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Abstract

Reduced evaporation due to dry soils can affect the land surface energy balance, with implications 

for local and downwind precipitation. When evaporation is constrained by soil moisture, the 

atmospheric supply of water is depleted, and this deficit may propagate in time and space. 

This mechanism could theoretically result in the self-propagation of droughts, but the extent to 

which this process occurs is unknown. Here we isolate the influence of soil moisture drought on 

downwind precipitation using Lagrangian moisture tracking constrained by observations from the 

40 largest recent droughts worldwide. We show that dryland droughts are particularly prone to 

self-propagating, because evaporation tends to respond strongly to enhanced soil water stress. In 

drylands precipitation can decline by more than 15% due to upwind drought in during a single 

event, and up to 30% during individual months. In light of projected widespread reductions in 

water availability, this feedback may further exacerbate future droughts.

Drought has decidedly impacted human history, and is estimated to affect about 55 

million people worldwide every year 1 . Its frequency, duration and magnitude are 

projected to increase in many regions around the globe 2,3 , yet climate model projections 

remain uncertain 3,4 . Unusual and prolonged precipitation shortages, or meteorological 

drought, spread through the soil, aquifers, rivers and lakes as agricultural and hydrological 

drought 5,6 , and thereby prompt a wide array of societal, economic and ecological 

consequences 7 . Precipitation requires air saturation and involves complex microphysics 8 , 

usually achieved by cooling air to its dew point through convection, frontal or orographic 

lifting, and other dynamical mechanisms 9 . Thus, in the context of meteorological 

drought, precipitation variability is regarded as dominated by atmospheric circulation and 

thermodynamics, which in turn are often forced externally by, for instance, remote sea 
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surface temperature changes 9,10 . Local soil moisture deficits have also been shown to 

promote precipitation deficits, particularly in transitional regimes between humid and arid 

climates 11,12 . In these regional hotspots, soil moisture exerts a control on the surface 

energy partitioning, and hence on moist convection 12,13 . The initiation and intensification 

of convective storms has been linked to both local soil moisture and mesoscale soil 

moisture heterogeneities 14–16 , which may also affect organized convection several hundred 

kilometres downwind 17 . In short, reduced evaporation due to soil water limitations affects 

the local atmosphere, and may thereby trigger distant modulations of dynamical saturation-

achieving mechanisms, resulting in complex and tenuous soil moisture–precipitation 

coupling 18 . But desiccating soils have more obvious, potentially even farther-reaching 

impacts: a decline in evaporation implies a reduced water supply to the atmosphere.

Droughts are thus hypothesized to self-propagate 19 as soil moisture drought may cause 

water vapor deficits that cascade downwind, and hence favour remote drought conditions. 

The feedback chain thus consists of the translation of soil dryness into atmospheric 

water vapor deficits via reduced evaporation, and the conversion of water vapor into 

downwind precipitation (or lack thereof). During droughts, the conversion of water vapor 

into precipitation is frequently altered by anomalous large-scale atmospheric circulation and 

other dynamical mechanisms 20 , which tend to vary more in space and time than water 

vapor, hence the latter frequently does not correlate well to observed precipitation 21 . 

Nonetheless, the link between (total column) water vapor and precipitation clearly emerges 

in the tropics 22 , throughout China 23 and even in Eurasian boreal forests 21 . For instance, 

it has already been suggested that enhanced evaporation through irrigation increases both 

water vapor and precipitation downwind, in the United States 24 , India 25 and Africa 26 . 

Recently, reduced evaporation in all upwind land areas was estimated to account for 62% 

of the total precipitation shortages during the 2012 North American drought 27 . Meanwhile, 

terrestrial moisture deficits only resulted in rainfall decreases of ~6% during southeastern 

Australian droughts 28 . While these studies suggested that remote evaporation affects 

downwind droughts to varying extents, they provided no evidence of selfpropagation. To 

study the latter, only the impact of a single, spatiotemporally coherent drought on its own 

downwind propagation should be considered 19 , rather than the impact of all terrestrial 

sources as in previous studies 27,28 . At least three criteria are required for soil (moisture) 

stress to impact the further propagation of drought: (i) upwind soils must become dry 

enough for evaporation to be water-limited, (ii) the winds must blow towards other land 

regions still unaffected by the drought, and (iii), downwind water vapor deficits must cause 

precipitation shortages. Here, we examine drought self-propagation using a combination of 

reanalysis, satellite observations and modelling techniques, focusing on the 40 largest soil 

droughts worldwide from 1980 to 2016 (see Methods).

Effect of upwind soil drought on downwind water vapor

Soil drought events are selected using monthly root-zone soil moisture anomalies and a 

novel mathematical morphing approach (see Methods), resulting in dynamic and coherent 

events in space and time (see Fig. 1a and ED-Fig. 1 for an overview of all 40 droughts 

examined in this study). For these events, we analyse the impact of upwind drought 

(source) on downwind areas (target), and if the soils in the latter become subject to drought 
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conditions. The link between source and target is established with a Lagrangian atmospheric 

trajectory model driven by reanalysis data: the water vapor residing in newly-affected 

drought areas is traced back in time, thereby revealing its evaporative sources (see Methods). 

Throughout the evolution of each drought event, water vapor tracking is performed for all 

pixels where propagation occurs in the same month (propagation step). Taking soil memory 

into account, the water vapor content — and ultimately precipitation — during the three 

months leading to the soil drought propagation is considered. The 40 largest droughts are 

analysed and ranked according to their spatiotemporal extent (see Supplementary Table 

1). Fig. 1b–c focuses on six exemplary events that portray a range of climatic conditions: 

Western Russia and Kazakhstan (2009–2013, rank 1), Southern Africa (1991–1993, rank 

11), Amazonia (1997–1998, rank 13) and Eastern Russia (1991–1992, rank 20), central 

Northern America (2012–2013, rank 23), and northwestern to central Australia (2005, rank 

26). To understand the impact of upwind drought on downwind water vapor content, the 

latter is visualized in Fig. 1d. For all events shown here, except the Amazonian event, the 

propagation (coloured polygons) stagnates at least once during the drought evolution, which 

means that no new neighbouring areas became subject to drought conditions, yet the drought 

persisted (Fig. 1c). This is particularly evident for the largest event on record (Russia and 

Kazakhstan 2009–2013), for which the drought area (black line) decreases to nearly zero 

multiple times in (boreal) winter prior to further propagation during summer.

Next, we discern the impact of upwind anomalous soil moisture stress on downwind water 

vapor. This impact is isolated from the influence of circulation and potential evaporation 

using a Reynolds decomposition (see Methods), enabling an estimate of downwind water 

vapor if there had been no upwind drought (dashed lines in Fig. 1d). Note that this estimate 

of downwind water vapor does not consider changes in circulation patterns that may emerge 

due to the upwind soil stress 14,29 . In the case of both Russian droughts, our estimate of 

non-drought downwind water vapor is nearly identical to the actual amount (Fig. 1d). By 

contrast, upwind soil moisture stress causes a severe reduction in downwind water vapor for 

both the Southern African and Australian events (red areas in Fig. 1d). Thus, at least two of 

the aforementioned criteria for drought self-propagation are met there: dry winds originating 

in already drought-stricken areas blow toward land regions the drought has not reached yet. 

Our analysis indicates that certain areas are more prone to be influenced by upwind drought 

than others: except for the regions affected by the Amazonian and Eastern Russian events, 

the climatological water vapor sources encompass primarily large land areas (ED-Fig. 2). 

What paves the way for water vapor deficits caused by upwind drought, however, is a 

strong reliance on proximate terrestrial evaporative sources, as is the case particularly for 

the Southern African drought footprint. Another crucial factor is whether upwind drought 

limits the atmospheric moistening in the first place: for example, evaporation is not severely 

water-limited in Eastern Russia, even when soils are dry relative to their own climatological 

expectation. On the contrary, during the drought events in Southern Africa and Australia, 

soil moisture was low enough to diminish evaporation rates by at least one third with respect 

to the climatological mean (ED-Fig. 3).
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From downwind water vapor to downwind precipitation

To quantify the impact of the upwind soil drought on downwind precipitation reduction, we 

conceptually define precipitation as the product of water vapor and precipitation efficiency 

(see Methods). Based on the actual precipitation efficiency during the drought events, 

given by the degree to which water vapor was converted into precipitation according 

to observations and reanalysis data, we estimate the consequences of drought-induced 

reductions in water vapor on precipitation (ΔP). Thus, rather than directly equating 

anomalous moisture transport to precipitation reductions, as for example in ref. 27 , we 

consider the atmosphere’s propensity to convert water vapor into precipitation. To visualize 

the influence of this assumption, four different estimates of ΔP are shown in Fig. 2b, 

which correspond to the actual precipitation efficiency (blue line), the climatological 

one (dotted blue line), as well as the minimum and maximum efficiency (grey shading) 

encountered on record for the respective propagation areas. The estimate based on actual 

precipitation efficiency is frequently close, or even identical to the minimum estimate (Fig. 

2d), implying an unusually unfavourable tendency to convert water vapor into precipitation 

during droughts. This suggests that all these events are mainly enabled by unusually low 

precipitation efficiency, whose causes are not investigated here but are often rooted in 

anomalous convective potential or large-scale winds 9 . Still, drought-induced reductions in 

water vapor content further contribute to these events and facilitate their spatial propagation, 

even though these modulations are less relevant than they would be in an atmosphere 

capable of condensing and precipitating water more efficiently.

Due to this low precipitation efficiency, for the 1997–1998 Amazonian event and despite 

upwind soil drought reducing downwind water vapor (Fig. 1d), this anomaly in water vapor 

did not propagate in terms of precipitation (Fig. 2a). According to our estimate, drought self-

propagation decreased precipitation by less than 1% during this Amazonian drought. For the 

1991–1992 drought in Eastern Russia, the effects on precipitation (Fig. 2a) are minor (<1%), 

as already suggested by the largely unchanged water vapor content (Fig. 1d), whereas the 

North American and Western Russian events (Fig. 2a) are slightly more affected, with about 

3% and 2%, respectively. Soil drought is known to modulate convection through enhanced 

sensible heating, and hence precipitation efficiency, but the uncertainty of modelling 

experiments is still large 15,30,31 , and more research is needed, especially beyond the local 

scale 32 . We thus highlight that the atmosphere was not efficient at generating precipitation 

during all events (see Fig. 2b), and note the potential contribution from soil drought to 

the reduction in precipitation efficiency, but only consider the effect of soil drought via 

reductions in moisture supply in our definition of self-propagation. Regardless, as evidenced 

by the events in Southern Africa and Australia (Fig. 2a), pronounced alterations to the 

water vapor content further downwind, enabled by upwind drought, may severely affect the 

amount of precipitation: we estimate that 9 and 18% less precipitation occurred solely due to 

drought self-propagation, respectively.

Drought self-propagation worldwide

To provide a more complete global picture, the 40 largest soil drought events in the past 

four decades are investigated. In Fig. 3, their estimated drought self-propagation effect is 
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visualized in space, expressed as the ratio between the ΔP induced by upwind drought and 

the precipitation that would have occurred without drought self-propagation (see red areas 

and dashed lines in Fig. 2a). As evidenced by Fig. 1a, multiple drought events occurred 

in Australia and Southern Africa (Supplementary Table S1). The majority of these events 

are associated with the most pronounced drought self-propagation among the 40 events 

analysed here. The map in Fig. 3 depicts a clear gradient between water- and energy-limited 

regimes 33 , since strong self-propagation is confined to transitional or purely water-driven 

areas, whereas droughts in energy-driven regions show weaker self-propagation. The 2009–

2013 drought in Western Russia and Kazakhstan — by far the longest event identified in 

the analysis — is a clear example of that behaviour. However, during the peak of the 2010 

Russian mega-heatwave in August 2010 34 , precipitation was reduced by roughly 7% due to 

drought self-propagation (Figs. 1d & 2a). Similarly, the 2012–2013 drought in central North 

America features notable self-propagation during boreal summer, concurring with a hot 

extreme in the region. Therefore, even in energy-limited regions, short-duration compound 

dry–hot events can be associated with self-propagation.

Revisiting the three necessary conditions for drought self-propagation — water-limited 

evaporation, circulation to other land regions, and conversion of water vapor into 

precipitation (conceptualized as precipitation efficiency here) — we point out that the 

characteristics of the morphed droughts also influence our results. In particular, strong self-

propagation was only sustained throughout drought evolution for events that reach a large 

spatial extent in a short time, frequently associated with the concept of ‘flash droughts’, 

rather than those with a multiannual sequence of slow expansion and decay. Therefore, 

to reduce the sensitivity of our results with respect to event duration, the map in Fig. 3 

displays the monthly peak drought self-propagation for each event (see Methods). While 

the peak self-propagation remains low in the tropics and also the high northern latitudes, 

precipitation reductions of 15% and more are identified in several regions, such as the Gran 

Chaco and Pampas in South America, the Sahel, Southern Africa and Australia. While our 

analysis shows that moisture recycling affects these results — with a higher climatological 

precipitation recycling ratio of a drought’s footprint generally being associated with stronger 

self-propagation (ED-Fig. 4) — it also indicates that water scarcity is a key factor that 

determines the tendency of droughts to self-propagate. To further condense our findings, 

the graph in Fig. 3 depicts the peak (colours) and the event-mean (y-axis) drought self-

propagation for all 40 droughts, expressed as a function of aridity index (x-axis). The latter 

serves as a proxy for water limitation and is calculated as annual mean precipitation (P) 

divided by potential evaporation (Ep). In terms of peak self-propagation, events in drylands 

(aridity index of less than 0.65 36 ) are associated with an average precipitation reduction 

of nearly 16%, whereas the remaining events have a corresponding decline of less than 5% 

on average. Several droughts in drylands reach peak reductions beyond 20%, and even up 

to 32%, while events taking place elsewhere usually culminate at clearly less than 10%. 

Therefore, droughts occurring in more arid climates tend to display more intense drought 

self-propagation. In fact, none of the droughts in regions not classified as dryland exceeds 

a mean self-propagation of 5%, and the six strongest events with respect to both peak and 

mean drought self-propagation all occurred in drylands.

Schumacher et al. Page 5

Nat Geosci. Author manuscript; available in PMC 2022 July 17.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Our main findings are summarised in Fig. 4. While precipitation deficits are mostly 

associated with anomalously low precipitation efficiency, drought self-propagation via 

reduced atmospheric moistening is an important process in drylands. In such regions, 

potential evaporation is high and actual evaporation is frequently water-limited, since 

precipitation shortages cause anomalous soil stress. Only then can the negative soil moisture 

anomalies propagate downwind as water vapor deficits; a necessary — but not sufficient 

— criterion for drought self-propagation as defined here. Our results suggest that a strong 

dependence on self-supplied moisture facilitates this feedback; for example, the largest 

drought in Australia analysed here (rank 17), situated in the south and southeast of the 

continent, portrayed less self-propagation than the events closer to the northwest (see 

Fig. 3), where water vapor usually travels shorter distances between evaporation and 

precipitation 20 . All the events characterized by a strong self-propagation take place in 

subtropical regions where evaporation is locally recycled all year-round 20 and particularly 

during dry years 37 . Furthermore, the convective nature of precipitation in tropical and 

subtropical drylands 38 allows for a secondary feedback: for a given convergence and ascent, 

more water vapor in the vicinity strengthens updrafts through enhanced convective heating, 

which may invigorate convergence and enable a positive feedback loop 39,40 .

Consequently, a reduction in tropospheric water vapor may contribute to low precipitation 

efficiencies during droughts where precipitation is mainly convective (Fig. 4).

Our findings point to a direct connection between aridity and the ability of droughts 

to fuel themselves. In recent years, projections regarding the ‘dry gets drier, wet gets 

wetter’ paradigm 41 , and the expansion of aridity and drought affected areas, have been 

fiercely debated 36,42 . Many wet areas are expected to become drier, and regions already 

characterized by pronounced dry and wet seasons will likely experience more variable 

precipitation 43 . There is a consensus that increased atmospheric water demand acts to 

accelerate evaporation in most regions 43,44 , resulting in an intensification of the dry 

season in many extratropical regions 45 . Meanwhile, terrestrial surface relative humidity is 

already declining, reflecting decreases in soil moisture and thus increasingly water-limited 

evaporation 46 , which underlines the exacerbating role of land–atmosphere interactions 

in a more arid world due to climate change 47 . For drylands, soil moisture–atmosphere 

feedbacks have recently been shown to partially attenuate declines in water availability (P–

E) through enhanced moisture transport from other land areas and particularly oceans 48,49 , 

and a widespread conversion from temperate into subtropical drylands is projected 50 . 

Together, a less stable precipitation supply in regions that already crucially depend on 

seasonal rainfall, and an increasing potential for rapidly desiccating soils, might increase the 

potential of droughts for self-propagating as we progress into the future.

Methods

Workflow and overview

The methodological steps performed for this analysis consist of (1.) drought definition and 

propagation, (2.) water vapor tracking from drought-propagation regions, (3.) disentangling 

the impact of already existing soil drought on downwind water vapor and precipitation, and 
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(4.) conversion of water vapor (reductions) to precipitation (deficits). An overview of these 

steps is provided in SFig. 1.

Drought definition and propagation

This study investigates the meteorological propagation of soil drought based on root-zone 

soil moisture data. The latter are obtained at monthly and 0.25° horizontal resolution from 

the Global Land Evaporation Amsterdam Model (GLEAM) v3.5a (refs. 51,52 ), a semi-

empirical model heavily constrained by satellite and reanalysis data. Whereas many drought 

definitions are applied independently per pixel (or grid cell), more holistic approaches have 

been proposed that consider droughts as spatiotemporally connected events 53 . We employ 

a recently suggested method that uses mathematical morphology to characterize drought 

events 54 . This approach requires binary input — maps that solely distinguish between 

drought and no drought conditions at each pixel. We obtain this input by thresholding all 

timeseries of deseasonalized monthly root-zone soil moisture anomalies with the respective 

10th percentile. Then, ‘morphing’ is performed through a series of erosion and dilation 

operations (see Figs. 2–4 in ref. 54 ) in the predefined spatiotemporal neighbourhood of each 

drought pixel, for which a 3 x 3 x 3-box is used here, i.e., 3 months and 3 x 0.25° in each 

horizontal direction. Since the Lagrangian moisture source identification is performed on a 

1.0 x 1.0° grid, the resulting ‘morphed’ drought events are regridded, requiring that at least 

75% of the 0.25° sub-pixels (i.e., 12 out of 16) are subject to soil drought conditions. Lastly, 

all unique drought events in space and time are identified and ranked, and the 40 largest ones 

by the product of area and duration are selected for analysis. The timings of drought onset 

and recovery are defined by the earliest appearance and complete disappearance of morphed 

drought pixels belonging to each event.

Each of the 40 largest drought events in space and time is represented as a series of 

‘propagation steps’ at monthly temporal resolution. As soon as a pixel becomes part of an 

existing soil drought (via expansion), or a new drought event is triggered, the change is 

considered ‘propagation’ and may only occur once for each event (see SFig. 2). That is, 

even if a certain pixel initially belongs to a (spatially large) drought event, then recovers 

temporarily while the drought persists elsewhere, and finally merges with the same drought 

event again, only the first drought occurrence is considered as the propagation step. Note 

that due to the morphing technique and subsequent identification of unique droughts in 

spacetime, multiple seemingly separate droughts in space can belong to a singular event, 

granted that they concatenate spatially at some point in time prior to recovery. We emphasize 

here the distinction between the areas where droughts propagate, considered as ‘targets’ of 

water vapor, and upwind areas or ‘sources’. Specifically, we focus on the downwind impact 

of ‘sources’ situated within the respective drought area prior to drought propagation.

Water vapor tracking

We estimate the origins of tropospheric water vapor with a Lagrangian backward analysis. 

Since the drought morphing approach employed here does not, for example, constrain 

drought evolution to the dry or wet season, propagation can occur year-round for some of the 

selected drought events. To this end, the air residing over all of the 40 selected drought areas 

is first tracked back in time for at most 15 days during the entire analysis period (1980–
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2016). This is done separately for each temporally coherent propagation step per drought, so 

that a corresponding (evaporative) moisture source region for every month is obtained. To 

address the hypothesis of drought self-propagation, we only examine the moisture transport 

prior and up to propagation, but not afterwards. For our analysis, the moisture sources of 

the respective month of propagation as well as of the two antecedent months are evaluated, 

taking the memory of soil moisture — upon which the drought definition is based here — 

into account. Thus, for each propagation step, water vapor residing above the respective 

area is tracked backward during the month of propagation and the two antecedent months 

(3 months in total). In order to estimate the effect of soils already affected by drought on 

downwind water vapor (and hence drought self-propagation), the source regions are split 

into ‘drought’ and ‘elsewhere’ (see SFig. 3a); only land areas already subject to (the same) 

drought event are considered for the former, whereas the latter is defined as the remaining 

terrestrial as well as all oceanic sources. This differentiation is based on the state of the 

morphed drought, which may vary from month to month (SFig. 3a).

Moisture tracking is performed using a modified version of the framework first presented 

by ref. 55 , following refs. 56,57 . This process-based approach evaluates air parcel property 

changes along trajectories, which are affected by mixing, surface fluxes and phase changes. 

Air parcels are a conceptualization of coherent air masses, but mixing processes still occur 

— particularly within the (well-mixed) atmospheric boundary layer (ABL; e.g., ref. 58 ). 

Specific humidity in the ABL, either in the absence of large-scale advection or, arguably, 

from a Lagrangian perspective, is largely controlled by surface evaporation and entrainment 

(e.g., refs. 59,60 ). Since entrainment of free tropospheric air usually dries the ABL 61–63 , 

increases in specific humidity along air parcel trajectories within the ABL may be assumed 

to reflect surface evaporation (as in, e.g., refs. 55,56 ). Our Lagrangian atmospheric model 

is FLEXPART v.9.01 (refs. 64,65 ) driven with ERA-Interim data 66 , consisting of both 

analyses and forecasts at 3-hourly temporal resolution; only the moisture budgets of 6-

hourly reanalysis steps are evaluated. Note that FLEXPART does not assume that the entire 

troposphere is well-mixed nor does it consist of a single or two vertical layers 67–69 , instead 

relying on 3D-winds and a convective scheme 70 . In this study, we employ FLEXPART to 

estimate the origins of tropospheric moisture over all propagation areas (i.e., all pixels at 

a certain month that meet the criteria for ‘propagation’ as described above). Note that this 

is different compared to many other drought studies, for which a static drought region is 

employed to track moisture back in time (e.g., refs. 28,71,72 , and many others).

To determine the origin of water vapor residing over the expanding drought areas, the 

following steps are performed: (1) all air parcels within the troposphere are selected, (2) 

backward-trajectories are constructed, (3) moisture changes along these trajectories are 

evaluated to infer evaporative moisture sources, which are then (4) cast onto a regular 1.0 

x 1.0° grid (see SFig. 3b). Only sources of tropospheric moisture are identified in step 1; 

tropopause heights are calculated based on a 2 potential vorticity units (PVU) threshold in 

the version of FLEXPART employed here 65 , a common approach in atmospheric dynamics 

research (e.g., refs. 73–75 ). As near-surface PV values can sometimes exceed this threshold, 

this may rarely result in unrealistically low tropopause heights. It is thus ensured that all air 

parcels within the first 5 km above the surface are always tracked back in time. Backward 

trajectories in step 2 are restricted to a maximum of 15 days as a compromise between 
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trajectory accuracy 55,56,76–78 and consideration of the long, thin tail in the probability 

density function of the atmospheric lifetime of water vapor over long time spans 79 . To 

assess the uncertainty involved in the choice of maximum trajectory length, an ensemble 

analysis also employing 5 and 10 days as the upper limit, following ref. 78 , is performed. 

Evaporative sources (3) are detected through increasing specific humidity of air parcels 

in the vicinity of the ABL (see ref. 78 ), without any additional thresholds. Any water 

vapor losses en route, for example due to intermittent precipitation, are considered through 

linear scaling of evaporative source contributions with the subsequent evolution of specific 

humidity 55 .

Both evaporative sources as well as the target water vapor are bias-corrected on a daily 

and also a monthly basis for each pixel 78 . The use of two different timescales when 

bias-correcting our estimates for both evaporation and water vapor serves to extend the 

uncertainty analysis to an ensemble consisting of 3 x 2 x 2 = 12 members per event. For 

the source correction, we employ evaporation from GLEAM v3.5a over land and from 

OAFlux 80 over oceans, with 1980–1984 of the latter consisting of CDF-matched ERA-

Interim evaporation 66 , and ERA-Interim vertically integrated water vapor 66 for the target 

bias-correction. Since the majority of water vapor resides in the lower troposphere (e.g., 

ref 81 ), and the stratosphere contains only about 0.03% (ref. 79 ), any errors introduced by 

employing vertically integrated (rather than tropospheric) water vapor above the tropopause 

are negligible.

Disentangling effect of upwind drought on downwind water vapor

Enabled by the water vapor tracking framework, for every analysis day, a (linearly 

discounted) evaporative contribution ΔQ from each source pixel (i) and backward day (t) 
to the mean water vapor residing over a specific drought propagation pixel can be calculated. 

This is performed separately for each receptor pixel, that is, for all 1 x 1° areas where the 

respective drought propagates. The total water vapor Q of a receptor pixel is then given by 

the sum over all n source pixels, and over each backward day with contributions (at most 15 

days into the past), that is,

Q = ∑
i = 1

n
∑

t = − 15

0
δQi, t (1)

To disentangle the impact of upwind soil drought (source) on downwind water vapor 

(receptor), the evaporative contribution of any source pixel to the water vapor residing 

over any drought propagation pixel is conceptualized as the product of circulation (α) and 

upwind evaporation (E):

δQi = t = αi = tEi, t (2)

With our water vapor tracking framework that extracts information from air parcel 

trajectories, we obtain estimates (δQi,t ) on how much each source pixel contributes to 

downwind tropospheric water vapor. We introduce a circulation component αi,t = δQi,t/Ei,t to 
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describe the fraction of water vapor previously evaporating in a certain (source) region being 

transported to where the drought propagates (receptor). As such, α represents the complete 

source–receptor relationship between any evaporative source location and the downwind 

receptor region. It contains information on both the prevailing large-scale winds advecting 

air parcels in the Lagrangian framework, and on any moisture losses occurring en route, 

e.g. due to intermittent precipitation. α is a fraction ranging between 0 and 1, with the 

former implying that none of the evaporation from the source region is advected to the 

receptor region. On the contrary, α = 1 indicates that (i) all air parcels that gain water vapor 

from evaporation in the source region arrive in the receptor region, and (ii) that none of 

this advected water vapour is lost en route (for example, through rainfall). A value of α 
= 1 thus usually only occurs if source and receptor are neighbouring pixels, and typically 

decreases with increasing distance from the receptor region. Using this definition, we obtain 

how much evaporation in a source region (E) contributes to the water vapor content of the 

air parcels residing above this source region, and how much of this evaporation actually 

arrives in the receptor region (α). Furthermore, the evaporation component is conceptualized 

as the product of potential evaporation and soil stress to target the effect of soil drought. 

Ep is obtained from GLEAM v3.5a, as is actual evaporation (E) also used for water vapor 

tracking, so that the soil moisture stress S is calculated as

Si, t = Ei, t
Ep i, t

(3)

Introducing the soil moisture stress S as such allows us to disentangle the impact of 

soil moisture from the prevailing meteorological conditions — captured by Ep — on 

evaporation, and hence ultimately tropospheric water vapor. Therefore, the evaporative 

contribution δQi,t from a single source pixel (i) and a given backward day (t) to the daily 

mean water vapor residing over a specific drought propagation pixel can be expressed as the 

product of circulation α, potential evaporation (Ep ) and soil stress S,

δQi, t = αi, tEp i, t Si, t (4)

Note that for aesthetic reasons, the (i,t) notation is omitted from now on, but the following 

equations are still expressed for an individual source pixel and backward day (and a given 

receptor pixel and analysis day).

Applying a Reynolds decomposition results in

δQ = αEpS αEpS ′ = αEpS + αEp′S + α′EpS + α′Ep′S + αEpS′ + α′Ep′S′
+ α′EpS′ + α′Ep′S′

(5)

The first four terms, summarized as αEpS , express how much water vapor a source pixel 

would have contributed to the selected receptor pixel if soils experienced climatological 

stress S = S  , whereas the last four terms, summarized as αEpS’, describe the difference 

of transported water vapor from source to receptor due to anomalous soil stress S’ for the 
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given circulation and potential evaporation. Such a decomposition enables the estimation of 

water vapor contributions from all drought source pixels to the drought propagation area 

if soils had not experienced unusual soil stress (S’ = 0). This is performed separately for 

all combinations of source and receptor pixels, and for each one, the effect of drought 

self-propagation is defined as

δQself − propagation = αEpS − αEpS = αEpS′ (6)

Aggregating SQseif-propagation for each drought propagation step, that is, over all source 

pixels (i) and backward days (t), and additionally over all days prior to and during 

propagation of the respective receptor pixel (3 months), yields the estimated impact of 

soil drought on water vapor (red areas in Fig. 1d). The theoretical nature of this estimate 

is remarked, as actual (or observed) circulation and potential evaporation are employed, 

but also climatological soil moisture stress. In reality, a reduction in soil stress in the 

drought area may alter the large-scale circulation pattern 14,29 and thereby affect potential 

evaporation, yet this is not investigated here.

Conversion of water vapor to precipitation

The conversion of water vapor to precipitation is enabled by various saturation-enabling, 

often referred to as ‘dynamical’, mechanisms. Desiccating soils are capable of affecting 

both water vapor and these dynamical mechanisms via water and energy fluxes (e.g., refs. 
11,12,82–87 ). Yet, to date, moisture tracking studies have focused only on climatological 

moisture sources of precipitation and how they change during drought (e.g., refs. 88–90 ). 

Here, a conceptual approach is employed, in which daily precipitation is considered to be 

the product of water vapor (Q) and precipitation efficiency (Peff ) (e.g., refs. 21,91 ):

Pactual = Qactual ⋅ Peff, actual (7)

Peff can be thought of as the conceptualization of dynamical mechanisms that achieve 

saturation, converting water vapor into precipitation, whereas Q provides the input for this 

conversion. Water vapor (again from ERA-Interim) and precipitation (from MSWEP v2.2; 

refs. 92,93 ) during the drought are employed to calculate the actual precipitation efficiency, 

per receptor pixel and day. Using this conceptualization, we estimate the daily precipitation 

deficits due to drought self-propagation:

ΔPself − propagation = ΔQself − propagation ⋅ Peff, actual (8)

This procedure is repeated for the climatological, as well as the maximum and minimum 

daily Peff encountered from 1980–2016 for each drought event, to visualize an upper 

and lower bound as to how much additional precipitation might have occurred if drought-

stricken soils were not anomalously stressed or the atmosphere had been more efficient at 

converting water vapor into precipitation (Fig. 2b). The minimum and maximum Peff of each 

day and pixel are obtained from the year in which the respective monthly mean Peff is lowest 
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and highest. Using estimates of ΔPself–propagation , we can estimate how much precipitation 

would have occurred in the absence of self-propagation:

Pnon − droug ℎt = Pactual + ΔPself − propagation (9)

To obtain the event-mean drought self-propagation (Fig. 3), the daily estimates of 

ΔPself–propagation (equation 8) are first aggregated per month and drought propagation area, 

and then divided by analogously aggregated Pnon–drought (equation 9). The resulting fractions 

express the precipitation deficits that are estimated to occur due to self-propagation (red 

areas in Fig. 2a). Then, an area-weighted average of ΔPself–propagation across all propagation 

steps is calculated, and related to Pnon–droug ht (dashed line in Fig. 2a) to estimate the 

mean effect of drought self-propagation for each event (Fig. 3). The peak drought self-

propagation (Fig. 3) is given by the month during which the ratio of ΔPself–propagation and 

Pnon–droug ht culminates. To enhance the comparability across events, only propagation steps 

corresponding to a total receptor area of at least 100’000 km2 are considered for the peak 

effects. All quantities are expressed as the mean of the ensemble, unless noted otherwise. 

Uncertainty bars in Fig. 3 are constructed using the minimum and maximum estimates of the 

ensemble.

Note that with this approach, a linear dependency of precipitation on water vapor content is 

assumed, which is not in line with some observational evidence — precipitation originating 

from deep convection is portrayed by an exponential relationship with column water 

vapor 94 . Nevertheless, as upwind droughts tend to only moderately alter the overall column 

water vapor, we also only need to assume piecewise linearity rather than across the entire 

range from low to high water vapor. Moreover, we point out that the relationship between 

water vapor and precipitation is also important at synoptic scales: precipitation of cyclones 

is proportional to their intensity and tropospheric water vapor, and the latter is a particularly 

useful predictor for extratropical cyclone precipitation 95 .
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Extended Data

Extended Data Fig. 1. All drought events used for analysis
Analogous to Fig. 1a, yet using colors for all 40 events; for aesthetic reasons, a shows the 20 

largest droughts, gauged by both their spatial extent and duration. b visualizes the remaining 

events, ranked 21-40.
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Extended Data Fig. 2. Main climatological source regions of water vapor for the six highlighted 
droughts
Source regions of tropospheric water vapor (light blue) over the respective drought areas 

(pink contours), covering 70% of the total water vapor; for the period 1980-2016. The extent 

of the respective main source region can be compared across events to gauge the dependence 

on proximate or more remote evaporation.

Extended Data Fig. 3. Soil stress S during the six highlighted droughts
S, given by the ratio of E over Ep , is expressed as anomalies with respect to the 

climatological mean. This is calculated per pixel and using only months for which 

drought conditions were present according to the morphed droughts—in other words, the 

climatology is obtained analogously to the drought values, for the same months (or seasons), 

but based on 1980–2016. Brighter colors imply more soil stress (lower S) and thus more 

severely water-limited evaporation.
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Extended Data Fig. 4. Peak drought self-propagation as a function of the climatological 
precipitation recycling ratio
Similar to Fig. 3, but displaying the peak self-propagation on the y-axis, while the fraction 

of the respective drought pixels being classified as dryland (P/Ep<0.65) is visualized by the 

color of each marker.
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Fig. 1. Impact of upwind soil drought on downwind column water vapor.
a, An overview of the 40 largest soil droughts in recent history, with six selected events 

shown in colour. Any pixel of a certain colour is part of the same spatiotemporally coherent 

drought, but the timing of drought onset and offset varies per pixel. The ranking of each 

drought in terms of total extent (space and time) is provided by numbers of matching 

colours. b–c, Drought propagation in space for six selected events (b), with polygons of 

matching colour in the time series (c) indicating the cumulative area under soil drought 

after each of these ‘propagation steps’, as well as the actual area subject to soil drought 

Schumacher et al. Page 21

Nat Geosci. Author manuscript; available in PMC 2022 July 17.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



at the time of propagation (black line). d, The actual water vapor (Q) in the areas 

that are newly affected by soil drought, that is, where the drought propagates to (solid 

black line). Ensemble-mean ‘non-drought’ water vapor, calculated for climatological soil 

stress in upwind drought-stricken areas using existing potential evaporation and circulation 

(dashed black line; see Methods). The difference (red shading) thus indicates the downwind 

reduction in water vapor solely due to upwind soil drought for the given atmospheric 

conditions and circulation.
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Fig. 2. Upwind soil droughts propagation to downwind precipitation deficits.
a, For the same six events as in Fig. 1b–d, the climatological and actual precipitation are 

shown (dotted and solid black lines). The extra water vapor for non-drought conditions in 

Fig. 1d is converted to precipitation based on the actual precipitation efficiency (dashed 

black line; see main text and Methods), shown as the ensemble mean. The difference 

between non-drought and actual precipitation is an estimate of the drought self-propagation 

effect (red shading). b, Since this difference in precipitation (ΔP) depends not only on 

the amount of extra water evaporating at climatological soil moisture stress, but also on 

Schumacher et al. Page 23

Nat Geosci. Author manuscript; available in PMC 2022 July 17.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



the conversion of water vapor to precipitation, the values corresponding to the actual 

precipitation efficiency employed for Fig. 2a, the climatological mean, maximum and 

minimum precipitation efficiency are shown (solid and dashed blue lines, upper and lower 

bounds of hatched grey shading), again averaged over the entire ensemble of simulations.
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Fig. 3. Droughts self-propagation in drylands.
The map illustrates the monthly maximum (or ‘peak’) drought self-propagation, expressed 

as the ratio between the change in precipitation induced by drought self-propagation (ΔP) 

and the precipitation expectation without upwind drought. If several events overlap in space, 

their average is visualized. Only the ensemble mean is shown. The graph illustrates the 

mean drought self-propagation per event (including all propagation steps) as a function 

of the climatological aridity index (the ratio of annual mean precipitation over potential 

evaporation). Marker colours indicate the (monthly) peak self-propagation. Vertical grey 

lines represent the uncertainty range, given by the respective ensemble minima and maxima. 

The transition to drylands at P/Ep=0.65 (the ratio of precipitation and potential evaporation; 

ref. 36 ) is marked by a vertical black line and a change in background colour (from blue to 

brown). The six events highlighted in Figs. 1 and 2 are labelled and marked with purple dots.
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Fig. 4. Upwind drought in drylands.
Meteorological drought is frequently triggered by weaker-than-usual dynamical saturation-

enabling mechanisms (conceptualized as low precipitation efficiency; Peff’<0), which in 

turn may respond to a remote forcing, such as anomalous sea surface temperatures. Once 

that happens, limited precipitation (P’<0) causes soil desiccation (SM’<0) and soil stress, 

exacerbated by the high potential evaporation due to clear skies and elevated temperatures. 

Then, evaporation becomes (more) water-limited (E’<0). The reduction in near-surface air 

moistening — extending across the troposphere via vertical mixing — causes a reduction in 

water vapor being exported downwind (Q’<0). Therefore, further downwind, for the same 

precipitation efficiency, even less precipitation is expected (P’<0), contributing to downwind 

drought onset (SM’<0, E’<0). Moreover, since water vapor is known to enhance uplift, 

additional reductions are possible for convective precipitation (Peff’, P’, SM’, E’ << 0).
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