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Abstract

Neural network models are potential tools for improving our understanding of complex brain 

functions. To address this goal, these models need to be neurobiologically realistic. However, 

although neural networks have advanced dramatically in recent years and even achieve human-

like performance on complex perceptual and cognitive tasks, their similarity to aspects of brain 

anatomy and physiology is imperfect. Here, we discuss different types of neural models, including 

localist, auto-associative and hetero-associative, deep and whole-brain networks, and identify 

aspects under which their biological plausibility can be improved. These aspects range from the 

choice of model neurons and of mechanisms of synaptic plasticity and learning, to implementation 

of inhibition and control, along with neuroanatomical properties including area structure and 

local and long-range connectivity. We highlight recent advances in developing biologically 

grounded cognitive theories and in mechanistically explaining, based on these brain-constrained 

neural models, hitherto unaddressed issues regarding the nature, localization and ontogenetic and 
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phylogenetic development of higher brain functions. In closing, we point to possible future clinical 

applications of brain-constrained modelling.

Introduction

Cognition calls for mechanistic explanation. The superb and specific cognitive capacities of 

humans and higher mammals may depend on specific structural and functional features of 

their brains. If so, these neurobiological features must play a decisive role in explanations of 

cognitive capacities. Despite substantial progress in understanding brain function in general, 

explaining how structural and functional features of neural tissue bring about cognition, 

language and thought has remained a challenge. We propose that such explanation can only 

be achieved if neural networks for modelling cognition incorporate a broad range of features 

that make them similar at different levels to real neurobiological networks. This article will 

discuss recent attempts to progress towards this goal and highlight seven brain constraints 

that may help to make neural networks more neural (Fig. 1). We discuss established types 

of cognitive neural models (Fig. 2) and give examples of neural simulations that integrate 

several brain constraints in novel ways. These networks offer perspectives on modelling 

neurocognitive mechanisms in and across multiple brain areas using huge numbers of 

realistic neurons and their local and global interactions through short- and long-range 

neuroanatomical connections, and hence provide opportunities for better understanding the 

mechanisms of cognition, including perception, categorization, attention, memory, language 

and semantic-conceptual processing.

Neural models of cognition

Localist networks

A standard way to present theories about cognition has been in the form of abstract box-

and-arrow diagrams, with each ‘box’ indicating a module specialized for one cognitive 

sub-process (for example, sound processing) and arrows indicating information transmission 

between modules. These models were usually based on behavioural experiments involving 

healthy participants — for example, in tasks processing differences between speech 

and other sounds, which motivated the postulate of different modules for speech and 

nonlinguistic acoustic stimuli 1,2 . Although some of these models were refined in light 

of studies in individuals with neurological impairments 3,4 , they were generally formulated 

without explicit reference to neuronal circuits, despite researchers’ demands for biological 

foundations of models of mental processing 5–7 .

An important step towards addressing the neural substrate was taken by so-called localist 

models of cognition and language 8–12 , which filled the boxes of modular models 

with single artificial ‘neurons’ thought to locally represent cognitive elements 13 such 

as perceptual features and percepts, phonemes, word forms, meaning features, concepts 

and so on (Fig. 2a). The 1:1 relationship between the artificial neuron-like computational–

algorithmic implementations and the entities postulated by cognitive theories made it easy 

to connect the two types of models. However, the notion that individual neurons each carry 

major cognitive functions is controversial today and difficult to reconcile with evidence from 
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neuroscience research 14,15 . This is not to dispute the great specificity of some neurons’ 

responses 16 , but rather to highlight the now dominant view that even these very specific 

cells “do not act in isolation but are part of cell assemblies representing familiar concepts”, 

objects or other entities 17,18 . A further limitation of the localist models was that they did 

not systematically address the mechanisms underlying the formation of new representations 

and their connections.

Auto-associative networks

Neuroanatomical observations suggest that the cortex is characterized by ample intrinsic and 

recurrent connectivity between its neurons and, therefore, it can be seen as an associative 

memory 19,20 . This position inspired a family of artificial neural networks, called ‘auto-

associative networks’ or ‘attractor networks’ 21–32 .

Auto-associative network models implement neurons with connections between their 

neuron members, so that each neuron interlinks with several or even all of the other 

neurons included in the set. This contrasts with the hetero-associative networks discussed 

below, where connections run between sub-populations of network neurons without any 

connections within each neuron pool. To simulate the effect of learning in auto-associative 

networks, so-called learning rules are included that change the connection weights between 

neurons as a consequence of their prior activity. For example, biologically founded 

unsupervised Hebbian learning, which strengthens connections between co-activated 

neurons 5 , is frequently applied and leads to the formation of strongly connected cell 

assemblies within a weakly connected auto-associative neuron pool (Fig. 2b). These cell 

assemblies can function as distributed network correlates or representations of perceptual, 

cognitive or ‘mixed’ context-dependent perceptual–cognitive states 6,30,32–34 . Therefore, 

the observations that cortical neurons work together in groups and that representations are 

distributed across such groups 14,18 can both be accommodated by this artificial network 

type, along with learning mechanisms, thus overcoming major shortcomings of localist 

networks.

Additional cognitively relevant features of auto-associative networks include the ability of 

a cell assembly to fully activate after only partial stimulation — a possible mechanism for 

Gestalt completion; that is, the recognition of an object (such as a cat) given only partial 

input (tail and paws). The mechanism is illustrated in Fig. 2b, where stimulation of neurons 

α and β is sufficient for activating the cell assembly formed by neurons α-to-γ.

Furthermore, auto-associative networks integrate the established observations that: cortical 

neural codes can be sparse (that is, only a small fraction of available neurons respond 

to a given (complex) stimulus) 15,18,22,35,36 ; and that some (other) neurons respond to 

elementary and frequently occurring features of several stimuli (thus behaving in a less-

sparse manner) 37 . The reason for this lies in cell assembly overlap; that is, the possibility 

that two or more such circuits can share neurons while remaining functionally separate. This 

is illustrated in Fig. 2b, by the ‘overlap neuron’ of cell assemblies α-to-γ and γ-to-ε.

Auto-associative networks can model a wide spectrum of cognitive processes, ranging from 

object, word and concept recognition to navigation, syntax processing, memory, planning 
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and decision making 21,22,27,28,30,32,36,38–40 . Some models use several interlinked auto-

associative network components to model the interaction between multiple cortical areas in 

cognitive processing 36,41–50 . Furthermore, auto-associative components can be included in 

more complex networks, for example the deep recurrent networks discussed below.

Hetero-associative networks

Hetero-associative or feedforward networks include two or more neuron pools or ‘layers’ 

with connections between, but not (as in auto-associative networks) within, layers 51,52 , 

and offer a different pathway towards distributed representations and learning. These models 

consist of different neuron pools connected in sequence, a connection scheme inspired 

by neurobiological structures; for example, by next-neighbour feedforward connections 

between layers of the retina or between cortical areas 53 .

A frequently used class of models called multiple-layer perceptrons, which are frequently 

used in parallel-distributed processing, includes three neuron layers, with one layer receiving 

the input, one generating the output and one ‘hidden’ layer in between (Fig. 2c) 52 . In 

such networks, representations of cognitive entities are dense and nonsparse; that is, they are 

distributed across all neurons of the hidden layer, such that an activation vector across the 

entire layer is the network correlate of an object, word, meaning or thought 54 . Note that 

the dense and ‘fully distributed’ nature of these representations contrasts with the sparse (but 

also distributed) representations characterizing many auto-associative networks.

To implement a form of learning in these networks, input and output ‘teacher’ signals are 

fed to the input and output layers, respectively 52 , and synaptic weights are modulated to 

make the network learn the relationships between inputs and teacher outputs. To adjust the 

synaptic weights, supervised learning algorithms are applied that adjust weights according 

to the error gradient that is calculated backwards from the output layer to the synapse in 

question. Initially, an algorithm called ‘error back-propagation’ 55 was applied; however, 

more recently, a range of learning rules based on error gradients across the network have 

become available, thus allowing for different variants of ‘gradient-dependent’ learning 56 .

In order to implement memory processes, one additional layer was added to the three-layer 

architecture and connected reciprocally to the ‘hidden’ layer 57 ; this ‘simple recurrent 

network’ architecture allows for reverberant activity. Similar to auto-associative networks, 

feedforward networks including three or four layers have successfully addressed a broad 

range of cognitive functions 58–60 .

Deep neural networks

To further enhance their computational power, more layers were added to hetero-

associative networks, thus resulting in deep neural networks (DNNs; Fig. 2d) 56,61–64 . A 

neurobiological motivation for increasing the number of layers from three to six and more 

comes from the neuroanatomical structure of the ventral occipitotemporal stream for object 

processing, in which neuroanatomical connections lead from the primary visual cortex (V1) 

to adjacent areas and, via multiple levels, to anterior temporal areas 65 .
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DNNs have been varied in several important ways. For example, convolutional DNNs 

include topographic projections between (some of) their layers to facilitate the joint 

processing of adjacent inputs, and recurrent DNNs include reciprocal connections between 

layers and/or recurrent links within layers that make it possible to maintain information 

over time. These modifications have produced extremely powerful devices that have reached 

near-human performance levels in several cognitive domains, including, for example, object 

classification 66,67 and speech recognition 68–70 . DNNs have been proposed to perform 

an overparameterized blind process of directly fitting complex data sets with immanent 

regularization, and to allow for generalization based on local interpolation, thus taking on 

functions previously attributed to discrete rules 71 .

Despite their broad success, specific limitations of DNNs have recently been pointed out. 

They sometimes show inappropriate generalization behaviour 72–75 , such as classifying, 

with high confidence, images completely unrecognizable to humans as instances of specific 

objects 73 . Similarly, an extensive body of research on so-called ‘adversarial examples’ has 

shown that minimal perturbations to images can, despite being imperceptible to humans, 

nonetheless cause gross misclassifications by DNNs 72,76 . It remains to be investigated 

whether these partial failures point to relevant differences between DNN-immanent and 

brain-internal perception mechanisms that can be remediated by algorithmic improvements, 

or rather reflect limitations of the stimulus sets applied during training, which differ from 

the realistic stimuli available to living beings during their ontogeny. A recent study found 

that introducing a hidden layer that better matches primate V1 improved robustness to 

adversarial examples in a neural network for image classification, suggesting that a higher 

degree of biological realism might be key 77 .

Today, there are various neural network architectures that use different types of processing 

components, coding and learning rules. Supervised and unsupervised learning, sparse and 

dense distributed coding, and hetero-associative and auto-associative network components 

co-exist across approaches, and some models even mix these features — for example, 

by integrating both hetero-associative and auto-associative layers, as in the case of deep-

recurrent and reservoir-computing networks 48,69,78,79 . The choice of network features is 

driven by processing efficiency, including error minimization, learning speed, effective use 

of computing resources and so on. Neurobiological plausibility is frequently used as a 

source of inspiration, as mentioned, but artificial neural networks are usually not designed to 

structurally and functionally resemble specific parts of the brain.

Whole-brain networks

The connections between the layers of neural networks are typically simple, with 

neighbouring areas being linked; however, this differs from the connectivity structure of 

the cortex, in which numerous areas are connected in intricate ways. Approximating the 

complex subdivision of brains into areas and nuclei, and implementing the neuroanatomical 

connectivity between these components, is a main goal of ‘whole-brain’ modelling. Rather 

than modelling all parts of the brain, most ‘whole-brain’ models focus on cortical areas and 

forebrain nuclei, or selections thereof.
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Neuroanatomists have mapped the areal structure of the cortex and brain at coarse 

and finegrained levels 80–82 . Information about structural brain connectivity is available 

from invasive tracer studies in animals 83,84 , which have revealed fibre tracts and their 

directionality, and from non-invasive brain-imaging applicable in both animals and humans. 

The latter use diffusion tensor or diffusion weighted imaging (DTI/DWI) along with 

deterministic or probabilistic tractography 85–88 . By parcellating the cortex into a set of 

areas and translating its structural connectivity into between-area links, a whole-brain or 

multiple-area network model can be obtained in which each cortical area and anatomical 

connection has its corresponding network node and link, respectively (Fig. 2e).

Whole-brain models can be applied to investigate the functional consequences of 

neuroanatomical structure and connectivity. Multiple studies have simulated the spatial and 

temporal dynamics of brain activity that spontaneously emerges in resting conditions to 

explain the interplay between and functional coupling of areas 89–93 . It transpires that 

the structural connectivity imposed by cortical anatomy, along with dynamic parameters, 

determines and explains the emergence of functional communities of areas in the resting 

state 94–99 .

Whole-brain networks provide an important tool for understanding aspects of brain activity. 

However, it is not uniformly functioning whole areas, but rather neurons and their 

interaction in neuronal circuits that are the functional units that carry brain function 

and cognition. The crucial neuronal circuits and their interconnecting links are in part 

determined by neuroanatomical structure, but an equally important contribution to circuit 

formation comes from synaptic plasticity. Therefore, to move towards improved biological 

plausibility, it is necessary to incorporate neurons and plasticity into whole-brain network 

simulations, thus taking advantage of the constraints realized by the aforementioned 

associative neural networks (for example, see refs. 57,62,100,101 ). In essence, whole-brain 

network models can be improved by adding more detail at the sub-area and neuronal levels; 

correspondingly, DNNs can be made more realistic by adding neuroanatomical information 

about within-area and between-area connectivity.

Brain constraints

To make neural networks of neurocognitive function more realistic, it is necessary first 

to develop models of neuronal mechanisms across different levels, ranging from the 

micro-levels of neurons and local cortical circuits to the macro-level of cortical areas and 

global connectivity, and second to apply constraints from neuroscience at these different 

levels (Fig. 1). Previous proposals have already discussed various different constraints 

on neural networks 7,38,100,102,103 , but have frequently listed neurobiological constraints 

side-by-side with technical or practical criteria (for example ‘computational efficiency’ 

or ‘scalability’ 100 ), or addressed biological plausibility very generally (for example as 

‘biological realism’ in ref. 7 ).

Below, we spell out point-by-point what ‘biological realism’ implies and discuss a list of 

specific neurobiological constraints applicable to network models of cognitive functions 

— some of which are also suitable for neural networks more generally. As cognitive 
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processes are in focus, mechanisms in the forebrain and especially in the cortex receive 

special attention. The proposed constraints are not thought to represent categorical features 

that must necessarily be met by models in a binary fashion. Rather, we conceive them as 

dimensions along which neural models can be adjusted gradually, in view of their specific 

purposes.

Integration at different levels

Most previous modelling has focused on one specific grain size, aiming to approximate 

neuronal function at the level of either single neurons 104,105 , neuronal interaction in 

local cortical circuits106-109 or global interplay between cortical areas (see Whole-brain 

networks). To simultaneously apply constraints at different levels of brain structure and 

function, these different levels must be addressed and integrated into a single model. 

Furthermore, multi-level modelling is required to exploit multiple sources of experimental 

data for model validation 101,110–112 . These different sources include behavioural 

performance (for example, accuracy and response times in cognitive experiments), and 

neurophysiological activity, where, once again, different spatial scales come into play, 

ranging from the micro-level of single-cell and multi-cell recordings to that of local field 

potentials and macroscopic local area activations as revealed by non-invasive neuroimaging 

techniques, such as electroencephalography (EEG), magnetoencephalography (MEG) and 

functional MRI. These physiological data also come at different temporal scales, ranging 

from millisecond delays between neurons and high-frequency oscillations, to slow potential 

shifts and neurometabolic changes. The activity of recorded neurons or imaged areas, and 

even the similarities between these activation patterns 113,114 or the transient functional 

interactions they reveal 115,116 , can be related to activation patterns of artificial neurons, 

local neuron clusters or ‘area’ components of a model. Likewise, spatio-temporal patterns 

of activity within a local cortical neighbourhood or across different cortical areas can be 

compared with the patterns produced and integrated by networks. Such comparison of 

activity patterns across different scales requires that components of the brains and networks 

resemble each other structurally, and that it is possible to identify brain parts with network 

parts. Only in this case can the physiological measures be used to validate the neural models. 

The constraints below address different aspects of such similarity.

Neuron models

The functional units of the cortex and brain are neurons. These neurons receive inputs 

that are translated into postsynaptic potentials and finally into an output of discrete action 

potentials, whereby action potential frequency can vary continuously 117,118 . All neural 

networks are composed of artificial correlates of neurons, but the level of detail with which 

neuronal function is simulated varies considerably 104,105,119 .

Mean field models use neurons with continuous inputs and outputs (thus ignoring the 

spiking of most real neurons), together with a transfer function that transduces the former 

into the latter 120,121 . They can be interpreted to simulate the firing probability of 

single neurons or the cumulative activity of local neuron circuits. The more sophisticated 

spiking ‘integrate-and-fire’ neurons model the summation of postsynaptic potentials and 

resultant neuronal firing, and can be extended to integrate dendritic compartments and 
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non-linear interactions between their inputs 104,122–125 . Multi-compartment and biophysical 

neuron models can include even more detail, including subdivisions of the dendritic tree, 

postsynaptic ion-channel dynamics and dendritic action potentials 104,126–129 . Thus, a 

dimension of progression addressing the degree of realism of the neuron model may advance 

from mean field to integrate-and-fire to biophysical neuron models. Furthermore, some 

neuronal activity is difficult to explain by the input and can thus be seen as noise 130 . The 

addition of noise, along with adaptation (that is, the reduction of activity with prolonged 

activation), can thus further increase the degree of realism of neuron models.

However, please note that the most detailed neuron model is not always the best choice 

for a given research question. Not only can relatively basic neuron models yield excellent 

descriptions of neuronal activity 104 ; the greater computational resources required by 

sophisticated neuron models also currently limit their applicability to large-scale simulations 

of within-area and across-area interactions relevant for cognition.

Synaptic plasticity and learning

Evidently, the inclusion of learning mechanisms is a crucial biological ingredient of 

biologically plausible networks. As mentioned, localist and whole-brain models typically 

lack this feature. To model multiple learning systems in the brain, the implementation of 

both major forms of learning, supervised and unsupervised, is necessary.

Learning based on biologically plausible Hebbian principles is relevant for all cognitive 

domains. It is approximated by various different learning rules 131 . Some of these rules 

are elementary; for example, implementations of the ‘fire-together-wire-together’ principle 

lead to long-term potentiation (LTP) of connections between co-activated neurons. Other 

rules include more neurophysiological detail, in particular ones that can implement both 

LTP and, as a consequence of uncorrelated or anticorrelated activation, long-term depression 

(LTD) 132,133 . Synaptic plasticity dependent on the timing of action potentials, known as 

spike-timing dependent plasticity (STDP), is a consequence of Hebbian learning realized in 

sophisticated implementations 134–137 . Thus, a progression can be seen from the absence of 

learning, to LTP-based Hebbian learning and, ultimately, Hebbian LTP-plus-LTD learning 

rules and the addition of STDP.

Supervised learning involves the use of a feedback signal that informs the individual 

or network) whether performance was appropriate, or wrong or erroneous. However, the 

choice of algorithms used in supervised-learning simulations has been guided not only 

by biological plausibility 7,138 ; the computational efficacy of gradient-dependent learning 

has played a major role 55,56,62 . It is controversial whether these latter algorithms are 

biologically realistic and applicable to sophisticated learning in specific cognitive domains. 

Some researchers have criticized the lack of strong biological support for mechanisms that 

compute and feed error gradients back through feedforward neuron networks 7,139 , whereas 

others point to recent emerging evidence for neurobiological mechanisms that could, in 

part, support aspects thereof 56,140–142 . The mechanisms by which error gradients might 

gradually propagate backwards through a population of biological neurons remain a target of 

ongoing research.
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A further putative problem concerns the type of feedback required for gradient-dependent 

learning. In DNN simulations, thousands of learning trials are available, whereby, for 

example, object pictures are classified with regard to category membership (for example, 

whether they show cats or cups). However, in many cases of classification and language 

learning in humans, such feedback does not play a major role — and is, if at all, only 

rarely available 143 . It rather seems that, in some cases of cognitive learning, the absence 

of certain inputs is sufficient. For example, to ‘pre-empt’ the use of specific linguistic 

constructions — that is, to block them from the learner’s repertoire — it is sufficient to hear 

other constructions in contexts where the pre-empted constructions could in principle be 

used 144,145 . This type of cognitive learning is not explained by feedback-driven supervised 

learning but invites modelling based on Hebbian plasticity 146 . Nevertheless, explicit 

feedback is important in some types of learning (such as reinforcement learning) and its 

biologically realistic implementation is crucial 7,48,138 .

Inhibition and regulation

Brains are regulated systems, and cortical activity is regulated by control mechanisms 

at different levels. These include the microscopic local circuit level, at which excitatory 

cortical neurons interact with local inhibitory cells, and the macroscopic, more global 

level of interacting brain parts, at which cortical activity is regulated through information 

exchange with the thalamus, basal ganglia and other subcortical structures 6,147,148 . Many 

distributed neural networks used for simulating cognition are composed of excitatory units 

only and lack inhibition mechanisms. Other modelling frameworks implement regulation 

at an abstract level, for example by predefining a maximum number of neurons in an 

area that are allowed to become active at one time 36,119 . More realistic neural network 

models include excitatory and inhibitory neuronal elements, such that activity regulation 

and control is achieved by their interplay, a mechanism crucial for arousal and attention 

(see Perspectives section). Few models have realized both local and global regulatory 

mechanisms 42–44,109,110,149–154 . Inclusion of inhibition and regulation mechanisms at both 

the local circuit level and more global levels (such as the area level) is an important feature 

of making neurocognitive networks biologically plausible.

Area structure

The cortex is structured into a set of areas, whereby area definition is primarily based on 

anatomical criteria and sometimes refined using functional information (see, for example, 

the Brainnetome Atlas) 80–82,155 . Depending on the question to be addressed by a 

simulation, a network model may implement one, a specific selection of, or all cortical areas 

along with subcortical nuclei. Each area or nucleus can be realized as a separate ‘layer’ or 

model area including a predefined number of artificial neurons. Dimensions of progressing 

towards biological realism include the range of brain parts and regions covered by the model 

(from one, to several, to whole-brain) and the granularity of the modelled areas, moving 

from coarse to more fine-grained area subdivisions.

Within-area local connectivity

Pyramidal cells, the most common excitatory neurons in cortex, each carry 10,000–40,000 

dendritic spines 20,156 , each of which in turn typically contain one synapse 20 . Therefore, 
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one of these cells may make contact with a few tens of thousands of other cortical cells 

— within a pool of 15–32 billions of neurons in human cortex overall157. The number of 

connections (more than 10 14 ) is too huge to be determined, item-by-item, by the genetic 

code alone, and therefore stochastic principles must also co-determine whether a specific 

pair of neurons is connected. The probability that two adjacent pyramidal neurons are 

connected decreases with the distance between them 20,101,158,159 . In sum, neuroanatomical 

studies indicate that local excitatory connections within a cortical area are sparse and show a 

neighbourhood bias towards links between adjacent neurons 20,160 .

In view of these features, the lack of within-layer connections of hetero-associative 

networks does not seem biologically realistic. Many networks that include auto-associative 

layers or areas 21,22,28,161 include full connectivity between all neurons within these 

areas and, similarly, the memory layers of simple recurrent networks57 have all-to-all 

recurrent connections. Such full auto-associativity likewise contrasts with the sparseness 

of intrinsic local cortical connections. The brain constraint of sparse, local and partly 

random connections with a neighbourhood bias has been realized in neural networks that 

connect auto-associativity with between-area hetero-associative connections 24,149,150,162 . 

Most advanced with regard to the local connectivity constraint are microcircuit models that 

realize different cell types and their location in layers of the neocortex 109,110,152,154,163 . 

Nonetheless, for most neural networks available today, the implementation of within-area 

connectivity constraints still leads to an increase in biological realism 101 .

Between-area global connectivity

The connections between areas of cortex follow some general rules. Most links are 

reciprocal. Adjacent areas are almost always interlinked, and second-next neighbours are 

connected in many cases 20,164 . However, longer-distance links are sparser, and much effort 

has been spent to map them precisely using invasive techniques (for example, with tracers) 

and non-invasive techniques (such as DTI/DWI) 101,165–172 .

If two areas are interlinked, their connections are in most cases reciprocal and show 

topographic projections, such that local neighbouring relationships are preserved. Between-

area connections are carried by long axon branches of cortical pyramidal cells. These axon 

branches pass through the white matter and can reach neurons in distant areas, where they 

branch and make contact with a local neighbourhood of neurons. Most hetero-associative 

artificial networks implement between-area links as all-to-all connections. An advance 

in biological realism can be achieved by introducing random connectivity with biases 

towards topographical projections and neighbourhood links, as, for example, in multi-area 

auto-associative and convolutional deep networks 43,44,173 . At the macroscopic level, it is 

biologically motivated to replace the typical linear lineup of next-neighbour-connected areas 

(Fig. 2c,d) with realistic connectivity schemes (see, for example, refs. 65,168,174 and section 

on ‘Whole-brain models’), ideally taking into account any connection asymmetries and 

even the number of axons per fibre bundle along with axonal conduction delays. Therefore, 

essential brain constraints on artificial neural networks come from the connectivity structure 

of between-area links as documented by neuroanatomical research.
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Additional constraints on global connectivity may be taken from measures of 

functional interaction, including correlation-based undirected functional connectivity and 

directed effective connectivity 175–178 , although we suggest applying such data as 

neurophysiological evidence for validating anatomically constrained models rather than as 

a-priori constraints (see ‘Integration of modelling at different levels’).

Recent progress and trends

We propose that models of brain function should attempt to integrate several and, ideally, 

all of the seven brain constraints mentioned above. The integration of microscopic and 

macroscopic levels is crucial to this endeavor (see constraint ‘Integration of modelling 

at different levels’). Microcircuit networks provide a detailed picture of the functional 

interplay between connected excitatory and inhibitory neurons located in different cortical 

layers within one local cluster of neurons (constraints ‘neuron models’, ‘inhibition and 

regulation’ and ‘within-area local connectivity’) 109,110,152,153 . Several microcircuit models 

have been integrated into models of multiple cortical areas by taking into account 

long-distance connectivity as well (constraints ‘area structure’ and ‘between-area global 

connectivity’) 154,174,179–181 .

The model by Schmidt et al. 154 convincingly integrates local-circuit with area-structure 

and global-connectivity constraints and simulates resting-state activity of the human brain 

at a hitherto unprecedented level of detail (Fig. 3). However, this model is computationally 

demanding and touches the limits of simulation capacities of current cutting-edge computing 

equipment, even though it restricts itself to modelling 32 areas, each of which simulates 

neurons below just 1 mm2 of the cortical surface. These restrictions indicate that, in view 

of keeping computational efforts manageable, it is necessary to carefully select the degree 

to which constraints can gradually be met. Furthermore, applying all constraints in their 

most extreme form could result in computationally unrealizable models, which may, even if 

realized, be too complex to be helpful as tools for better understanding brain function.

Multiple-area networks including microcircuits open novel perspectives for neural modelling 

of cognition. After inclusion of biological learning mechanisms (constraint ‘synaptic 

plasticity and learning’), they may be applied to simulate and potentially explain higher 

cognitive functions. Below, we address putative benefits of adding the aforementioned 

neurobiological constraints to neural models of cognition.

Linking cognitive theory to the brain

Cognitive models may perfectly fit the data obtained in cognitive tasks, independent of 

whether they are implemented algorithmically or in a neural network. However, there is 

typically more than one theory, and hence algorithm or network, that can model a given 

data set. An advantage of neural models is that they allow the introduction of functional 

neuroscience constraints that can be used to decide between these alternatives 9 .

Object recognition and classification—As mentioned, the evidence for cognitive 

neural model evaluation can come from single-cell and multiple-cell recordings 111,182 , 

fMRI activation patterns of areas, or spatio-temporal activation patterns revealing the 
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orchestration of neural activity across different neuron populations or areas 162,183–185 . 

For example, a large range of models of object recognition are able to describe human object 

classification performance, but only neural models with some similarily to brain structure 

can be tested using neurophysiological data recorded at different levels of human and 

monkey inferior temporal cortex 186,187 . For such testing, it is particularly useful to apply 

not only measures that reveal the activated loci during object perception and classification, 

but also the more sophisticated method of representational similarity analysis (RSA). RSA 

allows one to relate the degrees of similarity between brain activation patterns elicited by 

different stimuli to the similarity structure of the stimuli themselves, which can be measured 

at different levels (for example, perceptual or semantic) 113 . Notably, RSA has revealed 

that neurometabolic activity in inferior temporal cortex reflects semantic similarities of 

visually perceived objects 186 . Application and comparison of alternative neural (and 

non-neural) models have shown that the best fit of area-specific activation patterns and 

pattern similarities in temporal cortex signifying object perception was achieved with a 

feedforward convolutional DNN trained by applying supervised learning 184 . Furthermore, 

recent research indicates that inclusion of recurrent connections in DNNs is crucial for 

capturing aspects of the fast neurophysiological dynamics observed in temporal cortex 188 . 

Over and above the structural and functional constraints already addressed by these models, 

further structural constraints on within- and between-area connectivity may be considered in 

future (constraints ‘inhibition and regulation’, ‘within-area local connectivity’ and ‘between-

area global connectivity’).

Attention—Research on attention offers another example for the application of 

neuroscience constraints to cognitive theory. Psychologists had long theorized about the 

fact that visual selective attention biases object and feature perception and that different 

perceptual elements compete with each other for attention, an interaction described by the 

biased competition model of attention 189 . This cognitive theory was translated into a 

neurocomputational model of early and higher visual cortex (including V2 and V4). Pools 

of excitatory and inhibitory neurons with within-area and between-area connections inspired 

by neuroscience data were used to model the interaction between representations, attentional 

bias and resource-limiting inhibition and to help to explain results of behavioural and 

neurophysiological recording experiments in non-human primates 182,190 . In a separate line 

of work using a convolutional DNN, the effects of attention on visual object classification 

were recently shown to depend on the level at which biases are applied, with modulation 

at higher layers being relatively more effective than modulation at lower layers in biasing 

attention toward specific object categories 191,192 . This observation may help to clarify 

the role of anterior temporal and prefrontal areas in visual attention processing 193 . 

Future biological modelling may marry within-area inhibition with deep architectures, 

constraining the latter using the neuroanatomical connectivity of the visual ‘what’ and 

‘where’ streams, and/or may apply Hebbian learning instead of backpropagation for weight 

tuning (constraints ‘synaptic plasticity and learning’, ‘area structure’, ‘within-area local 

connectivity’ and ‘between-area global connectivity’).

Language processing and reasoning. A relatively straightforward way of modelling cognitive 

brain functions in a neurobiological format is to select a set of areas and nuclei, model 
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each using a set of neurons, assign cognitive functions to model areas and determine 

the interactions among them using predefined or learned mappings between area-specific 

activation vectors. This strategy has given rise to biologically inspired models of cognitive 

functions, including concept, language and number processing 47,194–198 . One such model47 

is particularly impressive because of its size (2.5 million neurons) and implementation of the 

neuron-model constraint (integrate-and-fire neurons) in various cognitive tasks, addressing, 

for example, number recognition, question-answering and even fluid reasoning 199 . Twenty 

brain regions (areas and nuclei) are represented in the model, each by an ensemble of 

neurons, although global connections are sometimes idealized (for example, showing a 

linear line-up of areas from primary visual to anterior-temporal). Within areas, there is 

either no or full connectivity, and inhibitory neurons are missing. Therefore, three of the 

seven constraints have been addressed (‘Neuron models’, ‘Area structure’ and ‘between-area 

global connectivity’). Other brain-constrained models using smaller vocabularies and task 

ranges than those used in this large model have successfully integrated conceptual and 

language processing with action and perception mechanisms and have been applied in 

robots 194,197,198,200 .

Explaining neuroscience findings

Beyond putting cognitive theories into a neurobiological environment, brain constrained 

modelling can also provide answers to long-standing questions in neuroscience about how 

specific capacities of the brain are mechanistically implemented, how they emerge in 

ontogeny, how they came about in phylogeny and why they are situated in the specific brain 

parts where they are observed to be situated. We now turn specifically to this explanatory 

perspective.

Memory—Some models discussed above have provided a mechanistic explanation for 

the competition aspect of attention, which emerged from local inhibitory connections and 

between-area projections 182 ; however, the other component of the biased-competition 

model of attention, the bias (such as that towards an object or part of visual space), is 

typically presented to the model from the outside and thus remains without model-immanent 

explanation. A mechanism for biases may come from network models of memory that 

account for memory dynamics based on neuronal function and structural connectivity. Here, 

memory mechanisms at the subcellular level (such as synaptic plasticity) are important, 

but in these models the questions of why certain types of memory develop in specific 

species, brain parts and circuits are still partly open. With appropriately adjusted activation 

thresholds and synaptic weights, a fully connected auto-associative memory is characterized 

by persistent attractor states, a possible correlate of working memory 22,201,202 . In models 

using spiking model neurons, auto-associative networks with all-to-all connectivity within 

their ‘areas’ gave rise to firing patterns resembling those recorded from neurons in inferior 

temporal lobe during working memory experiments 39,46,203 .

Further work has addressed the question of why different cortical areas typically 

show different predominant memory activity patterns 46,204 . Hebbian learning principles 

suggest that memory circuits are built from neurons firing together during sensory 

stimulation and thus located in areas where the to-be-stored information arrives; that 
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is, in primary areas. However, most neurons with memory characteristics develop in 

multimodal areas (in prefrontal, anterior-temporal and posterior-parietal cortex) distant from 

primary areas. A deep neural model implementing six frontal and temporal areas and 

their neuroanatomical connectivity structure showed that unsupervised Hebbian learning 

applied to this network gives rise to firing patterns and realistic distributions of memory 

cells across primary, secondary and multimodal areas, thus providing an explanation of 

cortical memory topographies and dynamics based on neuron function and corticocortical 

connectivity 185,204 . On a related thread, a recent study asked why a specific form 

of memory, verbal working memory (that is, memory for spoken words and language-

like acoustic stimuli), developed in the context of specific evolutionary changes of the 

connectivity structure of fronto-temporal areas and is specific to humans. It was shown that 

the specific increase in fronto-temporal connectivity observed in primate evolution led to the 

emergence of distributed neuronal circuits for articulatory-acoustic units 205 , thus offering 

an explanation of a specifically human trait based on phylogenetic structural change (Fig. 4). 

This model and the previously described one realize the seven constraints discussed in this 

article (with special emphasis on ‘between-area global connectivity’), although the number 

of areas and the level of detail of local microcircuit simulation could still be increased.

Concepts—Similar explanatory advances could be achieved in the domain of language 

and conceptual processing. It is well-known that multimodal areas in frontal, temporal 

and parietal lobe are important for conceptual and semantic processing generally, whereas 

modality-preferential sensory and motor areas contribute to the processing of specific 

semantic categories 206–209 . An explanation of why these particular sites are relevant 

for concepts generally or specifically had been missing. Brain theory suggests that the 

convergence of multimodal information is essential for conceptual mechanisms 210 . To get 

from the visual perception of a cat to the related concept and, for example, the knowledge 

of what kind of sound a cat typically produces, information from different modalities 

needs to be integrated. Such integration of multimodal information requires connections 

bridging between modality-specific neural systems in different cortical areas (which are 

distant from each other), which implies a role of large-scale connectivity structure in 

conceptual processing. Modelling of word learning processes in frontal and temporal 

cortex that applied realistic early language learning scenarios, unsupervised learning and 

anatomically constrained local and global connectivity, revealed a distribution of neuronal 

circuits for conceptual and semantic processing consistent with the data. Specifically, most 

neurons of conceptual circuits, which formed as a consequence of co-processing information 

about signs and their related objects or actions (Fig. 5), were housed in the model’s 

multimodal convergence hubs, thus explaining the general ‘pull’ away from the areas where 

sensorimotor information reaches the cortex towards the most strongly connected connector 

hub areas. By contrast, the stimulation of specific modality-specific areas during conceptual 

learning and the resultant correlated neural activation topographies helped to explain the 

category-specific contribution of modality-preferential areas (Fig. 5) 185,211–213 . Again, 

realistic between-area connectivity was a crucial factor of these explanations; all seven 

constraints were addressed.
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Future applications

Besides the aforementioned theoretical and explanatory advances offered by brain-

constrained modelling, this novel strategy offers very practical application strategies for the 

future. One such application addresses neuroplasticity, aiming at predicting and explaining 

reorganization of cognitive functions after lesion or deprivation. In this context, recent 

modelling attempts have targeted, for example, altered language processing in patients 

with focal lesions of language-relevant cortical areas214 and sensory deprivation in 

blind people 50 . These modelling experiments have led to accounts of well-documented 

neuroplasticity phenomena; for example, the takeover of visual areas during language and 

cognitive processing in congenitally blind individuals 50 .

In future, it may become possible to perform neurocomputational modelling constrained by 

specific features of individual brains. Results obtained with individually constrained neural 

networks may open new perspectives on predicting future neuroplastic dynamics 215 and 

may be used for planning personalised therapy or surgery, for example for individuals with 

brain tumours 216–218 . Brain-constrained modelling applied to particular populations and 

even individual cases may thus open fruitful future perspectives.

Conclusion

Based on a brief overview of neural network simulations of cognition and their successes, 

we here suggest a move towards more biologically oriented modelling. According to 

the position put forward in this Perspective, neuroscience constraints have priority over 

other aims, such as processing efficacy and big data processing. Beyond the imperative 

to build models that bridge between the macro-scale and micro-scales, in order to be 

testable against physiological data at different levels, the proposed constraints address 

neuron models, learning algorithms and regulation mechanisms along with neuroanatomical 

constraints on model architecture that address area subdivisions and short-range and long-

range connectivity. As concrete examples of brain-constrained modelling, we have reviewed 

biologically motivated neurocomputational implementations of neurocognitive theories and 

model-based explanations of the brain mechanisms underlying object perception attention, 

memory, concepts and language along with their ontogenetic and phylogenetic development. 

The future outlook for brain-constrained modelling includes the generation of networks that 

realize features of individual brains, which may, for example, be useful in assessing which 

parts of cortex are crucial for retaining specific cognitive functions in a given individual.
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Fig. 1. Seven constraints for making neural networks models more biologically plausible.
Constraints address the integration of modelling from the microscopic to the macroscopic 

scale of brain structures (1), and specifically highlight the nature of the neuron model 

(2), the implementation of synaptic plasticity and learning (3), regulation and control by 

way of interplay between excitatory and inhibitory neurons on the local and global level 

(4), gross anatomical structure and area subdivision (5) and local within-area structure and 

connectivity (6), as well as global between-area connectivity (7). Most current network 

models used for modelling cognition focus on only one or a few of these aspects, whereas 

brain-constrained modelling works towards networks integrating all of them. The diagram in 

the middle is redrawn after ref. 109 . The brain displays on the right were provided by R.T. 

by using WU-Minn open-source data from the Human Connectome Project (HCP) database 

and the MRtrix software (https://www.mrtrix.org). HCP Data acquisition and preprocessing 

are described in 155 . The parcellation into areas of the Schaefer Atlas219 was used for the 

analysis.
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Fig. 2. Networks for modelling cognitive functions.
a | A localist network model includes nodes representing cognitive entities, for example 

word forms (middle layer), phonemes (bottom layer) and semantic features (top layer). 

Lines indicate links between nodes. Nodes sum up their inputs linearly, such that the 

activation of the phoneme nodes of /d/, /o/ and /g/ activate the word node for ‘dog’, which, 

in turn, activates semantic feature units (filled circles at the top) characterizing the related 

concept. b | Auto-associative networks include connections between their neurons, such 

that reverberating activity is possible; they are inspired by the local connectivity between 

adjacent cortical pyramidal cells 20,22 . This panel shows the connectivity matrix between 

five artificial neurons, α to ε. These neurons make up an auto-associative network that 

includes two discrete representations indicated in magenta (neurons α-to-γ) and cyan 

(neurons γ-to-ε). Numbers specify the presence (1) or absence (0) of a connection from 

the neuron listed on the left of the matrix to the neuron indicated at the top. Each neuron 

becomes active if and only if it receives at least two simultaneous inputs, thus resulting 

in the discrete representations maintaining activity over time. c | In heteroassociative 

networks, neuron populations ordered in ‘layers’ project onto each other serially, resembling 

connectivity in some neural structures. The typical three-layer networks used in many 

parallel-distributed processing (PDP) models include input and output layers plus a ‘hidden’ 

layer in-between. d | Deep neural networks include several hidden layers. The number of 

neurons per layer can vary substantially. Representations are activation vectors across all 

neurons of a layer. e | Whole-brain models implement global between-area connectivity. 

Here, between-area connectivity of the right hemisphere is shown for a single subject (top 
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left panel) and a group of subjects both in anatomical topology (bottom left) and in matrix 

form (right). The matrix gives all connections between pairs of areas of the network model; 

colors indicate connection weights (fiber densities). Part a is adapted with permission from 

ref. 11 . Part e is adapted with permission from ref. 91 .
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Fig. 3. Multi-level network for explaining neural dynamics based on neuroanatomical 
constraints.
Neurophysiological activity in 32 cortical areas of the visual system of the macaque was 

modelled 154 . Probabilities of between-area connectivity (bottom left panel) were based 

on anatomical data and general connectivity principles. Applying further neuroanatomical 

constraints, each area was modelled as a 1 mm2 patch of cortex with excitatory and 

inhibitory spiking cells (right panel) arranged in layers and specific connection probabilities 

within and between layer-specific cell populations (top left panel). The model was applied to 

reproduce and explain spiking neuronal activity from neurophysiological recordings, activity 

propagation across areas and causal dynamic interactions between neuron populations and 

areas. The model unifies local and large-scale accounts of the cortex and clarifies how the 

detailed local and global connectivity of the cortex shapes its dynamics at multiple scales. 

Synaptic plasticity and learning were not modelled, although all of the other six constraints 

discussed in the main text were applied. Figure adapted, with permission, from ref. 180 .

Pulvermüller et al. Page 30

Nat Rev Neurosci. Author manuscript; available in PMC 2022 March 22.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Fig. 4. Model of evolutionary connectivity change in left fronto-temporal cortex and its 
functional consequences.
Verbal working memory is a feature of humans that apes and monkeys apparently lack. 

a | ‘Monkey’ and ‘human’ models of six areas of fronto-temporal cortex involved in 

articulation and auditory perception (middle panel) were used to address this issue. Areas 

were modelled as sets of 625 mean-field excitatory neurons, each projecting randomly 

to local neighbourhoods of other excitatory units (coloured); each excitatory cell has 

a corresponding inhibitory ‘cell’ (in grey) projecting to a narrow local neighbourhood 

(left panel). Between-area connections implementing comparative DTI results 170,171,221,222 

included next-neighbour connections between areas (green) and the second-next area 

connections specific to human perisylvian cortex (violet links in the 'human’ model only). 

Correlation-based Hebbian plasticity was applied to imitate early sound and sign learning 

and to interlink articulatory and auditory information. b | After stimulation with learnt 

auditory–articulatory patterns, the monkey model showed weak and short-lived sequential 

activation of the model areas: A1, primary auditory cortex; AB auditory belt cortex; M1, 

primary articulatory motor cortex; PB, auditory parabelt cortex; PF, inferior prefrontal 

cortex; PM, premotor cortex. c | The same stimulation led to strong and long-lasting parallel 

activation in the areas of the human model. This prolonged activity can be interpreted as 

verbal working memory, a mechanism necessary for human language. The model applies all 

seven constraints discussed above. The left portion of part a is adapted with permission from 

ref. 211 . Parts a-c are adapted from ref. 205 .
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Fig. 5. Brain-constrained model of semantic grounding.
a | For simulating the infant’s learning of the meaning of object-related and action-related 

words, a 12-area model was created including the six inferior-frontal and superior-temporal 

perisylvian areas of Fig. 4 (A1, primary auditory cortex; AB auditory belt cortex; M1, 

primary articulatory motor cortex; PB, auditory parabelt cortex; PF, inferior prefrontal 

cortex; PM, premotor cortex), plus a ventral temporo-occipital visual stream (in green: 

AT, anterior-temporal cortex; TO, temporo-occipital cortex;V1, primary visual cortex) and 

a dorsolateral frontal action stream (in yellow-brown: lateral PF (PFL), lateral PM (PML) 

and lateral M1 (M1L)). Between-area connectivity is shown by arrows. Semantic learning 

and grounding of object and action words was modelled by co-presenting acoustic and 

articulatory information along with either semantic-referential object-related information 

or action-related information. This was done by co-activating specific patterns of spiking 

neurons in the different ‘primary’ areas of the model (M1 and M1L, V1 and A1) and 

Hebbian correlation learning. After learning, ‘auditory word comprehension’ was simulated 

by presenting specific previously learned auditory patterns to area A1. As a result, specific 

circuits of neurons distributed across the network were activated, as indicated by the 

coloured dots in the insets (1 dot indicates 1 active model neuron; blue, object–word circuit; 

red, action–word circuit; yellow, both), shown in the black boxes representing areas. b,c | 
Distribution of circuit neurons across model areas. Bars give average numbers of neurons 

per area for object- (dark grey) and action-word circuits (light grey); whiskers give standard 
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errors. Note the relatively stronger representation of object–word circuits in ventral-visual 

areas and that of action–word circuits in dorsolateral-frontal areas in part a 50,213 , which 

offer an explanation for well-known differences between the cortical mechanisms underlying 

action-related and object-related concepts 207,223–226 . All seven constraints discussed in the 

main text were implemented. Figure adapted, with permission, from ref. 185 .
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