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Abstract

Aims—The heterogeneity in Gestational Diabetes Mellitus (GDM) risk factors among different
populations impose challenges in developing a generic prediction model. This study evaluates the
predictive ability of existing UK NICE guidelines for assessing GDM risk in Singaporean women,
and used machine learning to develop a non-invasive predictive model.

Methods—Data from 909 pregnancies in Singapore’s most deeply phenotyped mother-offspring
cohort study, Growing Up in Singapore Towards healthy Outcomes (GUSTO), was used for
predictive modeling. We used a CatBoost gradient boosting algorithm, and the Shapley feature
attribution framework for model building and interpretation of GDM risk attributes.

Results—UK NICE guidelines showed poor predictability in Singaporean women [AUC:0.60
(95% CI 0.51, 0.70)]. The non-invasive predictive model comprising of 4 non-invasive factors:
mean arterial blood pressure in first trimester, age, ethnicity and previous history of GDM, greatly
outperformed [AUC:0.82 (95% CI 0.71, 0.93)] the UK NICE guidelines.

Conclusions—The UK NICE guidelines may be insufficient to assess GDM risk in Asian
women. Our non-invasive predictive model outperforms the current state-of-the-art machine
learning models to predict GDM, is easily accessible and can be an effective approach to minimize
the economic burden of universal testing & GDM associated healthcare in Asian populations.

Keywords

Asian populations; Gestational Diabetes Mellitus; Heterogeneity; Machine Learning; Non-
Invasive; UK NICE
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AUC Area under the Receiver Operating Characteristic Curve
BMI Body Mass Index
GCT Glucose Challenge Test
GDM Gestational Diabetes Mellitus
GUSTO Growing Up in Singapore Towards healthy Outcomes
HbA1. Hemoglobin A1C
HEI-SGP Healthy Easting Index for Preghant women in Singapore
IADPSG International Association of Diabetes and Pregnancy Study Groups
IDF International Diabetes Federation
IGF1 Insulin-like Growth Factor 1
KKH KK Women’s and Children’s Hospital
NICE National Institute for Health and Care Excellence
OGTT Oral Glucose Tolerance Test
SHAP SHapley Additive exPlanations
WHO World Health Organization
A Mathematical symbol delta (change in)

1 Introduction

Gestational Diabetes Mellitus (GDM) is a condition in which a woman without previous
diabetes develop glucose intolerance in pregnancy [1]. This condition increases the risk of
developing maternal pregnancy-induced hypertensive disorders, fetal macrosomia, caesarean
birth, shoulder dystocia and other birth injuries [2]. Poorly controlled GDM also increases
risks of premature birth, stillbirth and neonatal morbidity. The prevalence of GDM is
increasing globally, with 1 in 6 pregnancies being affected [3]. GDM also has long-term
implications for both mother and child. In the systematic reviews conducted by Vounzoulaki
et al, and Kramer et al, women with GDM have been reported to have 10-fold higher risk of
developing Type 2 Diabetes Mellitus, and 1.98-fold higher risk of developing cardiovascular
adversities than women without GDM [4, 5]. Offspring of mothers with GDM are also at

an increased risk of having metabolic adversities, perpetuating the cycle of diabetes and
cardiovascular diseases [6].

Healthcare systems across the world use either the high risk selective screening approach or
universal screening of GDM in pregnant women. One approach is the International Diabetes
Federation (IDF) GDM Model of Care [7], designed for countries with low resources. It
recommends that all pregnant women are screened at first visit by a fasting glucose, HbA1¢
or random glucose sample, to rule out pre-existing diabetes. In those with normal early
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screening, an Oral Glucose Tolerance Test (OGTT) is performed at 24-28 weeks’ gestation
to assess the risk of GDM. If normal, OGTT is repeated again at 32 weeks’ gestation for
high risk women.

The American Diabetes Association (ADA) endorses the use of either a one-step approach
(IADPSG diagnostic criteria, fasting two-hour, three-point 75g OGTT) or an older two-step
approach (non-fasting one-hour 50g Glucose Challenge Test (GCT), followed by diagnostic
fasting three-hour 100g OGTT on a subset of women exceeding the glucose threshold value
of GCT) at 24-28 weeks’ gestation [8]. The two-step approach addresses the heterogeneity
in populations, with varying thresholds for non-fasting one-hour 50g GCT. Either the
National Diabetes Data Group (NDDG) or Carpenter and Coustan diagnostic criteria is used
in fasting three-hour 100g OGTT. The population-wide benefit of one-step versus two-step
approaches requires long term outcome studies.

The UK National Institute for Health and Clinical Excellence (NICE) guidelines include
both research and health economic considerations for GDM. UK NICE recommends

high risk selective screening for women with known GDM risk factors, such as obesity
(BMI>=30 kg/m?), family history of diabetes, previous history of GDM, previous delivery
of a macrosomic baby (>=4.5 kg) and ethnic origin of high diabetes prevalence (South
Asian, black Caribbean or Middle Eastern) [9]. In the latest UK NICE 2015 guidelines,
women with previous history of GDM are offered an OGTT at their booking appointment.
Women with any of the other risk factors are offered OGTT at 24-28 weeks’ gestation.

Based on findings in the Growing Up in Singapore Towards healthy Outcomes (GUSTO)
study, universal screening of GDM is now recommended in Singapore [10] as the selective
screening based on UK NICE 2013 guidelines failed to detect nearly half the GDM

cases [11], providing evidence for heterogeneity of risk factors, hence the necessity for

a population-centric approach. The International Federation of Gynecology and Obstetrics
(FIGO) recommends universal GDM screening [12]. GDM screening strategies are a priority
area for research, particularly in low and middle-income countries as scaling up of IDF
GDM Model of Care can be resource intensive.

Machine learning algorithms have remarkable predictive power for disease stratification
tasks, and hence can be beneficial in developing population based GDM risk prediction
models. There are limited studies on GDM prediction using machine learning algorithms.
The current state-of-the-art machine learning models are invasive and executable during
pregnancy trimesters to predict GDM. Artzi et al trained a LightGBM gradient boosting
classifier with Israel’s Electronic Health Records (EHR) data to predict onset of GDM (AUC
of 0.80 was achieved with 9 features) [13]. In another study, Wu et al trained a logistic
regression classifier with China’s EHR data to predict onset of GDM (AUC of 0.77 was
achieved with 7 features) [14].

A non-invasive GDM risk prediction panel during early pregnancy would be the ideal
counterpart to an invasive diagnostic OGTT assessment. In this study, we evaluated

the predictive ability of UK NICE guidelines for GDM screening in Singapore’s multi-
ethnic population and developed a simple, non-invasive GDM predictive model. Our
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machine learning model was implemented using prospective GUSTO cohort study data
(ClinicalTrials.gov NCT01174875).

2 Methods

2.1 Study Population

GUSTO is a prospective multi-ethnic mother-offspring cohort study of 1,450 antenatal
women recruited at 7-11 weeks of pregnancy. The pregnant mothers recruited in early
pregnancy and whose children are being followed up till at least 14 years of age. There
were a total of 1,344 naturally-conceived pregnancies, 96 In-Vitro Fertilization (IVF)
singleton pregnancies and 10 spontaneously-conceived twin pregnancies in the cohort. Study
participants were recruited from Singapore’s two major public maternity hospitals; National
University Hospital (NUH) and KK Women’s and Children’s Hospital (KKH) between June
2009 to October 2010. The participants approached were Singapore Citizens or Singapore
Permanent Residents, belonging to Chinese, Malay or Indian ethnicities. Women receiving
chemotherapy, psychotropic drugs or who had Type 1 Diabetes Mellitus were excluded.
Only mothers who agreed to donate birth tissues at delivery (including cord, cord blood and
placenta) were included.

A total of 1,166 mothers had a two-hour 75g OGTT performed (fasting, 2-hour glucose
measures) in mid-gestation (median=26.9 weeks, IQR=26.4-27.6 weeks). The World Health
Organization (WHO) 1999 criteria (fasting plasma glucose =7.0 mmol/L and/or 2-hour
plasma glucose =7.8 mmol/L) was in use to diagnose GDM at the time of study conduct
[15]. Participants of mixed ethnicity or with self-reported T2D at recruitment were excluded
from model training. Analysis was restricted to 1,072 mothers whose gestation at the time
of OGTT was 241-28% weeks (gestational age is given as weeksd@Ys). Supplementary Table
1 presents the statistical description of population attributes. Our models were built using
909 mothers who had complete measurements on basic physical measures, lifestyle/dietary
habits, blood-derived markers and OGTT at pregnancy week 24-28 (Fig. 1).

2.2 Machine Learning

Our methodological novelty lies in combining coalitional game theory concepts with
machine learning. Shapley values and the SHapley Additive exPlanations (SHAP)
framework was combined with CatBoost tree ensembles for feature selection and build

the population-centric GDM prediction panel [16, 17]. Lundberg and Lee have proposed
SHAP as the only additive feature attribution method that satisfies two important properties
of game theory - additivity (local accuracy) and monotonicity (consistency) [17].

The supervised machine learning models were built using Anaconda’s distribution of Python
v3.7.9 programming language in JupyterLab computational environment. The predictive
models were trained using 4 machine learning algorithms to address algorithm bias;

logistic regression (generalized linear model), support vector machine (linear support

vector classification), CatBoost gradient boosting (tree-based) and artificial neural network
(multilayer perceptron). We used fivefold stratified cross validation to preserve the same
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proportion of GDM cases in each fold. Implementation details of all these models are
included in the Supplementary Material [see Supplementary Material].

A machine learning model based on existing UK NICE 2015 guidelines was trained to
assess the predictive ability of GDM risk in Singaporean women. The UK NICE model
comprised of 5 features: pre-pregnancy obesity (BM1>=30 kg/m?), family history of
diabetes, previous history of GDM, previous delivery of a macrosomic baby (>=4.5 kg)

and Indian ethnicity. We performed sensitivity analysis of UK NICE model to examine the
effect of pre-pregnancy obesity thresholds in GDM prediction. We used BMI cut-offs at 23
kg/m? (overweight in Asian women), 25 kg/m? and 27.5 kg/m? (Obese in Asian women)
[18]. We subsequently developed a two-tier predictive panel with GUSTO data. The first-tier
panel was modelled using non-invasive measures at first trimester of pregnancy and the
second-tier panel was modelled using additional factors gathered during mid-gestation.

2.3 Model Features

Information on demographics (maternal age, maternal ethnicity) and medical/obstetric
history (self-reported pre-pregnancy weight, family history of diabetes mellitus, previous
history of GDM, previous delivery of a macrosomic baby and parity) were derived from

first trimester questionnaires. Systolic and diastolic blood pressure measurements were
recorded at booking appointment and obtained from hospital case notes. Maternal height
was measured using stadiometer, model 213; Seca, Hamburg, Germany. Around 26 weeks of
pregnancy, information on self-reported smoking and alcohol consumption was collected as
lifestyle habits during pregnancy.

24-hour dietary recall was retrospectively collected at 24-28 weeks of gestational age to
ascertain dietary intake in a day. The nutrient analysis of dietary records was performed
using Dietplan6, Forestfield Software. A relatively simple and easy to use, Healthy Easting
Index for Pregnant women in Singapore (HEI-SGP) was subsequently developed to derive
a diet quality score [19]. Dairy intake, total protein intake, total fat intake and total rice

& alternative intake components were included for feature selection. These four individual
dietary components have scores ranging from 0 to 10 points. A maximum score of 10 for
dairy intake component indicates a diet rich in dairy intake.

Fasting blood plasma samples obtained at the time of the OGTT (24-28 weeks of gestational
age) were analyzed for, Insulin-like Growth Factor 1 (IGF1) and adiponectin. Maternal
venous blood was collected into EDTA tubes and plasma was obtained by centrifugation

at 1600g for 10 minutes at 4° Celsius. The plasma was stored at -80° Celsius until sample
batch analysis. IGF1 was measured using MILLIPLEX MAP Human IGF-I, Il Magnetic
Bead Panel - Endocrine Assay (Merck), while adiponectin was measured using MILLIPLEX
MAP Human Adipokine Magnetic Bead Panel 1 - Endocrine Multiplex Assay (Merck).
Results were analysed using the Bioplex Manager 6.0 software (Biorad). We explored the
hypothesis of a functional relationship between IGF1 and adiponectin protein hormones as a
key endocrine modulator of metabolism [20].
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s1duosnuBIA Joyiny sispund DN edoin3 ¢

s1dLIOSNUBIA JoLINY sispund DN 8doin3 ¢

Kumar et al.

Page 7

3 Results

909 mothers had complete measurements on basic physical measures, lifestyle/dietary
habits, blood-derived markers and OGTT at pregnancy week 24-28 (Fig. 1). The major lost
to follow-up reasons after recruitment includes miscarriage and termination of pregnancy.
The participant characteristics are presented in Table 1.

Fig. 2 presents the SHAP summary plot of feature selection model. GDM prediction panel
was constructed using top predictors of SHAP value magnitudes more than zero. The

top 9 features impacting the model outputs were mean arterial blood pressure at booking
appointment, maternal age, IGF1 concentration, dairy intake, maternal height, adiponectin
concentration, previous history of GDM, Malay vs Chinese/Indian ethnicity and total rice &
alternatives intake.

The first-tier panel was modelled using non-invasive measures at first trimester of
pregnancy: mean arterial blood pressure at booking appointment, maternal age, maternal
height, previous history of GDM and Malay vs Chinese/Indian ethnicity. The second-
tier panel was modelled using additional factors gathered during mid-gestation; IGF1,
adiponectin, dairy intake and total rice & alternative intake. While showing data for all
models in the Tables, we focus on describing the results of CatBoost machine learning
models as this algorithm had the best overall performance.

The risk factors in UK NICE guidelines show poor predictive performance for GDM in
Singaporean women

Table 2a presents the results of GDM prediction models trained using UK NICE 2015
guidelines. The prediction performance stagnated at AUC of 0.60 (95% CI 0.51, 0.70)

in CatBoost model. In Fig. 3a, the SHAP summary plot of UK NICE CatBoost model
highlights previous history of GDM as the most important GDM predictor. We additionally
trained a risk stratification model based on previous history of GDM alone [AUC:0.56 (95%
Cl 0.53, 0.58)] (Table 3a). The addition of pre-pregnancy obesity (BMI>=30 kg/m?), family
history of diabetes, previous delivery of a macrosomic baby and Indian ethnicity contributed
to a slight boost in UK NICE model’s performance.

There was a marginal improvement in CatBoost prediction performance (AAUC=+0.01)
when using the 23 kg/m2 BMI cut-off [AUC:0.61 (95% CI 0.53, 0.69)] (Table 3a). The
lowering of the obesity BMI threshold for Asian women did not improve the prediction
performance of CatBoost UK NICE model. The limited predictive ability of UK NICE
guidelines demonstrated by our machine learning models, substantiated the need for an
improved population-centric GDM predictor.

Population-centric GDM prediction panel outperforms UK NICE guidelines

In the non-invasive panel (Table 2b), our first-tier GDM prediction panel with non-invasive
features [CatBoost model AUC:0.82 (95% CI 0.71, 0.93)] outperformed the UK NICE
model. The 4 features in ‘N4’ model draws information from a general female population
(mean arterial blood pressure at booking appointment, maternal age) to more specific

Diabetes Res Clin Pract. Author manuscript; available in PMC 2022 August 04.
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segments of the women population (with previous history of GDM, Malay vs Chinese/Indian
ethnicity).

In Fig. 3b, the SHAP summary plot of ‘NI4’ model highlights increased mean arterial blood
pressure at booking appointment as the most important feature, followed by higher maternal
age, Chinese/Indian ethnicity and previous history of GDM. The SHAP plots were able to
distinguish between sensitive and resilient population segments. Malay women (red feature
values) had a lower risk of GDM when compared with Chinese and Indian women (blue
feature values).

As shown in Table 3b, a basic ‘NI2’ model for the general female population (mean arterial
blood pressure at booking appointment, maternal age) still outperformed the UK NICE
model [CatBoost model AUC:0.75 (95% CI 0.65, 0.85)]. The inclusion of previous history
of GDM in “‘NI3’ model increased the predictive performance [CatBoost model AUC:0.79
(95% C1 0.67, 0.91)]. The inclusion of maternal height in “NI15” model did not improve the
predictive performance of ‘NI4” model.

We additionally trained the first-tier, non-invasive GDM prediction panel using a modified
two-point IADPSG 2018 criteria (fasting and 2-hour glucose measures). There was a drop
in the predictive performance of CatBoost ‘NI4’” model in two-point IADPSG 2018 criteria
[AUC:0.71 (95% CI 0.62, 0.80)] (Table 3b). Despite the lack of 1-hour glucose measure

in GUSTO study for full three-point IADPSG 2018 criteria, the AUC metric of 0.71 still
indicates predictive power.

The addition of adiponectin at mid-gestation led to a low marginal improvement of ‘N14’
model [CatBoost model AUC:0.84 (95% CI 0.75, 0.93)] (Table 2c). As seen in the
‘NI4_ADI_IGFI’ joint effect CatBoost model in Table 3¢ [AUC:0.84 (95% CI 0.76, 0.92)],
addition of IGFI did not further enhance the predictive performance of ‘NI4_ADI’ model.

GDM prediction panel constructed at mid-gestation with adiponectin and dairy intake had
the best overall performance (Table 2d) [AUC:0.85 (95% CI 0.79, 0.92)].

4 Discussion

Our findings using the UK NICE model established the need for an improved GDM
predictor in an Asian population, such as in Singapore. We observed that the risk factors

in UK NICE guidelines had poor GDM predictive ability for the Singapore population
(AUC:0.60). The lowering of the obesity BMI thresholds applicable to Asian women did not
significantly improve the UK NICE model.

We subsequently developed a two-tier GDM prediction panel that significantly outperformed
the UK NICE guidelines. The first-tier GDM prediction panel is non-invasive and requires
no fasting (AUC:0.82). The 4 features used in the non-invasive model can be easily
measured and assessed during first trimester (mean arterial blood pressure at booking
appointment, maternal age, previous history of GDM and ethnicity). Elevated mean arterial
blood pressure at booking can be an early pregnancy sign of vulnerability to the metabolic
syndrome of which insulin resistance and impaired glucose metabolism are prominent
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components. The case-control study by Savvidou et al provides further support to our
finding, where GDM women had higher systolic blood pressure in early pregnancy [21].
Hedderson et al reported similar findings, where high blood pressure in pregravid and early
pregnancy states were associated with an increased risk of GDM [22]. As blood pressure is a
vital sign measured routinely at antenatal visits, mean arterial blood pressure is an easy and
inexpensive clinical characteristic which can be used for GDM screening.

Despite the evidence that GDM risk increases with age [23], higher maternal age is not
included as one of the risk factors in UK NICE screening guidelines. This is particularly
important keeping in mind that insulin resistance increases with age. With increasing age at
preghancy becoming more common in developed and developing countries, higher maternal
age is an important attribute to be considered in GDM assessment.

Previous history of GDM serves as an early approach to GDM surveillance. The importance
of GDM history is supported by substantial epidemiologic evidence. In a recent meta-
analysis by Lee et al, women with a previous history of GDM had an 8.42-fold increased
risk of developing GDM when compared with women without a previous history of GDM
[24].

Studies on racial-ethnic differences in GDM risk have shown that Asians are a
heterogeneous group by genetic background, culture, diet and other lifestyle factors [25].
The UK NICE guidelines classify Indian ethnic women to be at high risk for GDM in
Singapore’s population. In our study, we have shown that Chinese women are also at similar
risk for GDM. With these findings, ethnicity-tailored preventive local programmes can be
developed to improve the health literacies of GDM in high risk Chinese/Indian communities.

In our non-invasive GDM prediction panel, the addition of mean arterial blood pressure,
maternal age, previous history of GDM and ethnicity resulted in a significant performance
improvement (AAUC=+0.26) when compared with the risk stratification model on previous
GDM history. The 4 features in our non-invasive ‘NI4” model have demonstrated stronger
GDM predictive ability than the UK NICE model, suggesting that further improvements can
be made in current risk assessment guidelines for GDM.

The machine learning algorithm (LightGBM gradient boosting classifier) trained by Artzi
et al achieved an impressive AUC of 0.80 with 9 questionnaire features for GDM detection
[13]. However, questionnaire features may introduce recall bias in predictive modelling
(e.g. highest value of HbA1.% measured from previous pregnancy, results of OGTT from
previous pregnancy). In another study by Wu et al [14], the machine learning algorithm
(logistic regression classifier) achieved an AUC of 0.77 with 7 clinical features for early
GDM prediction. The invasive model developed by Wu et al requires the measurement of
fasting glucose, HbA1; and triglycerides. Our first-tier, non-invasive GDM prediction model
has an improved performance (CatBoost model AUC:0.82) with 4 non-invasive features
collected at first trimester, outperforming the current state-of-the-art machine learning
models. The first-tier, non-invasive GDM prediction model can thus be an effective approach
to screen and intervene early in women at risk, and also minimize the economic burden of
universal testing and GDM associated healthcare in Asian populations.

Diabetes Res Clin Pract. Author manuscript; available in PMC 2022 August 04.
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The second-tier panel is invasive and requires more advanced laboratory testing, which may
not be routinely available in all standard clinical laboratories. Adiponectin contributed to

a better performance improvement than IGF1. With adiponectin included, the predictive
performance of the non-invasive panel can only be marginally enhanced [CatBoost
‘NI4_ADI’ model AUC:0.84 (95% CI 0.75, 0.93)]. Lower adiponectin concentrations are
associated with visceral adiposity, insulin resistance, atherosclerosis, and plays a critical role
in metabolism [26]. Visceral fat accumulation is one possible pathophysiological mechanism
in GDM development. Although pre-pregnancy obesity is the second most important feature
in UK NICE model, pre-pregnancy obesity (BMI>=30 kg/m?2) was of low global importance
in CatBoost feature selection model (Fig. 2). As further evidenced by the stronger predictive
ability of adiponectin, visceral fat accumulation (intra-abdominal fat) may be a better marker
of adiposity in Asians.

Increased dairy consumption in mid-gestation added minimal predictive value to second-tier
panel [CatBoost ‘NI4_ADI_DI’ model AUC:0.85 (95% CI 0.79, 0.92)]. Dairy consumption
in GUSTO cohort study was derived from milk, yoghurt, cheese, milk-based malt drinks and
cultured yoghurt drinks. Our dietary finding can be explained by general food consumption
patterns during pregnancy, where dairy and dairy product consumption is greatest during
mid-pregnancy. In the study by Tucker et al, high dairy intake was a strong predictor of
insulin resistance in women without diabetes [27]. As mid-pregnancy is a critical window
period for GDM development, dairy intake during pregnancy might be a modifiable GDM
risk factor.

With the two-tier GDM prediction panel, we have shown that model prediction can be
slightly enhanced by incorporating features gathered during the course of gestation. We
also have a well-defined validation framework in the study as the two-tier GDM prediction
panel was compared against UK NICE guidelines. An added strength of the study is the
utilization of SHAP framework to interpret machine learning model outputs and design a
GDM prediction panel.

This study has several limitations. Firstly, unlike large sample sizes in EHR databases, our
prediction models were trained on a limited cohort of 909 pregnancies. However, EHR
databases have inherent biases and are influenced by the individual’s interaction with local
healthcare systems. With the prospective cohort study design, GUSTO data captures the
dynamic nature of complex clinical pathways and is less prone to differential measurement
errors.

Secondly, the WHO 1999 GDM diagnostic criteria was in effect during two-point OGTT
assessment in GUSTO study (fasting, 2-hour glucose measures). International Association
of Diabetes Study Groups (IADPSG) 2018 has a less stringent criterion than WHO 1999,
requiring just one abnormal glucose measure during a 2-hour 759 OGTT (fasting, 1-hour,
2-hour glucose measures). Tan et al reported that about one-third of GDM cases in KKH
were diagnosed based on 1-hour glucose value [28]. The lack of 1-hour glucose measure for
full three-point IADPSG 2018 criteria in GUSTO study may underestimate GDM prevalence
and affect model training (AUC metric of 0.71 for modified two-point IADPSG 2018 criteria
is still indicative of predictive power). As supervised machine learning models are limited by
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the quality of ground truth to learn underlying patterns in data, the WHO 1999 criteria was a
better ground truth labeler for training GDM algorithms using GUSTO cohort data.

Thirdly, there may be biases in the predictive value of dairy-intake in GDM risk assessment,
as this measure was derived from 24-hour dietary recall. Single day intake of dietary
measure is subject to recall bias and day-to-day variation. A more accurate assessment of
long term dietary patterns is required in the future to build strength in the predictive value of
this measure. There is also a limitation of sample size on population genomic analyses (with
< 1000 samples in GUSTO study). However, key variants and iOmics analyses in GUSTO
cohort have identified IGF locus and blood measures of IGF to be associated with GDM. We
hence used direct measures of plasma IGF in the current analysis.

Lastly, the GUSTO cohort does not contain information of preconception parameters.

With preconception data, we can possibly predict the risk of GDM during pregnancy
initiation and intervene with early-stage nutritional & lifestyle changes. The longitudinal
research in Singapore’s PREconception study of Long-Term Maternal and Child Outcomes
(S-PRESTO) birth cohort study [29], may become the basis for preconception-based GDM
prediction panels to be built in the future.

Our first-tier, non-invasive predictive model would enable earlier interventions for GDM
prevention and institution of earlier screening. Our machine learning tool can also be offered
to pregnant women who are unwilling to have glucose challenge test taken. The trained
GDM classifier can be deployed using a web application, where clinicians can enter patient
information and obtain GDM risk prediction. The Al prediction model needs to be validated
further using data from external cohorts or electronic health records in Singapore/Asia
before deploying in local healthcare systems. A robust clinical evaluation via a randomized
controlled trial is required to investigate the associations of the Al prediction tool with
maternal and fetal outcomes.

5 Conclusion

Leveraging on Al, we have devised a population-based predictive care solution to assess
the risk of developing GDM. The key strengths of our study lie in deep phenotyping and

in applying machine learning-based predictive analytics in a prospective cohort. The state-
of-the-art machine learning model can be leveraged as a rapid risk stratification tool during
early pregnancy to identify Asian women at high risk of developing GDM, and implement
lifestyle interventions. The translational impact of this unique Asian study would transform
women’s health: shifting from a reactive to predictive care strategy in GDM management.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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. UK NICE guidelines may be insufficient to assess GDM risk in Asian

women.

. Higher blood pressure during first trimester is a top risk factor for GDM.

. Non-invasive Al model can be leveraged as a rapid GDM risk stratification
tool.

. Al model is robust when using a modified two-point IADPSG 2018 GDM
criteria.

. Al model may be a cost effective alternative strategy to universal GDM
screening.
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1,450 antenatal women recruited
at pregnancy weeks 7-11

v
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Y

1,249 pregnancies active at
pregnancy weeks 24-28

v

201 lost to follow-up

Y

1,239 singleton pregnancies at
pregnancy weeks 24-28

10 natural twin pregnancies
were excluded from study

h 4

1,166 mothers had two-point

OGTT performed at pregnancy
weeks 24-28

Y

v

1,072 mothers included in
analysis

h 4

909 mothers had complete
measurements on basic physical
measures, lifestyle/dietary habits
and blood-derived markers at
pregnancy weeks 24-28.

\d

73 mothers did not perform
antenatal OGTT

94 mothers excluded from
analysis:

1) Self-reported Type 2
diabetics (n = 3)

2) Mixed Malay-Indian
ethnicity (n = 1)

3) Pregnancy gestation at
OGTT < 24 weeks (n = 36)

4) Pregnancy gestation at
OGTT >=29 weeks (n = 54)

Fig. 1. Population selection flowchart of 909 mothers who had complete measurements on basic
physical measures, lifestyle/dietary habits, blood-derived markers and OGTT at pregnancy week

24-28 for machine learning models.
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Fig. 2.

Glgobal importance of individual features and their correlation with GDM/Non-GDM
outcomes estimated using the Shapley values computed from coalitional game theory. Local
explanations are plotted in a beeswarm style to observe the magnitude and prevalence

of a feature’s effects, where each subject have one dot for each feature. High positive
SHAP values drive model predictions for GDM and low negative SHAP values drive model
predictions for non-GDM, as predicted by CatBoost feature selection model. SHAP values
close to zero means that the feature contributes little to the prediction. The colored feature
values represents the range of values taken by individual features. Blue corresponds to low
feature value and red corresponds to high feature value (direction of feature effects). For
example, higher mean arterial blood pressure values lead to positive SHAP values (red
feature values) and drive model predictions for GDM outcome, whereas lower dairy intake
values lead to negative SHAP values (blue feature values) and drive model predictions for
non-GDM outcome. Similarly, in case of binary features such as previous history of GDM
(0: No, 1: Yes) and Malay vs Chinese/Indian ethnicity (0: Chinese or Indian, 1: Malay),

the blue features represents feature value 0 and red corresponds to feature value 1. SHAP
values represent a change in log odds ratio and features are sorted by global impact. If the
feature’s impact (value changes) varies smoothly on the model’s output, the coloring will
have a smooth gradation like mean arterial blood pressure. As observed in maternal height,
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multiple dots at the same position in the horizontal axis are piled up and shown as density.
(Color should be used for figure in print)
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Fig. 3.

a:gGlobaI importance of individual features and their correlation with GDM/Non-GDM
outcomes estimated using the Shapley values computed from coalitional game theory. Local
explanations are plotted in a beeswarm style to observe the magnitude and prevalence

of a feature’s effects, where each subject have one dot for each feature. High positive
SHAP values drive model predictions for GDM and low negative SHAP values drive model
predictions for non-GDM, as predicted by CatBoost UK NICE model. SHAP values close
to zero means that the feature contributes little to the prediction. The colored feature values
represents the range of values taken by individual features. Blue corresponds to low feature
value and red corresponds to high feature value (direction of feature effects). In binary
features such as previous history of GDM (0: No, 1: Yes) and Indian vs Chinese/Malay
ethnicity (0: Chinese or Malay, 1: Indian), the blue features represents feature value 0 and
red corresponds to feature value 1. Indian women (red feature values) had a higher risk of
GDM when compared with Chinese and Malay women (blue feature values). SHAP values
represent a change in log odds ratio and features are sorted by global impact. If the feature’s
impact (value changes) varies smoothly on the model’s output, the coloring will have a
smooth gradation like subjects with previous history of GDM (red feature values). (Color
should be used for figure in print)

b: Global importance of individual features and their correlation with GDM/Non-GDM
outcomes estimated using the Shapley values computed from coalitional game theory. Local
explanations are plotted in a beeswarm style to observe the magnitude and prevalence

of a feature’s effects, where each subject have one dot for each feature. High positive
SHAP values drive model predictions for GDM and low negative SHAP values drive model
predictions for non-GDM, as predicted by CatBoost N14 model. SHAP values close to

zero means that the feature contributes little to the prediction. The colored feature values
represents the range of values taken by individual features. Blue corresponds to low feature
value and red corresponds to high feature value (direction of feature effects). For example,
higher mean arterial blood pressure values lead to positive SHAP values (red feature
values) and drive model predictions for GDM outcome. Similarly, in binary features such as
previous history of GDM (0: No, 1: Yes) and Malay vs Chinese/Indian ethnicity (0: Chinese
or Indian, 1: Malay), the blue features represents feature value 0 and red corresponds to
feature value 1. Malay women (red feature values) had a lower risk of GDM when compared
with Chinese and Indian women (blue feature values). SHAP values represent a change
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in log odds ratio and features are sorted by global impact. If the feature’s impact (value
changes) varies smoothly on the model’s output, the coloring will have a smooth gradation
like mean arterial blood pressure. (Color should be used for figure in print)

c: Global importance of individual features and their correlation with GDM/Non-GDM
outcomes estimated using the Shapley values computed from coalitional game theory. Local
explanations are plotted in a beeswarm style to observe the magnitude and prevalence

of a feature’s effects, where each subject have one dot for each feature. High positive
SHAP values drive model predictions for GDM and low negative SHAP values drive model
predictions for non-GDM, as predicted by CatBoost NI14_ADI model. SHAP values close
to zero means that the feature contributes little to the prediction. The colored feature values
represents the range of values taken by individual features. Blue corresponds to low feature
value and red corresponds to high feature value (direction of feature effects). For example,
higher mean arterial blood pressure values lead to positive SHAP values (red feature
values) and drive model predictions for GDM outcome. Similarly, in binary features such as
previous history of GDM (0: No, 1: Yes) and Malay vs Chinese/Indian ethnicity (0: Chinese
or Indian, 1: Malay), the blue features represents feature value 0 and red corresponds to
feature value 1. Malay women (red feature values) had a lower risk of GDM when compared
with Chinese and Indian women (blue feature values). SHAP values represent a change

in log odds ratio and features are sorted by global impact. If the feature’s impact (value
changes) varies smoothly on the model’s output, the coloring will have a smooth gradation
like mean arterial blood pressure. (Color should be used for figure in print)

d: Global importance of individual features and their correlation with GDM/Non-GDM
outcomes estimated using the Shapley values computed from coalitional game theory. Local
explanations are plotted in a beeswarm style to observe the magnitude and prevalence

of a feature’s effects, where each subject have one dot for each feature. High positive
SHAP values drive model predictions for GDM and low negative SHAP values drive model
predictions for non-GDM, as predicted by CatBoost NI14_ADI_DI model. SHAP values
close to zero means that the feature contributes little to the prediction. The colored feature
values represents the range of values taken by individual features. Blue corresponds to low
feature value and red corresponds to high feature value (direction of feature effects). For
example, higher mean arterial blood pressure values lead to positive SHAP values (red
feature values) and drive model predictions for GDM outcome, whereas lower dairy intake
values lead to negative SHAP values (blue feature values) and drive model predictions for
non-GDM outcome. Similarly, in binary features such as previous history of GDM (0: No,
1: Yes) and Malay vs Chinese/Indian ethnicity (0: Chinese or Indian, 1: Malay), the blue
features represents feature value 0 and red corresponds to feature value 1. Malay women
(red feature values) had a lower risk of GDM when compared with Chinese and Indian
women (blue feature values). SHAP values represent a change in log odds ratio and features
are sorted by global impact. If the feature’s impact (value changes) varies smoothly on the
model’s output, the coloring will have a smooth gradation like mean arterial blood pressure.
(Color should be used for figure in print)
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