D). The high 

agreement between the two datasets highlights the quality of our TSS annotations for the 

industrially relevant strain CEN.PK113-7D.

Gene clustering by condition-specific expression shows no distinct promoter 
characteristics

To further test the stability of the yeast transcriptional landscape in different conditions 

we clustered genes together based on their expression levels in different conditions. For 

this, we normalized the genes expression levels across the conditions and created the 

Börlin et al. Page 9

FEMS Yeast Res. Author manuscript; available in PMC 2022 February 25.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



following four gene clusters: 1: Genes that are expressed under all four conditions (labeled 

as “always”); 2: Genes that are mostly active in the two respiratory conditions (respiratory 

glucose metabolism using glucose limitation and gluconeogenic respiration using ethanol 

limitation, labeled “Glu+Eth”); 3: Genes that are mainly active in aerobic fermentation 

using nitrogen limitation (labeled “Nit”) and 4: Genes that are mainly active in fermentative 

glucose metabolism using anaerobic conditions (labeled “Ana”). For each of these four 

groups, we analyzed the expression levels (Figure 4A), the interquantile widths (Figure 

4B), the shape indices (Figure 4C) and the 5’ UTR length (Figure 4D). The overall picture 

shows that there are no clear differences in these characteristics between the four groups. 

The average gene expression levels are quite similar, with the genes expressed in all four 

conditions showing a slightly narrower distribution than the condition-specific genes, a trend 

that can also be seen in the distribution of shape indices. These differences however are not 

very strong.

Additionally we tested if there are differences in the promoter characteristics between TATA 

box-containing and TATA-less genes. For this classification we used the published list 

of TATA box-containing genes from Basehoar et al. (Basehoar, Zanton and Pugh 2004). 

Even though there are slight differences in gene expression level distributions, with TATA 

box-containing genes showing a higher maximal expression level, there are no differences in 

the distribution of shape indices, indicating that this promoter features is not affected by the 

presence or absence of a TATA box (see Supplementary Figure S3).

Cluster shape shows a high correlation to promoter expression levels

In higher organisms like Drosophila melanogaster, there is a remarkable connection 

between the shape index of a TSS cluster and the gene expression level during different 

developmental phases (Hoskins et al. 2011). Genes with a broad TSS cluster show a stable 

expression level throughout embryonic development, while genes with a peaked cluster 

show a transcription pattern that varies in time and space (Hoskins et al. 2011). To see if 

this relationship between shape index and gene expression variability also holds for yeast, 

we averaged the shape index of each cluster across the four conditions and then selected the 

100 genes with the lowest shape index, i.e. the genes with the broadest clusters, and the 100 

genes with the highest shape index, i.e. the genes with the most peaked clusters. For these 

selected genes, we then compared the expression values in each individual condition (Figure 

5A-B). No significant differences in expression levels were observed when comparing the 

four different conditions. However, there was a marked difference in the overall expression 

levels between genes with a broad cluster and genes with a peaked cluster (comparing 

overall TPM levels in Figure 5A with 5B). Following this observation, the correlation 

between the mean shape index across the conditions and the mean expression levels was 

analyzed, as shown in Figure 5C. A striking anticorrelation with a Pearson correlation 

coefficient of -0.45 was observed, indicating that peaked clusters (clusters with a high 

shape index) in yeast are associated with lower expression levels. To check if that strong 

correlation was unique to the shape index, we also calculated the correlation between the 

mean interquantile promoter width with gene expression levels (Figure 5D) and we observe 

no correlation. This indicates that the strong correlation observed between the shape index 

and gene expression levels is a unique feature of the shape index.
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Data availability and usage

To enable the easy usage of our data, we created custom data tracks and sessions for 

the Integrated Genomics Viewer (IGV, (Robinson et al. 2011; Thorvaldsdottir, Robinson 

and Mesirov 2013)), which can be found in the Supplementary information. After 

downloading the IGV from http://software.broadinstitute.org/software/igv/home, first the 

CEN.PK113-7D genome file (“CEN.PK113-7D.genome” part of the zipped Supplementary 

data file S1) has to be loaded via “Genomes” -> “Load Genome from File…” menu in 

IGV. After that, it is possible to load the session file for either the raw CAGE reads 

(“IGV_session_RawData.xml”, part of the zipped Supplementary data file S2) or the 

normalized CAGE reads (“IGV_session_NormData.xml”, part of the zipped Supplementary 

data file S3) using the “File” -> “Open Session…” menu.

After loading the session, a screen similar to the one shown in Figure 1A-D will be 

visible. For each condition, there are two tracks, one for reads on the plus strand 

and one for reads on the minus strand of the genome (labeled “_plus” and “_minus” 

respectively). In addition there are three different annotation tracks. The first one, labeled 

“ClusterAnnotations.bed”, will show each cluster with the full width, while the second one, 

labeled “ClusterAnnotationsDomTSS.bed”, will only show the position of the strongest TSS 

in each cluster. Both of these tracks include information about the cluster ID, and to which 

gene the cluster is annotated to (if any). For each gene, the strongest cluster is labeled 

as “(DomCluster)”. A third annotation track called “Gene” displays the blast based gene 

annotations for the CEN.PK113-7D genome.

Conclusion

In this study, we present a high quality CAGE dataset in four distinct chemostat conditions 

to accurately annotate the TSS of each gene. This resource will be valuable to the 

community as accurate TSS annotations, based on the dominant TSS position, are valuable 

for promoter engineering and implementation of CRISPRi approaches.

Analysis of the yeast promoterome in the different conditions shows a remarkable level of 

stability in terms of promoter characteristics like promoter width and shape index as well as 

individual TSS site usage. This is in contrast to higher organisms where strong changes can 

occur, especially during embryonal development stages (Haberle et al. 2014), and suggests 

that the basic regulatory events governing gene expression in yeast are quite distinct from 

other eukaryal cells.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Funding

This work was supported by the European Union’s Horizon 2020 research and innovation programme [Marie 
Skłodowska-Curie grant agreement No 722287], the Knut and Alice Wallenberg Foundation and the Novo Nordisk 
Foundation [grant number NNF10CC1016517].

Börlin et al. Page 11

FEMS Yeast Res. Author manuscript; available in PMC 2022 February 25.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

http://software.broadinstitute.org/software/igv/home


References

Adiconis X, Haber AL, Simmons SK, et al. Comprehensive comparative analysis of 5′-end RNA-
sequencing methods. Nat Methods. 2018; 1 

Balwierz PJ, Carninci P, Daub CO, et al. Methods for analyzing deep sequencing expression data: 
constructing the human and mouse promoterome with deepCAGE data. Genome Biol. 2009; 10: 
R79. [PubMed: 19624849] 

Basehoar AD, Zanton SJ, Pugh BF. Identification and Distinct Regulation of Yeast TATA Box-
Containing Genes. Cell. 2004; 116: 699–709. [PubMed: 15006352] 

Berretta J, Morillon A. Pervasive transcription constitutes a new level of eukaryotic genome regulation. 
EMBO Rep. 2009; 10: 973–82. [PubMed: 19680288] 

Camacho C, Coulouris G, Avagyan V, et al. BLAST+: architecture and applications. BMC 
Bioinformatics. 2009; 10: 421. [PubMed: 20003500] 

Cherry JM, Hong EL, Amundsen C, et al. Saccharomyces Genome Database: the genomics resource of 
budding yeast. Nucleic Acids Res. 2012; 40: D700–5. [PubMed: 22110037] 

Danino YM, Even D, Ideses D, et al. The core promoter: At the heart of gene expression. Biochim 
Biophys Acta - Gene Regul Mech. 2015; 1849: 1116–31. 

van Dijken J, Bauer J, Brambilla L, et al. An interlaboratory comparison of physiological and genetic 
properties of four Saccharomyces cerevisiae strains. Enzyme Microb Technol. 2000; 26: 706–14. 
[PubMed: 10862876] 

Engel SR, Dietrich FS, Fisk DG, et al. The reference genome sequence of Saccharomyces cerevisiae: 
then and now. G3 (Bethesda). 2014; 4: 389–98. [PubMed: 24374639] 

Haberle V, Forrest ARR, Hayashizaki Y, et al. CAGEr: precise TSS data retrieval and high-resolution 
promoterome mining for integrative analyses. Nucleic Acids Res. 2015; 43 e51 [PubMed: 
25653163] 

Haberle V, Lenhard B. Promoter architectures and developmental gene regulation. Semin Cell Dev 
Biol. 2016; 57: 11–23. [PubMed: 26783721] 

Haberle V, Li N, Hadzhiev Y, et al. Two independent transcription initiation codes overlap on 
vertebrate core promoters. Nature. 2014; 507: 381–5. [PubMed: 24531765] 

Haberle V, Stark A. Eukaryotic core promoters and the functional basis of transcription initiation. Nat 
Rev Mol Cell Biol. 2018; 19: 621–37. [PubMed: 29946135] 

Hoskins RA, Landolin JM, Brown JB, et al. Genome-wide analysis of promoter architecture in 
Drosophila melanogaster . Genome Res. 2011; 21: 182–92. [PubMed: 21177961] 

Huber W, Carey VJ, Gentleman R, et al. Orchestrating high-throughput genomic analysis with 
Bioconductor. Nat Methods. 2015; 12: 115–21. [PubMed: 25633503] 

Kawaji H, Lizio M, Itoh M, et al. Comparison of CAGE and RNA-seq transcriptome profiling using 
clonally amplified and single-molecule next-generation sequencing. Genome Res. 2014; 24: 708–
17. [PubMed: 24676093] 

Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012; 9: 357–9. 
[PubMed: 22388286] 

Li H, Handsaker B, Wysoker A, et al. The Sequence Alignment/Map format and SAMtools. 
Bioinformatics. 2009; 25: 2078–9. [PubMed: 19505943] 

Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence 
reads to genomic features. Bioinformatics. 2014; 30: 923–30. [PubMed: 24227677] 

Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data 
with DESeq2. Genome Biol. 2014; 15: 550. [PubMed: 25516281] 

Murata M, Nishiyori-Sueki H, Kojima-Ishiyama M, et al. Detecting expressed genes using CAGE. 
Methods Mol Biol. 2014; 1164: 67–85. [PubMed: 24927836] 

Parky D, Morrisy AR, Battenhouse A, et al. Simultaneous mapping of transcript ends at single-
nucleotide resolution and identification of widespread promoter-associated non-coding RNA 
governed by TATA elements. Nucleic Acids Res. 2014; 42: 3736–49. [PubMed: 24413663] 

Qi LS, Larson MH, Gilbert LA, et al. Repurposing CRISPR as an RNA-Guided Platform for 
Sequence-Specific Control of Gene Expression. Cell. 2013; 152: 1173–83. [PubMed: 23452860] 

Börlin et al. Page 12

FEMS Yeast Res. Author manuscript; available in PMC 2022 February 25.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Robinson JT, Thorvaldsdóttir H, Winckler W, et al. Integrative genomics viewer. Nat Biotechnol. 2011; 
29: 24–6. [PubMed: 21221095] 

Salazar AN, de Vries ARG, van den Broek M, et al. Nanopore sequencing enables near-complete de 
novo assembly of Saccharomyces cerevisiae reference strain CEN.PK113-7D. FEMS Yeast Res. 
2017; 17 doi: 10.1093/femsyr/fox074 

Sandelin A, Carninci P, Lenhard B, et al. Mammalian RNA polymerase II core promoters: insights 
from genome-wide studies. Nat Rev Genet. 2007; 8: 424–36. [PubMed: 17486122] 

Shiraki T, Kondo S, Katayama S, et al. Cap analysis gene expression for high-throughput analysis 
of transcriptional starting point and identification of promoter usage. Proc Natl Acad Sci U S A. 
2003; 100: 15776–81. [PubMed: 14663149] 

Smale ST, Kadonaga JT. The RNA Polymerase II Core Promoter. Annu Rev Biochem. 2003; 72: 
449–79. [PubMed: 12651739] 

Suzuki Y, Taira H, Tsunoda T, et al. Diverse transcriptional initiation revealed by fine, large-scale 
mapping of mRNA start sites. EMBO Rep. 2001; 2: 388–93. [PubMed: 11375929] 

Thorvaldsdottir H, Robinson JT, Mesirov JP. Integrative Genomics Viewer (IGV): high-performance 
genomics data visualization and exploration. Brief Bioinform. 2013; 14: 178–92. [PubMed: 
22517427] 

Wery M, Descrimes M, Vogt N, et al. Nonsense-mediated decay restricts LncRNA Levels in Yeast 
Unless Blocked by Double-Stranded RNA Structure. Mol Cell. 2016; 61: 379–92. [PubMed: 
26805575] 

Yassour M, Pfiffner J, Levin JZ, et al. Strand-specific RNA sequencing reveals extensive regulated 
long antisense transcripts that are conserved across yeast species. Genome Biol. 2010; 11: R87. 
[PubMed: 20796282] 

Börlin et al. Page 13

FEMS Yeast Res. Author manuscript; available in PMC 2022 February 25.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 1. Overview of the obtained CAGE data.
A Screenshot from IGV showing the broad CAGE read distribution for the constitutively 

expressed gene YGL106W (MLC1). B Screenshot from IGV showing the peaked CAGE 

read distribution for the constitutively expressed gene YOR204W (DED1). C Intersection 

of mapped CAGE reads with gene annotations, the promoter region was defined as the 500 

bp upstream of the start of the coding region and which was therefore not considered to be 

part of the intergenic region. (Eth = gluconeogenic respiration using ethanol limitation, Glu 

= respiratory glucose metabolism using glucose limitation, Nit = aerobic fermentation using 

nitrogen limitation, Ana = fermentative glucose metabolism using anaerobic conditions).
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Figure 2. Quality control of CAGE expression levels and analysis of differential expression and 
CAGE tag distribution.
A Hierarchical clustering of the individual CAGE sequencing experiments based on 

normalized TSS tag values per base genome-wide. The number at the last branch points 

denotes the Pearson correlation between the replicates B Comparison between average 

expression values across the conditions obtained through RNAseq and CAGE, both in 

log2 TPM values, resulting in a PCC of 0.82. For genes with multiple CAGE clusters, 

all clusters where summed up to calculate the TPM value. C Results for differential gene 

expression analysis of RNAseq data, showing the proportions of genes that were detected 

as differentially expressed (using DEseq2, adj. pValue <0.001) in x pairwise comparisons of 

the four different conditions (4 conditions = 6 possible comparisons). D Results for detecting 

shifted promoters, showing the proportions of clusters associated to genes that were detected 

as differentially distributed (using getShiftingPromoters from CAGEr, shifting score > 0.6 

and adj. pValue of Kolmogorov-Smirnov test < 0.01) in x pairwise comparisons of the 

different conditions.
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Figure 3. Overview of TSS cluster characteristics and their stability across conditions.
A Histogram showing distribution of mean interquantile cluster width across all conditions. 

B Comparison of the promoter width in different conditions. Middle axis showing the 

distribution in each condition and the lower half displaying the pairwise comparison of 

each condition together with the Pearson correlation coefficient. C Histogram showing the 

mean shape index of each cluster. The dashed line at -1 denotes the border, which separates 

clusters classified as peaked (shape index >-1) and clusters classified as broad (shape index 

≤ -1). D Comparison of the shape index in different conditions. Middle axis showing the 
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distribution in each condition and the lower half displaying the pairwise comparison. E 
Histogram showing the distribution of distances between the global TSS across conditions 

and the assigned genes. F Comparison of the distance between the condition-specific TSS 

and the assigned gene in different conditions. Middle axis showing the distribution in each 

condition and the lower half displaying the pairwise comparison.
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Figure 4. 
Comparison of condition-based gene clusters (Always = Genes that are expressed in all 

four conditions, Eth+Glu = Genes active in both respiratory conditions, Nit = Genes active 

under aerobic fermentation, Ana = Genes active in fermentative glucose metabolism). The 

number under the gene cluster denotes the number of genes in that cluster. A Violin plot 

showing distribution of gene expression levels for each gene cluster. B Violin plot showing 

distribution of the interquantile promoter width for each gene cluster. C Violin plot showing 

distribution of the shape index for each gene cluster. D Violin plot showing distribution of 

the 5’ UTR lengths.
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Figure 5. Detailed analysis of the Shape Index.
A The 100 genes with the broadest clusters across all conditions were selected and their 

expression values in each condition are shown. B The 100 genes with the most peaked 

clusters across all conditions were selected and their expression values in each condition 

are shown. C Correlation of the mean shape index and the mean CAGE expression levels 

showing an anticorrelation with a Spearman’s Rho of -0.51 and a Pearson correlation 

coefficient of -0.45. D Correlation of the mean promoter width with mean CAGE expression 

levels showing no correlation.

Börlin et al. Page 19

FEMS Yeast Res. Author manuscript; available in PMC 2022 February 25.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts


	Abstract
	Abstract
	
	Introduction
	Experimental Procedures
	Gene annotations
	Chemostat cultures and RNA extraction
	RNA sequencing

	Cage
	Annotation of CAGE clusters to genes
	Expression-based clustering of genes

	Results and Discussion
	CAGE data are highly reproducible and reveal promoters and TSS for 88% of all annotated genes
	The yeast TSS landscape shows stability across metabolic conditions in a variety of characteristics
	Gene clustering by condition-specific expression shows no distinct promoter characteristics
	Cluster shape shows a high correlation to promoter expression levels
	Data availability and usage
	Conclusion

	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5

