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Abstract
One family of designs that can noticeably improve efficiency in later stages of
drug development are multi-arm multi-stage (MAMS) designs. They allow sev-
eral arms to be studied concurrently and gain efficiency by dropping poorly
performing treatment arms during the trial as well as by allowing to stop early for
benefit. Conventional MAMS designs were developed for the setting, in which
treatment arms are independent and hence can be inefficient when an order in
the effects of the arms can be assumed (eg, when considering different treatment
durations or different doses). In this work, we extend the MAMS framework to
incorporate the order of treatment effects when no parametric dose-response or
duration-response model is assumed. The design can identify all promising treat-
ments with high probability. We show that the design provides strong control
of the family-wise error rate and illustrate the design in a study of symptomatic
asthma. Via simulations we show that the inclusion of the ordering information
leads to better decision-making compared to a fixed sample and a MAMS design.
Specifically, in the considered settings, reductions in sample size of around 15%
were achieved in comparison to a conventional MAMS design.
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1 INTRODUCTION

Drug development is costly and time consuming.1 One family of clinical trial designs that can improve the develop-
ment process are multi-arm multi-stage designs (MAMS).2-4 In a MAMS trial, insufficiently promising treatments can be
dropped or the trial can be stopped due to overwhelming benefit at a series of interim analyses.

To date these designs have focused on the setting of independent treatment arms and have been argued to be a highly
efficient approach to clinical trials.5-7 They could, however, be suboptimal if an “order” (ie, a monotonic relationship)
among the treatment effects can be assumed. Such an order can occur naturally, for example, when multiple doses or
administration schedules of the same treatment are tested or when nested combinations of treatments are investigated.
Another area where an order can often be assumed is when considering different treatment durations. In infectious dis-
eases such as Tuberculosis (TB) and Hepatitis B (HBV), the treatment duration with current standard regimes is lengthy8

Abbreviations: FSD, fixed sample design; MAMS, multi-arm multi-stage; ORD, ordered restricted design.
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which results in a large burden on the patients, potentially high costs, increased risk of non-compliance and side effects.9
In TB and HBV, for example, treatment periods of 6 and 12 months are typical.10,11 Novel treatments or combinations of
treatments in these areas offer the opportunity for both higher efficacy and shorter treatment periods.12 In the setting of
multiple treatment durations Quartagno et al13 have proposed to model the duration-response curve. While this is an effi-
cient way to understand the duration-effect relationship, it is less clear how to definitively conclude whether a duration
is “better” than the current standard.

In this work, we extend the MAMS framework and propose a design that incorporates the order of treatment effects
in the decision-making when no parametric dose-response or duration-response model is assumed. The objective of the
design is to identify all promising arms (eg, treatment durations, doses, or combination of treatments), including the one
associated with the smallest relevant treatment effect.

The rest of the manuscript continues as follows. A case study is introduced in Section 2 before a detailed description
of the 3-arm and 2-stage design is provided in Section 3. Section 4 then generalizes the proposed design to an arbitrary
number of arms and stages and provides some theoretical results. Section 5 revisits the case study before the design is
evaluated via simulations in Section 6. In Section 7, the effect of various critical bounds on the operating characteristics
of the proposed design is explored. We conclude with a discussion.

2 CASE STUDY SETTING

The Tiotropium add-on therapy in adolescents with moderate asthma: A 1-year randomized controlled trial
(NCT01257230)14 is a Phase III study that assessed the efficacy and safety of once-daily tiotropium via Respimat added
to inhaled corticosteroid (ICS) with or without a leukotriene receptor antagonist in adolescent patients with moderate
symptomatic asthma. Patients were randomized with equal probability to receive 5𝜇g (2 puffs of 2.5𝜇g) or 2.5𝜇g (2 puffs
of 1.25𝜇g) of once-daily tiotropium or placebo (2 puffs). The primary outcome was change from baseline in peak FEV1
within 3 h after dosing (peak FEV1[0−3h]) measured after 24 weeks of treatment. The null hypotheses were tested in a
stepwise manner to control the type I error starting from the highest dose suggesting that a monotonic dose-response
relationship can be assumed.

3 A 3-ARM 2-STAGE ORDER RESTRICTED DESIGN

In this section, we develop an order restricted design (ORD) for the setting of the case study. We denote the highest dose
(5𝜇g) by T1 and the lower dose (2.5𝜇g) by T2. The generalization to an arbitrary number of arms and stages is given in
Section 4.

Assume that a patient’s response follows a normal distribution with known common variance, 𝜎2. An alternative
approach is outlined in Section 8 for the case of unknown variance. Let X (k)

i ∼ N(𝜇(k), 𝜎2), k ∈ {0, 1, 2}, i = 1 ∶ n(k)
j be

the observation of the ith patient on treatment k (the control arm is denoted by 0) and n(k)
j be the number of patients

on arm k up to stage j. Let 𝜃(k) = 𝜇(k) − 𝜇(0) be the true treatment effect of active arm k ∈ {1, 2} compared to the con-
trol. We denote the vector of treatment effects by 𝜽 = (𝜃(1), 𝜃(2)). Consider the following order relationship: 𝜃(1) ≥ 𝜃(2),
implying that the treatment effect of the second treatment is at most as large as the treatment effect for the first treat-
ment. Let r(k)j be the ratio between the number of subjects allocated to treatment k ∈ {0, 1, 2} and control at each stage

j with r(0)j = 1. Let Z(k)
j =

𝜇̂
(k)
j −𝜇̂(0)

j

𝜎

√
r(0)j n(k)

j

r(k)j +r(0)j
be the test statistic3 at stage j for comparing arm k ∈ {1, 2} to control, where

𝜇̂
(k)
j = (n(k)

j )−1∑n(k)
j

i=1X (k)
i and n(k)

j = r(k)j n, with k ∈ {0, 1, 2} and n is the sample size in the control group at the first stage.
The vector of test statistics follows a multivariate normal distribution Z ∼ N4(𝝐,𝚺) with Z = (Z(1)

1 ,Z(2)
1 ,Z(1)

2 ,Z(2)
2 ), 𝝐 =(
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r(2)2 +r(0)2

)
and the covariances between Z-statistics are Cov

(
Z(k)

j ,Z(k)
j

)
= 1,

with k, j ∈ {1, 2}, Cov
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j

)
=
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, k ≠ k′, with k, k′ ∈ {1, 2}.
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T A B L E 1 Combination of the decision rules in the 3-arm 2-stage trial with 𝜃(1) ≥ 𝜃(2)

Z(1)
j

≥ u(1)
j

l(1)
j

< Z(1)
j

< u(1)
j

Z(1)
j

≤ l(1)
j

Z(2)
j ≥ u(2)

j Stop: select T1,T2 Proceed with T1, T2 Proceed with T1, T2

l(2)j < Z(2)
j < u(2)

j Proceed with T2 Proceed with T1,T2 Drop both arms

Z(2)
j ≤ l(2)j Stop: select T1 Proceed with T1 Drop both arms

Note: Cells colored in red correspond to contradicting evidence.

We test the null hypotheses: H01 ∶ {𝜃(1) ≤ 0}, H02 ∶ {𝜃(2) ≤ 0} with the global null hypothesis denoted by H0 ∶ {𝜃(1) =
𝜃(2) = 0}. Let u(1)

j , l(1)j and u(2)
j , l(2)j be the critical values at stage j for T1 and T2, respectively, used to test the hypotheses,

with u(k)
2 = l(k)2 , k ∈ {1, 2}.

The proposed design then takes into account the order among the treatment effects when making the decisions at the
first stage and the final analysis and a set of decision rules consistent with this order is given in Table 1. For example,
if both Z-statistics cross the upper bounds at the interim analysis, the trial is stopped for efficacy (as in a conventional
MAMS design). In contrast to the traditional MAMS design, the trial continues if there is contradicting evidence with
respect to the order, for example, if Z(2)

1 crosses the upper bound, but there is not enough evidence to claim superiority of
T1 to control, then both arms are continued to the next stage.

The idea behind these decision rules is that at any stage the effectiveness of T2 can be claimed only if T1 can be declared
superior to the control. Therefore, T1 can be regarded as a gatekeeper.15 Following this procedure, depending on the
context, alternative decisions could be considered for the cells colored in red in Table 1 (see Section 2 of the Supporting
Information for more discussion).

3.1 Family-wise error rate

For confirmatory clinical trials, control of the family wise error rate (FWER) in the strong sense at level 𝛼, that is the
probability to reject at least one true null hypothesis, is often required.16 Using the rules described in Table 1, the FWER
for the 3-arm 2-stage ORD can be written as

P(rejecting at least one true H0k, k ∈ {1, 2} |H0) = P
(

Z(1)
1 ≥ u(1)

1 |H0

)
+

P
(

Z(1)
2 ≥ u(1)

2 , l(1)1 < Z(1)
1 < u(1)

1 |H0

)
+ P

(
Z(1)

2 ≥ u(1)
2 ,Z(1)

1 ≤ l(1)1 ,Z(2)
1 ≥ u(2)

1 |H0

)
. (1)

Equation (1) shows that the events used for the computation of the type I error under the global null hypoth-
esis ({Reject H01 and H02}, {Reject H01 not H02}) are a subset of the events ({Reject H01 ∪ H02}) used in the MAMS
design of Magirr et al.3 Thus, the probability of rejecting at least one hypothesis under the global null will be
smaller for the ORD compared to the MAMS design, while the probability of rejecting neither hypothesis will be
smaller for MAMS if the same bounds are used. It is worth noting that overall, the critical bounds, if these are
the same for all active treatments u(1)

1 = u(2)
1 = u1, u(1)

2 = u(2)
2 = l(1)2 = l(2)2 = u2, l(1)1 = l(2)1 = l1, for the 3-arm 2-stage

ORD are smaller in each stage compared to the MAMS design of Magirr et al3 (see Section 7 of the Support-
ing Information). Consequently the ORD design is strictly more powerful than the MAMS design under these
assumptions.

The critical bounds for the given treatment arm can be defined as function of a (possibly arm-specific) parameter,
that is, u(k)

j = u(k)
j (a(k)), l(k)j = l(k)j (a(k)), j ∈ {1, 2}, k ∈ {1, 2}, which can be searched over a grid of values for a(k) in order to

strongly control the FWER at level 𝛼. If a(1) = a(2) = a, then a unique solution can be found restricting the search over a
such that the expression given in Equation (1) is below 𝛼 under the global null hypothesis. In this case, the solution is
unique either when the search is based on different boundary shapes u(k)

j , l(k)j or when the same boundary shapes are used
for all experimental arms—u(k)

j = uj, l(k)j = lj for all k ∈ {1, 2}. If a(k) are not the same for each arm, additional constraints
are required for the uniqueness of the solution and to maintain the strong control of the FWER at level 𝛼, such as the
control under the partial null hypotheses. In the 3-arm setting, for example, this is (𝜃(1), 0). However, different values of
𝜃(1) can provide different boundaries, and so the solution is unique for the specific value of 𝜃(1) (see Section 7 for more
details).
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Theorem 1 below then shows that, if the same bounds, (uj, lj), j ∈ {1, 2} are used for each arm, and the same
allocation ratios (with respect to the control) are used for all active treatments, the FWER is maximized under the global
null hypothesis and hence the above ensures strong control of the FWER.

Theorem 1. Consider a 3-arm 2-stage ORD design and denote the global null hypothesis by H0 ∶ 𝜃(1) = 𝜃(2) = 0. Let u(1)
1 =

u(2)
1 = u1, u(1)

2 = u(2)
2 = l(1)2 = l(2)2 = u2, l(1)1 = l(2)1 = l1 be the critical bounds such that Equation (1) is below 𝛼 under the global

null hypothesis. Let us assume that there are equal numbers of patients on each active treatment within each stage: r(k)j =
rj, ∀k ∈ {1, 2}.

Let 𝜽0 be a vector where at least one treatment effect is less or equal to 0. Then,

P(rejecting at least one true H0k, k ∈ {1, 2} |𝜽0) ≤
P(rejecting at least one true H0k, k ∈ {1, 2} |H0) ≤ 𝛼

The proofs of all theorems are given in Section 1 of the Supporting Information.

3.2 Power requirement

To power the study, we consider the configuration 𝜽 = (𝜃(1), 𝜃(2)), where 𝜃(1) ≥ 𝜃(2) ≥ 𝛿0 > 0 and 𝛿0 is the minimum clini-
cally relevant difference. The ORD is then powered at (1 − 𝛽) to reject both hypotheses under 𝜽 = (𝜃(1), 𝜃(2)), 𝜃(1) ≥ 𝜃(2) ≥

𝛿0 > 0 when Equation (2) is satisfied:

P
(

Z(1)
1 ≥ u(1)

1 ,Z(2)
1 ≥ u(2)

1 |𝜽)+

P
(

Z(1)
2 ≥ u(1)

2 ,Z(2)
2 ≥ u(2)

2 , l(1)1 < Z(1)
1 < u(1)

1 ,Z(2)
1 ≥ u(2)

1 |𝜽)+

P
(

Z(1)
2 ≥ u(1)

2 ,Z(2)
2 ≥ u(2)

2 ,Z(1)
1 ≤ l(1)1 ,Z(2)

1 ≥ u(2)
1 |𝜽)+

P
(

Z(2)
2 ≥ u(2)

2 ,Z(1)
1 ≥ u(1)

1 , l(2)1 < Z(2)
1 < u(2)

1 |𝜽)+

P
(

Z(1)
2 ≥ u(1)

2 ,Z(2)
2 ≥ u(2)

2 , l(1)1 < Z(1)
1 < u(1)

1 , l(2)1 < Z(2)
1 < u(2)

1 |𝜽) ≥ 1 − 𝛽. (2)

Theoretical considerations and numerical evaluations have shown that, if Pocock boundaries17 for both treatments
are used, u(1)

1 = u(2)
1 = u1, l(1)1 = l(2)1 = −u1, u(1)

2 = u(2)
2 = u1, and critical values found such that Equation (1) is below 𝛼,

the power of the ORD design is, practically, no smaller than a fixed balanced sample design with the same sample size.
Furthermore, for a number of treatment effects, it was found to be strictly positive. Full details of these considerations
are given in Section 3 of the Supporting Information.

4 GENERALIZATION OF THE ORD TO K-ARM J-STAGE

Consider a clinical trial with K − 1 active treatment arms, T1,… ,TK−1, against a control treatment and J stages and
denote the treatment effect comparing treatment k against control by 𝜃(k). We denote the vector of treatment effects by
𝜽 = (𝜃(1), 𝜃(2),… , 𝜃(K−1)). The null hypotheses of interest are H01 ∶ {𝜃(1) ≤ 0} ,… , H0K−1 ∶ {𝜃(K−1) ≤ 0}. Let Z(k)

j denote
the test statistic based on all data up to stage j for comparison k ∈ {1,… ,K − 1} as before and assume that the following
order relationship holds: 𝜃(1) ≥ 𝜃(2) ≥ · · · ≥ 𝜃(K−1). Let u(k)

j , l(k)j , k ∈ {1,… ,K − 1}, j ∈ {1,… , J} be the critical values at
stage j with u(k)

J = l(k)J , k ∈ {1,… ,K − 1}.
The decision rules at the interim analyses follow the same principle as for the 3-arm 2-stage design defined above. The

decisions are made in order to be able to select all promising treatment arms at the end of the trial and H0k can only be
rejected if all H0k′ , k′ < k have been rejected. Once H0k has been rejected, the recruitment to arms Tj ,… ,Tk is stopped,
where j is the lowest index of a treatment arms remaining in the trial at stage j. If there is contradicting evidence with
respect to the order at stage j, that is when Z(k)

j ≥ u(k)
j and there is at least one k′ < k such that Z(k′)

j < u(k′)
j , then recruitment

to these arms continue. As for the 3-arm 2-stage design, if there is sufficient evidence to drop arm k, that is when Z(k)
j ≤ l(k)j ,

and if there is any contradicting evidence for k′ > k then the recruitment to arms Tk,… ,Tj is stopped, where j is the
highest index on the treatment arms remaining in the trial at stage j. A general algorithm for the decision-making in this
setting is given in Algorithm 1.
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Algorithm 1. Rules for K-arm J-stage ORD when 𝜃(1) ≥ 𝜃(2) ≥ · · · ≥ 𝜃(K−1)

1. Letj andj be the lowest and highest indices on the active treatment arms remaining in the trial at stage j, respectively.
At stage j, compute Z(k)

j for k ∈  = {j,… ,j}.
2. Stop recruitment to arm k at stage j for efficacy if for all k′ ∈ , k′ ≤ k, Z(k′)

j ≥ u(k′)
j .

3. Stop recruitment to arm k at stage j for futility if
• Z(k)

j < l(k)j and for all k′ ∈ , k′′ > k, Z(k′′)
j < u(k′′)

j , or
• l(k)j < Z(k)

j < u(k)
j and for at least one k⋆ ∈ , k⋆< k, Z(k⋆)

j < l(k
⋆)

j and for no k′′ ∈ , k′′ > k⋆, Z(k′′)
j > u(k′′)

j .

4. Stop the trial when the recruitment to all arms is stopped.

T A B L E 2 Sets of events for K-arm J-stage design with k ∈ {1,… ,K − 1}

Set Definition

C(k)
j

{
l(k)j−1 < Z(k)

j−1 < u(k)
j−1

}
S(k)

j

{
Z(k)

j−1 ≤ l(k)j−1

}
E(k)

j

{((
C(1)

j ∪ S(1)
j

)
∩
(

C(k)
j ∪ S(k)

j

))
∪
(

E(k−1)
j ∩ C(k)

j

)}
E(0)

j Ω

A(k)
j,1 , k > 0 E(k)

j

A(k)
j,2 , k > 1 E(k−1)

j ∩ S(k)
j

A(k)
j,k+1−s, k > 2, s = 1 ∶ k − 2 E(s)

j ∩ S(s+1)
j

⋂k
t=s+2

(
C(t)

j ∪ S(t)
j

)
Note: Ω is the whole sample space.

Let Mj be a random variable representing the number of arms (including the control) at stage j when H01 failed to be
rejected at stage j − 1. Because of the hierarchy in testing the hypotheses, the FWER for an K-arm J-stage design can be
written as

P(rejecting at least one true H0k, k ∈ {1,… ,K − 1} |H0) =
J∑

j=1
P(rejecting H01 at jth stage,H01 not rejected at stage s,∀s < j |H0) =

P
(

Z(1)
1 ≥ u(1)

1 |H0

)
+

J∑
j=2

K∑
m=2

P
(

Z(1)
j ≥ u(1)

j |Mj = m,H0

)
× P

(
Mj = m

)
, (3)

where P
(

Mj = m
)

is the probability that at the previous stage H01 failed to be rejected and the number of arms were at
least m. One can show that the following iterative equality holds

P
(

Mj = m
)
=

K∑
c=m

P
(

A(c−1)
j,c−m+1 |Mj−1 = c,H0

)
× P

(
Mj−1 = c

)
,

with at the first stage P (M1 = K) = 1 and 0 otherwise. The set A(c−1)
j,c−m+1 defines the event that H01 failed to be rejected at

stage j − 1 when the number of treatment arms (including the control arm) in the trial were c. This set is formally defined
in Table 2. In the definition of A(c−1)

j,c−m+1, the superscript (c − 1) indicates the number of active treatment arms that are still
in the trial at stage j − 1, while the subscript c − m + 1 refers to the number of active treatment arms (that is equal to
c − m) that have been dropped before reaching the stage j.

While the expression for the FWER in the general case is cumbersome, for a fixed number of stages (arms), the
FWER for K-arm (J-stage) can be found iteratively—an example for 2-stage trials is given in Section 4 of the Supporting
Information.

The critical bounds for a K-arm J-stage ORD can be, again, defined as functions of parameters a(k) such that u(k)
j =

u(k)
j (a(k)), l(k)j = l(k)j (a(k)), j ∈ {1,… , J}, k ∈ {1,… ,K − 1}. Thus, as for the 3-arm 2-stage setting, under the constraint of
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a(1) = a(2) = · · · = a(K−1) = a, a unique solution can be found to control the FWER at level 𝛼 in the strong sense. Theorem 2
below then shows that, if the same bounds, (uj, lj), j ∈ {1,… , J} are used for each arm and the same allocation ratios
(with respect to the control) are used for all active treatments, the FWER is maximized under the global null hypothesis
H0 ∶ {𝜃(1) = 𝜃(2) = · · · = 𝜃(K−1) = 0} and hence the above ensures strong control of the FWER.

Theorem 2. Consider a K-arm J-stage ORD design and denote the global null hypothesis by H0 ∶
{
𝜃(1) = 𝜃(2) = · · · =

𝜃(K−1) = 0
}

. Let u(k)
j = uj, l(k)j = lj,u(k)

J = l(k)J = uJ , k ∈ {1,… ,K − 1} be the critical values such that Equation (3) is below 𝛼

under the global null hypothesis. Assume that there are equal numbers of patients on each active treatment within each stage:
r(k)j = rj, ∀k ∈ {1,… ,K − 1}. Let 𝜽0 be the vector where at least one treatment effect is less or equal to 0.

Then,

P(rejecting at least one true H0k, k ∈ {1,… ,K − 1} |𝜽0) ≤
P(rejecting at least one true H0k, k ∈ {1,… ,K − 1} |H0) ≤ 𝛼

In the next session, a simulation study will be described in order to apply the proposed design in the context of the
asthma trial.14

5 CASE STUDY

5.1 Setting

We revisit the results of the clinical trial of Tiotropium add-on therapy in adolescents with moderate asthma: A 1-year ran-
domized controlled trial (NCT01257230).14 Patients were randomized in a 1:1:1 ratio to receive 5𝜇g or 2.5𝜇g of once-daily
tiotropium or placebo. The null hypotheses were tested in a stepwise manner to control the type I error at level 𝛼 = 0.025.
The study was powered at 80% to detect a difference of 120 mL between treatments in the change from baseline of peak
FEV1[0−3h] assuming a common SD of 340 mL. It was found that 127 patients per group were needed, resulting in a max-
imum sample size of 381 patients. The trial is revisited using the ORD, which can be applied assuming a monotonic
dose-response relationship.

In line with the original trial we assume that the change from baseline of peak FEV1[0−3h] is normally distributed
with SD 𝜎 = 340, k ∈ {0, 1, 2}, and common baseline mean FEV1 of 𝜇(0) = 2747. As in the original study, we consider an
improvement of FEV1 of 120 of interest and hence consider the following values for 𝜃(k), k ∈ {1, 2}: 𝜽 = (0, 0),𝜽 = (120, 0)
and 𝜽 = (120 120). The design is powered at 80% to reject all hypotheses or at least one hypothesis (in order to compare
the sample sizes between the ORD and the original trial design) when all doses have the same effect compared to the
placebo. Additionally to the achieved power, the efficiency of the proposed design is measured by its expected sample size
(ESS), that is the mean number of patients recruited to the trial before it is terminated.

We consider one- and two-stage ORD designs and note that the one-stage ORD design corresponds to the hierarchical
testing strategy used in the original design. For the two-stage design the interim analysis takes place after half of the total
sample size has been observed and triangular critical bounds18 are used. The numerical results found using R19 and 106

replicate simulations.

5.2 Numerical results

Consider the 3-arm 1-stage ORD using the maximum total sample size of 381 patients that corresponds to the same
maximum total sample size originally planned for the study. In this setting, the critical bound at the final analysis is
u1 = z1−𝛼 = z0.975 = 1.96. Table 3 describes the results of the simulation.

It can be seen that the FWER is controlled at level 𝛼 = 0.025 under all considered null scenarios. For the scenarios
where there is at least one dose that is superior to control, the probability to reject at least one hypothesis is 80% as required
in the original study. Note that 80% is the probability of rejecting at least one dose considering any rejections and not only
correct rejections. Therefore, when no interim analyses are planned, the ORD requires the same maximum sample size
as in the original study if it is powered to reject at least one hypothesis. It is worth noting that the probability of rejecting
all hypotheses, if all of them are true, is around 69%.

The distinguishing feature of the proposed ORD is that it allows to include interim analyses during the trial. Table 3
shows the operating characteristics of the design when an interim analysis takes place after observing half of the maximum
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T A B L E 3 Results of the simulations that revisit the NCT01257230 trial using the ORD

Design powered to reject all hypotheses

𝜽(1) 𝜽(2) Max. SS Stages Reject all Reject H01 not H02 Reject at least one H0k ESS

0 0 474 1 0.005 0.020 0.025 474.00

534 2 0.004 0.021 0.025 316.39

120 0 474 1 0.025 0.856 0.881 474.00
534 2 0.025 0.854 0.879 371.83

120 120 474 1 0.803 0.078 0.881 474.00

534 2 0.802 0.081 0.883 399.81
Design powered to reject at least one hypothesis

𝜽(1) 𝜽(2) Max. SS Stages Reject all Reject H01 not H02 Reject at least one H0k ESS

0 0 381 1 0.005 0.021 0.025 381.00

426 2 0.004 0.021 0.025 252.43

120 0 381 1 0.025 0.779 0.803 381.00
426 2 0.024 0.774 0.798 304.67

120 120 381 1 0.691 0.112 0.803 381.00

426 2 0.684 0.117 0.802 331.89

Note: For the two-stage design, the triangular bounds are used. Proportions refer to 106 replications and values of interest are in bold.
Abbreviations: ESS, expected sample size; Max. SS, maximum sample size.

sample sizes. If the study is powered to reject at least one hypothesis at 80%, a maximum sample size of 426 patients
is needed—45 more patients than for the 1-stage design. The gain from using a two-stage design arises in terms of the
expected sample size—on average the number of patients is expected to be below 332 under each scenario. At the same
time, under this power configuration, the probability to identify the smallest promising dose is at 68% similar to the
single-stage design.

Furthermore, it is argued by the construction of the ORD proposed in Section 3 that if it is of interest to identify
the lowest dose with the promising treatment effect, the trial should be powered to reject all hypotheses. In order to
identify the lowest effective dose with the desirable 80% probability, a single-stage trial would require 474 patients and
the two-stage design 534 patients. As before, the inclusion of an interim analysis and the use of triangular bounds lead to
the reduction of the expected number of patients. Specifically, on average the number of patients is expected to be below
400 under each scenario.

Overall, the ORD was found to reproduce the sample size calculation of the original study when no interim analyses
were planned and is powered to reject at least one hypothesis. At the same time, the ORD allows the inclusion of interim
analyses during the trial. When an interim analysis is planned during the trial, the ORD has shown to be an efficient
design as it allows to stop the trial earlier or to drop unpromising doses with high probability before the end of the study.

The results discussed in this section use triangular bounds. Qualitatively similar results using Pocock17 and O’Brien
and Fleming20 boundaries are provided in Section 6 of the Supporting Information. To further investigate the design
characteristics of the proposed ORD, an extensive simulation study is conducted in Section 6.

6 NUMERICAL EVALUATIONS

6.1 Setting

As in the motivating example, consider a clinical trial setting with 3 treatments arms, 2 experimental and a control with
1:1:1 allocation ratio. Consider a single-stage design (that is a fixed sample design (FSD) with hierarchical testing, FSD(h))
and a two-stage design with one pre-planned interim analysis at the middle of the trial. The objective of the trial is to find
all promising treatment arms. The FWER is to be controlled below 𝛼 = 0.05 and the power of trial is to be at least 80% to
reject both hypotheses when both treatment arms have the same effect compared to the control. The patients’ responses
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on treatment arm k are assumed to have normal distribution with mean 𝜇(k) and SD 𝜎 = 1. For the control group 𝜇(0) = 1,
while for the treatment arms 𝜇(k) = 𝜇(0) + 𝜃(k). We fix the clinically relevant difference to be 0.5. Therefore, the scenario
under which the ORD is powered is 𝜽 = (0.5, 0.5). We evaluate the performance of the design under various treatment
effects configurations when the treatment effect on the first arm is fixed to be 0.5 and the treatment effect on the second
arm is varied: 𝜽 = (0.5, 𝜃(2)), 𝜃(1) ≥ 𝜃(2), and 𝜃(2) ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5}. For the 3-arm 2-stage ORD, the bounds are
found under the conditions a(k) = a (ie, the same for each treatment arm) and they are found using a grid search—based
on the triangular boundary shape18 for the all experimental treatments—over one single parameter. Thus, the solution
found is unique.

6.2 Competing approaches

The proposed ORD is compared to the FSD,21 in which the total sample size is specified at the design stage of the trial
and it is not subject to adaptations during the process of the trial. The hypotheses are tested at the end of the trial only
and any hypothesis can be rejected independently of the other.

The second comparator is the MAMS design by Magirr et al.3 However, the conventional MAMS design is not an
appropriate comparator as it does stop as soon as at least one hypothesis is rejected. Therefore, the following modification
of the MAMS design is considered for the comparison. At the interim analysis, if a Z-statistic corresponding to one arm
crosses the upper or lower bound while another does not, the trial will still continue with the treatment that did not cross
a bound. The design is referred to as the MAMS(m).

The FWER expression for MAMS(m) is the same as derived by Magirr et al3 but the power expression changes. To
power a 3-arm 2-stage design, for a given configuration of 𝜽 and a pre-specified level 𝛽, we search for the sample size that
satisfies
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1 |𝜽) ≥ 1 − 𝛽. (4)

6.3 Numerical results

Two main simulation studies are conducted to compare the three competing approaches. In the first one, each design is
constructed such that it yields 80% power to reject both null hypotheses under the alternative hypothesis. The second one
compares the power between approaches based on the common sample size.

6.3.1 Same power requirement for all designs

In this subsection, the results when all design are powered at 80% to reject both null hypotheses are provided. The resulting
design specifications and operating characteristics under the global null hypothesis are provided in Table 4.

Under 𝜽 = (0, 0), all designs control the type I error at level 𝛼 = 0.05 as expected. The total maximum sample sizes
necessary to reach a power of 80% is 231 for the FSD, 192 for the FSD with a hierarchical test (FSD(h)) which is akin to a
single-stage ORD design, 222 for the 3-arm 2-stage ORD and 264 for the MAMS(m) designs. The maximum sample size
(to achieve the same power to reject both hypotheses) for the FSD is greater compared to FSD(h) and the two-stage ORD
as it does not account for the hierarchy in testing.

The designs’ performances under the configuration 𝜃(1) ≥ 𝜃(2) and 𝜃(2) ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5} are presented in
Figure 1. When the second treatment arm is no different to control, 𝜃(2) = 0, the probability of rejecting the null hypothesis
for this arm is controlled at 𝛼 = 0.05 for all designs and when 𝜽 = (0.5, 0.5) all the designs satisfy the power require-
ment at 80%. However, under all other considered non-zero values of 𝜃(2), the probability of rejecting both hypotheses
is higher for the approaches accounting for the hierarchy, FSD(h) and ORD, than for other competing designs. The gain
from using a two-stage ORD design compared to FSD(h) arises in terms of expected sample sizes which is strictly lower
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T A B L E 4 FWER, maximum sample sizes (Max. SS), expected sample sizes (ESS), and critical bounds under 𝜽 = (0, 0) for the 3-arm
2-stage ORD, 3-arm 1-stage ORD (FSD(h)), FSD, and MAMS(m) designs when all designs are powered at 80% to reject both hypotheses
under 𝜽 = (0.5, 0.5)

Design u1,u2, l1 Max. SS ESS Reject at least one H0k

FSD 1.917, -, 1.917 231 231.0 0.05

FSD(h) 1.644, -, 1.644 192 192.0 0.05

ORD 1.898, 1.789, 0.633 222 134.4 0.05

MAMS(m) 2.179, 2.055, 0.726 264 166.6 0.05

Note: 3-arm 2-stage ORD and MAMS(m) use triangular bounds. Results are provided using 106 replications.
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F I G U R E 1 Power and expected sample sizes (ESS) under 𝜽 = (0.5, 𝜃(2)) and 𝜃(2) ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5} for the FSD, 3-arm 1-stage
ORD (FSD(h)), 3-arm 2-stage ORD, and MAMS(m) designs when all designs are powered at 80% to reject both hypotheses under
𝜽 = (0.5, 0.5). 3-arm 2-stage ORD and MAMS(m) use triangular bounds. Results are provided using 106 replications
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for the two-stage design. The 3-arm 2-stage ORD has noticeably lower expected sample size (ESS) compared to all other
designs ranging from 13% to 35% depending on the simulation scenario. The largest difference in power (an increase of
around 5%) between the 3-arm 2-stage ORD and the MAMS(m) design is achieved under 𝜃(2) = 0.2.

6.3.2 Common sample size for all designs

In this subsection, the three designs are compared with a common maximum sample size of 222 patients, which is the
maximum sample size necessary for the 2-stage ORD in order to reject both hypotheses at 80% under 𝜽 = (0.5, 0.5).

The design specifications and operating characteristics of the designs under the global null hypothesis are provided
in Table 5, while the designs’ performances under the configuration 𝜃(1) ≥ 𝜃(2) and 𝜃(2) ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5} are
presented in Figure 2.

As expected all designs control the FWER under the global null. Under the scenario when the second treatment arm
is no different to control, 𝜃(2) = 0, the probability of rejecting the null hypothesis for this arm is controlled at 𝛼 = 0.05.
Under all other considered non-zero values of 𝜃(2), the approaches accounting for the hierarchy, FSD(h) and ORD, result
in higher power compared to the other competing designs. The gain from using a two-stage ORD design compared to
FSD(h) can once more be seen in terms of expected sample sizes which is strictly lower for the two-stage design. The
2-stage ORD has lower ESS compared to the other designs with reductions between 3% and 32%. The largest difference
in power—around 9.8%—between the ORD and the MAMS(m) design is achieved under 𝜃(2) = 0.3.

Overall, the ORD results in noticeable gains across all considered scenarios both in terms of power and expected
sample size. Therefore, the inclusion of the order restriction into the decision rules for the decision-making can provide
advantages in power and/or expected sample size compared to standard approach to multi-arm trials, specifically, the
FSD and the MAMS(m).

7 DIFFERENT BOUNDS FOR EACH TREATMENT ARM

In the results above the same bounds are used for both treatments. However, the proposed design allows for different
boundary shapes to be used for different treatments which could lead to potential benefit in terms of power. In this section,
we explore the effect of various boundary shapes on the operating characteristics of the designs.

We consider the setting as in Section 6.1 and let u(1)
j = u(1)

j (a(1)), l(1)j = l(1)j (a(1)) be the upper and lower bounds for T1

at the stage j, and u(2)
j = u(2)

j (a(2)), l(2)j = l(2)j (a(2)) be the boundaries for T2 at the stage j, being functions of a(1) and a(2),
respectively. The critical bounds and the sample size could be searched over a grid of values for a(1) and a(2) in order to
strongly control the FWER at level 𝛼 and to satisfy the power requirements in Equation (2). To maintain strong control
of the FWER at level 𝛼 it is necessary to control the type I error when 𝜽0 = (𝜃(1), 0). Indeed, as shown in Section 1 of the
Supporting Information, under 𝜽0 = (𝜃(1), 0) it holds

P(rejecting at least one true H0k, k ∈ {1, 2} |𝜽0) = P(reject H02 |𝜽0) =
P(reject H02 | reject H01,𝜽0) × P(reject H01 |𝜽0) ≤ P(reject H02 | reject H01,𝜽0 = (∞, 0)),

where P(reject H02 | reject H01,𝜽0 = (∞, 0)) tends to

P
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Z(2)
1 > u(2)

1 |H02

)
+ P
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1 < u(2)
1 |H02

)
.

Thus, the bounds for the second arm are searched over a grid of values of a(2) as for a 2-arm design with 2 stages22 and
then the bounds for T1 are searched in order to satisfy Equation (1) under the null hypothesis. Finally, the sample size is
searched to satisfy the power requirements, assuming equal allocation to all arms.

Several combinations of boundary shapes are compared considering all possibilities with constant POC,17 O’Brien
and Fleming OBF20 and triangular TRIAN18 bounds. Among all these nine combinations of bounds, a subset of six is
selected. For each shape of the bounds for T1, two combinations are selected. These are those that provide the smallest
ESS and the highest power compared to the other ones. The combinations that are excluded are the ones that use constant
bounds for T1 and T2, the combination with O’Brien and Fleming and constant bounds for T1 and T2 respectively and
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T A B L E 5 FWER, maximum sample sizes (Max. SS), expected sample sizes (ESS), and critical bounds under 𝜽 = (0, 0) for the 3-arm
2-stage ORD, 3-arm 1-stage ORD (FSD(h)), FSD, and MAMS(m) designs when all designs have the same common total sample size equal to
222 patients

Design u1,u2, l1 Max. SS ESS Reject at least one H0k

FSD 1.917, -, 1.917 222 222.0 0.05

FSD(h) 1.644, -, 1.644 222 222.0 0.05

ORD 1.898, 1.789, 0.633 222 134.4 0.05

MAMS(m) 2.179, 2.055, 0.726 222 140.1 0.05

Note: 3-arm 2-stage ORD, and MAMS(m) use triangular bounds. Results are provided using 106 replications.
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ORD (FSD(h)), 3-arm 2-stage ORD, and MAMS(m) designs when all designs have the same common total sample size equal to 222 patients.
3-arm 2-stage ORD and MAMS(m) use triangular bounds. Results are provided using 106 replications
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using 106 replications

the combination with triangular and constant bounds for T1 and T2 respectively. The complete set of results is provided
in Section 5 of the Supporting Information.

The summary of operating characteristics, probability to reject both and probability to reject only one, and the expected
sample size, for the proposed design using the six remaining combinations of boundary shapes is provided in Figure 3.

The design resulting in the highest power in rejecting both hypotheses among the subset of selected bounds is the
one that uses triangular bounds for the treatment associated to the highest effect and O’Brien and Fleming bounds for
the arm associated to the lowest treatment effect. Indeed, in the way that O’Brien and Fleming bounds are constructed,
if u(2)

1 > u(1)
1 , then the trial tends to stop later and the final decision on T2 is based on more data. Therefore, the test

becomes more powerful compared to the test that tends to make a final decision on T2 earlier. This selection of bounds
also corresponds to the smallest probability of rejecting the first hypothesis and not the second one (that is the probability
of making an error when 𝜃(2) > 0) compared to the other combinations.

The combination that uses O’Brien and Fleming bounds for both treatment arms, the combination with Pocock bound
for T1 and O’Brien and Fleming bounds for T2, and the combination of triangular and O’Brien and Fleming bounds result
in similar power to reject both hypotheses but the first two combinations require lower maximum sample size compared
to the latter—198 and 204 patients, respectively against 210 patients. At the same time, the three combinations differ in
terms of ESS and in terms of probability of rejecting only the first hypothesis. Indeed, among these three combinations,
the one with triangular bound for T1 and O’Brien and Fleming bound for T2 is the one with the smallest ESS and presents
the smallest probability of rejecting only the first hypothesis.

The combination that uses O’Brien and Fleming bound for T1 and triangular bound for T2 is the one with smallest
power and highest probability of rejecting only the first hypothesis. While the combination that uses triangular bounds for
both treatment arms is the one with the smallest ESS (indeed triangular bounds are constructed to minimize the ESS18) for
each configuration of 𝜽 compared to the other ones, even though it is one of the combinations with the highest maximum
sample size—222 patients. Nevertheless, this combination has slightly smaller power of rejecting both hypotheses and
slightly smaller probability of rejecting only the first hypothesis compared to the combination with Pocock bounds for T1
and triangular bound for T2.

Overall, the results suggest that there is a benefit, in terms of power and ESS, in using different bounds for each
treatment arm. However, the final choice of the bounds will depend on the specific objectives of the trial. For example, in
order to minimize the ESS it is recommended the use of triangular bounds for both treatment arms, whereas in order to
maximize the power of rejecting all hypotheses it is recommended the use of triangular bounds for T1 and O’Brien and
Fleming bounds for T2.
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8 DISCUSSION

The aim of the current study was to explore MAMS designs that could select the most promising arm associated to the
minimum treatment effect. An approach that takes the order relationship among the treatment effects (when no paramet-
ric dose-response or duration-response model is assumed) into account has been proposed. In the proposed approach we
claim the effectiveness of the arm associated to the minimum treatment effect compared to the control only if we claim
that the treatment associated to the maximum effect is efficacious. Through theoretical arguments and extensive numer-
ical evaluation we show that the proposed design can provide noticeable advantages in power and/or expected sample
sizes required in the trial compared to the alternatives.

The proposed design can be applied to a wide range of clinical trial settings where it could be assumed an order among
the treatment effects. For example, in clinical trial designs applied to infectious diseases, such as TB and HBV, where it
can be assumed that longer treatment durations correspond to a higher efficacy. In this case, the focus translates into the
problem of selecting the shortest promising treatment duration. The proposed design can also be applied to clinical trial
settings where nested combinations of treatments are tested against a common control arm.

The proposed design is closely linked to the hierarchical procedures described in the literature for example, by Glimm
et al,23 Tamhane et al.24,25 In particular, in the literature, the hierarchical procedure is applied for testing multiple end-
points in a specific order. In some applications, the interest is to test the secondary endpoint just if the primary endpoint
has been rejected. Therefore, the endpoints could be tested on hierarchically order and various strategies can be adopted
to test the hypotheses23 depending on the study objectives. It can be noted that when non-binding futility boundaries
(l(1)1 = l(2)1 = −∞) are used in the 3-arm 2-stage ordered restricted design, the overall testing procedure23 coincides with
the proposed method.

In this study, it has been assumed that the common variance is known. However, the effect of this assumption is not
negligible especially with small sample sizes. In this case, a possible approach would be to transform the individual test
statistics using the function f (x) = Φ−1{Td(x)}, where T denotes the t distribution function with d degrees of freedom and
Φ is the standard cumulative density function. More details of this approach are given in Jennison and Turnbull.26

Several avenues of future research present itself. First, focus has been given to superiority tests in this work. In certain
diseases, such as in TB, non-inferiority designs are the norm and hence further research on non-inferiority hypothesis
tests is of interest. Second, we assume that information time is the same for all treatments. When considering different
durations of treatment, however, this information accumulates a different times and hence further work will consider
optimal designs in this setting. Finally, we assume in this work that there is no uncertainty about the order of the treatment
effects. Using a Bayesian framework, however, would naturally allow for uncertainty in that assumption to be considered.
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