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Abstract

Automated ultrasound (US)-probe movement guidance is desirable to assist inexperienced human 

operators during obstetric US scanning. In this paper, we present a new visual-assisted probe 

movement technique using automated landmark retrieval for assistive obstetric US scanning. In 

a first step, a set of landmarks is constructed uniformly around a virtual 3D fetal model. Then, 

during obstetric scanning, a deep neural network (DNN) model locates the nearest landmark 

through descriptor search between the current observation and landmarks. The global position 

cues are visualised in real-time on a monitor to assist the human operator in probe movement. A 

Transformer-VLAD network is proposed to learn a global descriptor to represent each US image. 

This method abandons the need for deep parameter regression to enhance the generalization ability 

of the network. To avoid prohibitively expensive human annotation, anchor-positive-negative US 

image-pairs are automatically constructed through a KD-tree search of 3D probe positions. This 

leads to an end-to-end network trained in a self-supervised way through contrastive learning.
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1 Introduction

Motivation

Obstetric US scanning is known to be highly experienced-operator dependent. Simplifying 

US to be more accessible to non-expert operators is a recognized priority for wider 

deployment of US in clinical practice. Automatic probe movement guidance may assist 

less-experienced operators to perform scanning more confidently, and widen the use of US 

in existing and new areas of clinical medicine. Our target is to develop automated machine 

learning (ML)-based visual interventions to provide helpful visualization cues for guiding an 

inexperienced operator using US scanning as an exemplar. In this case the target end-user 
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might be a sonographer trainee, midwife, emergency medicine doctors, or primary care 

practitioners for instance.

Automatic ML-based probe movement guidance to assist a human operator (rather than a 

robot) is currently an open research problem. Two recent methods [6][3] propose to predict 

control parameters of probe movement such as translation distance and rotation degree. Li 

et al. [6] propose an Iterative Transformation Network (ITN) to automatically detect 2D 

standard planes from a pre-scanned 3D US volume. The CNN-based ITN learns to predict 

the parameters of the geometric transformation required to move the current plane towards 

the position/orientation of the 2D standard plane in the 3D volume. Droste et al. [3] develop 

a real-time probe rotation guidance algorithm using US images with Inertial Measurement 

Unit (IMU) signals for obstetric scanning. The proposed deep multi-modality model predicts 

both the rotation towards the standard plane position, and the next rotation that an expert 

operator might perform.

These control parameter prediction style methods are best suited for guiding a robot 

agent rather than a human. There is a parallel here with the self-driving vehicle literature 

where, for example, the most efficient way to assist a person driving is via real-time 

GPS localization visualization, while control parameter (steering wheel and accelerator) 

prediction is more useful for a self-driving car. We are therefore interested in discovering 

whether a similar visual intervention such as [11] can assist obstetric US scanning.

Grimwood et al. [5] formulate the probe guidance problem as a high-level command 

classification problem during prostate external beam radiotherapy using US images and 

transducer pose signals. The proposed CNN-RNN based classification network predictss 6 

different high-level guidance cues i.e. outside prostate, prostate periphery, prostate centre 

for position and move left, move right, stop for direction to recommend probe adjustments. 

However, training this classification network requires a large number of expensive ground-

truth annotated by physicists and radiotherapy practitioners.

From a technical viewpoint, deep regression-based methods such as [6][3] take advantage 

of the powerful non-linearity of a DNN to regress the control parameters from the collected 

data. These methods leverage the DNN to learn to overfit on the training data of some 

specific users, so these methods naturally lack generalization ability, as mentioned in [8], for 

real clinical applications.

Contribution

In this paper we propose a landmark retrieval-based method as a visual-assisted intervention 

to guide US-probe movement as shown in Fig.1. The goal is to provide global position 

visualization cues to the operator during US scanning. To be specific, we firstly construct a 

set of landmarks uniformly around a virtual fetal model. Each landmark stores a data-pair 

of information: the 3D position relative to the virtual fetal model, and the global descriptor 

of the US image captured at this position. During US scanning, the network transforms the 

current observed US image to a global descriptor, and then retrieves the landmark dataset 

to locate the nearest landmark through descriptor search. The nearest landmark provides the 

relative 3D position between the probe and the virtual fetal model in 3D space. This global 
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position visualization is displayed on the monitor in real-time as visual guidance to assist the 

operator.

This descriptor learning-based landmark retrieval method abandons any need for deep 

parameter regression, which can avoid the degeneration of network generalization ability. 

The proposed method is trained end-to-end in a self-supervised way without any expensive 

human expert annotation. The main contributions are: 1) we formulate US-probe movement 

guidance as a landmark retrieval problem through learned descriptor search; 2) a 

Transformer-VLAD network is proposed to learn a generalized descriptor for automatic 

landmark retrieval; 3) the descriptor learning is achieved by contrastive learning using 

self-constructed anchor-positive-negative US image-pairs.

2 Methodology

Overview

Building on the representation ability of DNN, we cast US-probe movement guidance as 

landmark retrieval. The query, i.e. current observed US image, at an unknown position is 

used to visually search a landmark dataset. The positions of top-ranked landmarks are used 

as suggestions for the query position. It is achieved by designing a DNN, i.e. Transformer-

VLAD, to extract a global descriptor given an US image for visual search. During inference, 

only the descriptor of the query US image is computed online, while the other descriptors 

of the landmarks are computed once offline and stored in memory, thus enabling a real-time 

performance (0.01s on NVIDIA TITAN RTX). The visual search is performed by finding 

the nearest landmarks to the query. This can be achieved through fast approximate nearest 

neighbour search by sorting landmarks according to the Euclidean distance between the 

learned descriptors.

The proposed Transformer-VLAD network is a typical triplet network which is a variation of 

a Siamese network, as shown in Fig.2 left. It utilizes a triplet of images, including anchor, 

positive and negative US images in network training. The triplet network simultaneously 

minimizes the feature distance between the anchor and positive US image-pair, and 

maximizes the feature distance between the anchor and negative US image-pair through 

contrastive learning. The anchor-positive-negative triplet data is automatically constructed 

according to the KD-tree based probe 3D position without use of human annotation. Hence, 

the whole network is trained end-to-end in a self-supervised way.

The more detailed architecture inside the Transformer-VLAD network is illustrated in 

Fig.3. It consists of three components: feature extraction (left), Transformer (middle) 

and NetVLAD (right). The feature extraction is composed of a series of convolution 

stacks to extract the local feature representation from the US image. The Transformer 

includes three transformer encoder stacks in series with 2D position encoding, enabling 

co-contextual information extraction from a set of feature representations. The NetVLAD 

is a differentiable version of the vector of locally aggregated descriptors (VLAD), which 

aggregates a set of local descriptors and generate one global descriptor.
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Local Feature Extraction

We employ VGG-16 per-trained on the ImageNet dataset as a backbone to extract local 

features. This CNN-backbone transforms the initial US image I US ∈ ℝ1×H0×W 0 to a 

lower-resolution feature map F0 ∈ ℝ D×H×W , where H0 = 400, W 0 = 274, D = 512 and H,W 
= H 0/32, W 0/32. So each pixel feature representation in the final feature map represents a 

32 × 32 US patch in the original US image. Finally, we collapse the feature map F0 into a 

one-dimensional sentence-like feature vector F ∈ ℝ D×H·W as input to the Transformer.

Contextual Feature Extraction

Given the feature vector F ∈ ℝ D×H·W , the Transformer [9] extracts the contextual cues 

within the CNN feature representations to generate a new feature vector A ∈ ℝ D×H·W . 
The Transformer consists of three encoders, and each of which is composed of a series 

of modules, i.e. multi-head self-attention (MHSA), feed-forward network (FFN) and layer 

normalization (LN). Each encoder can be stacked on top of each other multiple times.

Because the Transformer architecture is permutation-invariant, we supplement it with fixed 

positional encodings P ∈ ℝ D×H·W that are added to each encoder. Specifically, P is a 

sinusoidal positional encoding following [7]. We add P to the query Q and key K without 

value V in each MHSA to maintain the position information of the feature representation,

Q = K = ℱ + P, V = ℱ . (1)

Then the Transformer encoder can learn a co-contextual message Attn captured by the 

MHSA mechanism,

Attn([Qi, Ki, V i]) = concat([softmax(Qi ⋅ Ki
T

di
) V i]), (2)

where Qi , Ki , Vi stand for ith head of queries, keys, values of the feature representation 

respectively, and direfers to the dimension of queries. In this implementation, an eight head 

attention (i.e. i = 1, 2,…, 8) is adopted to enhance the discriminativeness of the feature 

attributes. The MSHA mechanism automatically builds the connections between the current 

representation and the other salient representations within the sentence-like feature vector.

Finally, the attentional representation A can be obtained as,

A0 = LN(ℱ + Attn), A = LN FFN A0 + A0 , (3)

where FFN contains two fully connected layers. This procedure is performed three times in 

the three encoders, and the position encoding is inputted to the MHSA in each encoder.

Feature Aggregation

In order to improve permutation invariance of the feature representation A ∈ ℝ D×H·W , 
we adopt NetVLAD [1] rather than a bag-of-visual-words or max-pooling operation. It is 
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designed to aggregate a set of local descriptors A ={xi} to generate one global descriptor 0 

∈ ℝ D×K , where K = 64 denotes the number of cluster centers {ck },

V0(d, k) = ∑
i = 1

H ⋅ W
αk xi xi(d) − ck(d) , αk xi = ewkxi + bk

∑
k′

ewk′xi + bk′
. (4)

Here xi (d) denotes the dth dimension of the ith descriptor, and ck (d) denotes dth dimension 

of the kth cluster center. {w k }, {bk } and {ck } are the trainable parameters of the kth 

cluster. In contrast to conventional VLAD, the parameters of NetVLAD, especially the 

assignment score αk (xi) of the descriptor xi to kth cluster center, are learned through an 

end-to-end training.

NetVLAD records statistical information with respect to local signatures and sums the 

differences between these signatures and their respective cluster. To avoid computationally 

expensive descriptor search, we use a fully connected layer to compress the high-

dimensional descriptor V0 ∈ ℝ D×K into a compact descriptor V ∈ ℝ4096.

Loss Function

After getting the query, positive, negative global descriptors V q , V pos , V neg of the triplet 

data from the Transformer-VLAD network, we explore both Triplet loss and InfoNCE loss 

to train the network through contrastive learning. The contrastive learning aims to push 

representations of positive pairs closer together, while representations of negative pairs are 

pushed farther with each other. Triplet loss requires the positive pairs to be closer than the 

negative pairs by a fixed margin δ given the same anchor,

ℒTrip  Vq, Vpos , Vneg  = max 0, dis Vq, Vpos  − dis Vq, Vneg  + δ , (5)

where δ = 0.3 and dis(·,·) denotes the Euclidean distance. InfoNCE loss formulates it as a 

dictionary look-up task using cross-entropy to measure the descriptor similarity from the 

similar/dissimilar date-pairs,

ℒInN  Vq, Vpos , Vneg  = − log exp Vq ⋅ Vpos /τ
exp Vq ⋅ Vpos /τ + ∑exp Vq ⋅ Vneg /τ

, (6)

where τ = 0:5 is a temperature hyper-parameter.

3 Experiments

Data Acquisition and Processing

Data acquired in this work came from a ScanTrainer Simulator1 (Intelligent Ultrasound 

Ltd). This realistic simulator is based on real clinical 3D US volumes and allows a user 

to learn how to acquire 2D images for a virtual patient. In this case, we captured the 2D 

1 https://www.intelligentultrasound.com/scantrainer/ 
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US image with the corresponding 6DoF probe pose during virtual obstetric scanning from 

the simulator. We collected a large number of obstetric US images of 2nd (20 weeks) and 

3rd trimester (28 weeks) scans from different subjects in the simulator library of examples. 

We acquired 535,775 US images with the corresponding 6DoF probe pose captured to 

construct the anchor-positive-negative triple data for the network training. We constructed 

5 landmark-query testing cases for the 2nd trimester scanning, and also 5 landmark-query 

testing cases for the 3rd trimester scanning. For the landmark setting, we firstly collected a 

very large number of US images with probe poses. Then, a spatially distributed sampling 

was used to generate 400 evenly distributed landmarks in 3D space, which can not only 

transform an arbitrary size position to a fixed number of positions, but also simultaneously 

preserve structural information within the original positions. The query number of 5 test 

cases in the 2nd trimester are 1471, 927, 1295, 934, 1031 respectively, and that of the 3rd 

trimester are 1027, 936, 813, 830, 818 respectively. Note the training and testing data are 

collected from different cases/women of 2nd and 3rd trimester scans.

Self-supervised Network Training

To avoid expensive human annotation, we construct anchor-positive-negative triple data 

using KD-tree searching according to the 3D probe position, as shown in Fig. 2 right. 

To be specific, we extract the 3D probe position from the US-probe data-pair to build a 

KD-tree. Each node in the KD-tree stores the corresponding US image. Given an anchor 

US image, we set the search radius to 15mm for the KD-tree search region. The US images 

located inside the search region are assigned as positive US images related to the anchor 

image, while those outside US images are assigned as negative US images. In this case, 

the anchor-positive-negative triple data is constructed automatically from data itself without 

human annotation so that the network is trained end-to-end in a self-supervised way. The 

hyper-parameter 15mm is empirically set according to the number of landmarks and 3D 

volume i.e. density of landmarks. It can be adjusted according to specific clinical tasks.

Performance Evaluation

A standard evaluation procedure of image retrieval is employed for performance evaluation. 

Specifically, the query image is deemed correctly retrieved if at least one of the topN 

retrieved landmarks is within 15mm from the probe position of the query. The percentage 

of correctly retrieved queries (recall) is calculated for different values of N, i.e. recall@topN 

number(%). Some selected examples of query US images and successfully retrieved top1 US 

landmarks are shown in the Fig.4. We can see the successfully retrieved top1 landmark has 

very similar appearance to the query US image.

The recall@number(%) of each test case for the 2nd and 3rd trimester cases are given 

in the Table 1. We can see that the contrastive learning with Triplet loss achieves better 

performance than with InfoNCE loss. Performance for the 2nd trimester cases is slightly 

better than that for the 3rd trimester cases. A performance comparison with baselines using 

ablation analysis is provided in the Table 2. Compared with Transformer-VLAD, there is 

no Transformer sub-network in the baseline NetVLAD[1]. The baselines Transformer-Max 

and Transformer-TEN replace differentiable VLAD with Max-pooling and DeepTEN[10] 

respectively for the local feature aggregation. The baseline ViT[2][4]-VLAD uses a pure 

Zhao et al. Page 6

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2022 September 21.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Transformer encoder instead of a CNN backbone operated on a sequence of 16 × 16 image 

patches. Note the latest research [4] achieves SOAT performance on the public benchmarks 

of natural image retrieval and we replaces its Max-pooling with VLAD to get better 

results in our dataset. We can see the that performance difference between the compared 

methods decreases as the number N increases. The Transformer sub-network improves 

performance compared with its absence. The VLAD-pooling outperforms Max-pooling 

significantly when the dataset does not achieve the large-scale level as public benchmark 

dataset. The VLAD-pooling provides slightly performance improvement comparing with 

DeepTEN-pooling due to their similar mechanism. We also find that the CNN backbone 

achieves better performance than a patch-style Transformer for US image retrieval although 

ViT[2][4] has attained excellent results compared to CNN on some public benchmarks. We 

also report the average recall curves from top1 to top20 landmark candidates for all 2nd and 

3rd trimester test cases in the Fig.5. The sub-figures from left to right, top to bottom refer to 

the recall curves of case1,2,3,4,5 for 2nd trimester, and case1,2,3,4,5 for 3rd trimester, and 

the average recall curve of all 10 test cases (last sub-figure).

4 Conclusions

In this paper, we present a novel visual-assisted US-probe movement guidance method 

using landmark retrieval aimed at assisting inexperienced operators to scan. In contrast to 

conventional control parameter prediction methods, we design a global position visualization 

intervention which is more intuitive and suitable for the human operator. We also proposed 

a Transformer-VLAD network to learn a generalized descriptor of each US image to achieve 

automated landmark retrieval. To avoid the need for expensive human annotation, we take 

advantage of the 3D probe position to construct anchor-positive-negative US image-pairs 

automatically for contrastive learning. The experiments demonstrate the potential of the 

proposed method to simulate realistic imaging acquisitions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Overview of landmark retrieval-based US-probe movement guidance.
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Fig. 2. (left) The triplet network architecture. (right) The probe position KD-tree based anchor-
positive-negative triplet data construction.
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Fig. 3. The Transformer-VLAD network architecture.
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Fig. 4. 
Selected examples of query US images (first row) and successfully retrieved top1 US 

landmarks (second row). The images in the first 5 columns are captured from 2nd trimester, 

and the last 3 columns are captured from 3rd trimester.

Zhao et al. Page 12

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2022 September 21.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Fig. 5. The average recall curves from top1 to top20 landmark candidates for all 2nd and 3rd 
trimester test cases.
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Table 1
Performance comparison on different test cases with different losses.

Test cases
Trans-VLAD Trip Trans-VLAD InN 

r@1 r@5 r@10 r@1 r@5 r@10

case1 Sec 85.3 92.3 93.4 82.6 92.9 94.5

case2 Sec 87.9 94.4 95.7 84.3 95.7 98.0

case3 Sec 77.2 87.2 90.7 73.3 85.5 90.4

case4 Sec 90.3 96.8 98.1 88.6 95.6 97.8

case5 Sec 83.0 92.8 94.4 77.1 93.4 95.7

case1 Thi 81.7 92.2 94.1 78.0 91.2 94.6

case2 Thi 89.3 96.4 97.9 86.5 94.4 97.2

case3 Thi 80.6 91.4 94.8 76.2 90.2 94.8

case4 Thi 75.5 87.3 89.7 72.1 86.3 91.1

case5 Thi 82.8 94.4 95.3 77.8 90.3 94.1

Average 83.4 92.5 94.4 79.7 91.6 94.8

Trans signifies Transformer. r@N signifies recall@number(%). Trip and InN signify Triplet and InfoNCE loss. Sec and Thi signify 2nd and 3rd 
Trimester.
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Table 2
Performance comparison with baselines using ablation analysis.

Method r@1 r@5 r@10

Trans-VLAD 83.4 92.5 94.4

NetVLAD[1] 80.2 90.9 93.5

ViT[2][4]-VLAD 81.8 91.8 93.8

Trans-Max 77.2 87.8 92.1

Trans-TEN[10] 82.5 91.5 94.0

Trans signifies Transformer. Max signifies Max-pooling operation.
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