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Structural variation (SV), involving deletions, duplications, inversions and translocations of 

DNA segments, is a major source of genetic variability in somatic cells and can dysregulate 

cancer-related pathways. However, discovering somatic SVs in single cells has been challenging, 

with copy-number-neutral and complex variants typically escaping detection. Here we describe 

single-cell tri-channel processing (scTRIP), a computational framework that integrates read depth, 

template strand and haplotype phase to comprehensively discover SVs in individual cells. We 

surveyed SV landscapes of 565 single cells, including transformed epithelial cells and patient-

derived leukemic samples, to discover abundant SV classes including inversions, translocations 

and complex DNA rearrangements. Analysis of the leukemic samples revealed four times more 

somatic SVs than cytogenetic karyotyping, submicroscopic copy-number alterations, oncogenic 

copy-neutral rearrangements and a subclonal chromothripsis event. Advancing current methods, 

scTRIP can directly measure SV mutational processes in individual cells, such as breakage-fusion-

bridge cycles, facilitating studies of clonal evolution, genetic mosaicism and SV formation 

mechanisms, which could improve disease classification for precision medicine.

Introduction

Cancer is a disease of the genome in which subclonal cell expansion is driven by mutation 

and selection. SVs represent the leading class of somatic driver mutation in many cancer 

types1,2. Comprising copy-number alterations (CNAs) and copy-neutral classes, SVs can 

amplify, disrupt and fuse genes or result in enhancer hijacking3–5. These variants can be 

inherited through the germline and be clonal, or can form de novo in somatic cells (in vivo 
or in culture) resulting in ‘somatic SVs’ present at subclonal cell fractions (CFs). Somatic 

SVs can lead to substantial genetic heterogeneity, can precipitate further rearrangements 

during periods of genomic instability, and contribute to disease development and therapy 

response6–9. A comprehensive understanding of the extent and nature of somatic SVs in 

single cells is imperative to elucidate clonal evolution and mutational processes acting in 

cancer and normal tissues10,11.

Important challenges have so far limited somatic SV studies. Current methods for 

discovering SVs depend on discordant paired-end or split read signatures that traverse 

breakpoints12. This requires ≥20-fold genome coverage for clonal, and vastly higher 

coverage for subclonal, SV detection13. The exception is read-depth analyses that can be 

pursued at lower depth, but are restricted to detecting only CNAs10. Somatic translocations, 

inversions and complex DNA rearrangements therefore largely escape detection in 

subclones, despite their known relevance in cancer and the relationship between complex 

SVs and poor disease prognosis2,5,14. While single cell analyses can overcome these 

limitations15, scalable methods for single cell SV detection are likewise only suited for 

somatic CNAs16–18. Discovering additional SV classes is constrained by requiring uniformly 

high coverage in each cell, and/or by using whole genome amplification (WGA) methods17 

that lead to read chimera and confound SV calling. Although chimera can be filtered in 

deep coverage data19,20, SV surveys across hundreds of cells using these approaches are cost 

prohibitive.
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Here we describe scTRIP (single cell tri-channel processing) and use it to comprehensively 

discover somatic SVs in individual cells. scTRIP leverages Strand-seq, a preamplification-

free single cell technique that labels non-template DNA strands during normal replication21 

and generates strand-specific reads for chromosome-length SNP haplotype phasing22. While 

Strand-seq has been used to identify polymorphic germline inversions21,23, efforts to exploit 

these data to characterize diverse SV classes and uncover somatic cell populations were 

lacking. scTRIP now unlocks the full potential of strand-specific sequencing, rendering a 

wide variety of disease-relevant SVs accessible to systematic single cell studies. It does so 

using a joint calling framework that integrates three separate layers of information - depth 

of coverage, read orientation, and haplotype phase - to build single cell SV landscapes and 

characterize subclonal SV heterogeneity.

Results

Discovering disease-relevant SV classes by scTRIP

The underlying rationale of scTRIP is that each SV class can be identified via a specific 

‘diagnostic footprint’. These footprints capture the co-segregation patterns of rearranged 

DNA segments made discernible by sequencing single strands of each chromosome in a cell. 

Such strand-specific data is acquired using Strand-seq21, which exploits Bromodeoxyuridine 

(BrdU) to selectively remove one DNA strand (the nascent strand) during library preparation 

and thus only sequence the template DNA strand of each homolog (or ‘haplotype’) (Fig. 

1a).Segregation patterns of all DNA segments can then be characterized for the cell, and 

assigned as Watson (‘W’) or Crick (‘C’) (Fig. 1b). For a cell sequenced with Strand-seq, we 

assign the haplotype phase to reads containing SNPs22 and jointly measure three data layers: 

(1.) the total number of reads in a region (‘depth’ layer), (2.) the relative proportion of W 

and C reads (‘strand’ layer) and (3.) the number of W and C reads assigned to one of the 

two haplotypes, denoted ‘H1’ or ‘H2’ (‘phase’ layer) (Fig. 1a,c). By integrating these three 

layers, scTRIP identifies and characterizes a wide variety of SV classes based on specific 

diagnostic footprints (Table S1).

The diagnostic footprint of a deletion (Del) is defined by a read depth loss affecting a single 

strand and haplotype, whereas a duplication (Dup) causes a haplotype-specific read depth 

gain, also with unaltered orientation (Fig. 1d). For balanced inversions (Inv), read orientation 

is reversed with the re-oriented reads mapping to a single haplotype, and if this co-locates 

with a read depth gain on the re-oriented haplotype it signifies an inverted duplication 

(InvDup; Fig. 1e). In the case of inter-chromosomal SVs, physically connected segments 

receive the same non-template strand label and hence co-segregate during mitosis (Fig. 1b). 

Thus segments showing correlating strand states in different cells without a change in depth 

characterize balanced translocations (Fig. 1f), whereas unbalanced translocations exhibit a 

similar footprint coupled with a read depth gain of the affected haplotype (Fig. S1). Altered 

cellular ploidy states also exhibit a unique diagnostic footprint (Fig. 1g, Fig. S2 and Table 

S2).

Using these principles, we developed a joint calling framework for SV discovery (Fig. 

2, Fig. S3 and Methods). The framework first aligns, normalizes and places reads into 

genomic bins to assign template strand states and build chromosome-length haplotypes 
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(Fig. 2a,b). It then infers SVs in the segmented data by employing a Bayesian model that 

estimates genotype likelihoods for each segment and each single cell (Fig. 2c, Fig. S4). 

This framework performs SV discovery in a haplotype-aware manner and combines signals 

across cells to sensitively detect SVs in a heterogeneous cell population (Fig. 2d,e). Finally, 

by analyzing adjacent SVs arising on the same haplotype it enables characterizing complex 

DNA rearrangements25,26. As a first benchmark, we performed simulation experiments 

(Supplementary Information) and observed excellent recall and precision after randomly 

placing somatic SVs into cell populations in silico, even down to a single cell (Fig. S5 and 

Fig. S6).

Surveying SV landscapes in single cells

To investigate single cell SV landscapes we generated Strand-seq libraries from telomerase-

immortalized retinal pigment epithelial (RPE) cells. We used hTERT RPE cells (RPE-1) 

common to genomic instability research20,27–29, and C7 RPE cells showing anchorage-

independent growth indicating cellular transformation30. Both lines originated from the 

same anonymous female donor. We generated 80 and 154 Strand-seq libraries for RPE-1 

and C7, respectively (Methods), targeting more C7 cells to increase our power to uncover 

somatic SV heterogeneity in this transformed cell line. Libraries were sequenced to a 

median depth of 387,000 mapped non-duplicate fragments (Table S3), which amounts to 

~0.017X coverage per cell.

We first searched for Dels, Dups, Invs and InvDups. Following normalization (Fig. S7), we 

identified 54 SVs in RPE-1 and 53 in C7 (Table S4). 25 SVs were present only in RPE-1, 

and 24 were only in C7 – these likely represent sample-specific somatic SVs that formed 

after the cell lines were derived, rather than corresponding to germline SVs (operationally 

defined as variants shared between both lines). Two representative somatic SVs include a 1.4 

Megabase (Mb) Dup seen in RPE-1, and an 800 kilobase (kb) Del in C7 (Fig. S8). While 

all but three Del and Dup events were somatic and unique to RPE-1 or C7, Inv and InvDup 

events, including a 1.6 Mb Inv on 17p and a 900 kb InvDup on 17q (Fig. S8), were germline 

SVs mapping to known inversion polymorphisms23. We also identified previously-reported 

somatic chromosome arm-level CNAs, including deletion of 13q in C7, and duplication 

of a 10q region in RPE-1. These non-disomic regions enabled us to test our ploidy state 

footprints (Fig. S2 and Table S2). As predicted, the 13q-arm showed a 1:0 strand ratio 

diagnostic for monosomy, and the 10q region exhibited 2:1 and 3:0 strand ratios diagnostic 

for trisomy (Fig. S9).

We evaluated scTRIP by several means. First, we verified somatic SVs present with ≥30% 

CF by bulk whole genome sequencing (WGS), as CFs ≥30% are amenable to WGS-based 

SV calling13. This confirmed 9/9 (100%) of tested SVs in C7, and 8/9 (89%) in RPE-1 

(Table S4). The single somatic SV not verified in RPE-1 partially overlapped a call in 

C7 and thus might actually represent a germline SV. Second, we examined sensitivity by 

using the Delly SV caller31 and read-depth analyses on bulk WGS data (Supplementary 

Information) to produce a curated test-set of SVs ≥200 kb for each line (Table S5). We 

successfully identified 82% of the test-set with scTRIP. We suspect many of the missed calls 

were Delly false-positives; all but one were copy-neutral (i.e. an SV class difficult to call 
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from WGS data) and several involved template insertions26, which are small (<1 kb) DNA 

structure often mis-interpreted as large SVs in WGS data (Fig. S10). Third, by in silico 
cell mixing different proportions of C7 and RPE-1 cells (Supplementary Information), we 

tested scTRIP’s performance at varying subclone frequencies and found somatic SVs were 

detected at very low CF levels (<1% CF) including in individual cells (Fig. S11). Fourth, 

we compared scTRIP to a computational method tailored to single-cell CNA-profiling18, and 

found our approach was more accurate and sensitive (Fig. S12). Lastly, we verified scTRIP’s 

ability to identify altered cellular ploidy by sequencing 73 cells of the isogenic hyperploid 

RPE cell line C2928, and observed diagnostic strand ratios consistent with its near-tetraploid 

karyotype28 (Fig S9).

Discovering somatic translocations and novel fusion genes

To explore whether scTRIP can detect a wider spectrum of somatic SV classes, we subjected 

RPE-1 cells to the CAST protocol28. By knocking-out TP53 and silencing the mitotic 

spindle machinery (Supplementary Information) we constructed the anchorage-independent 

line ‘BM510’ likely to exhibit genome instability. We sequenced 145 single BM510 cells 

and detected 67 Dels, Dups, Invs and InvDups (Table S4); 41 were germline SVs (i.e. 

shared with RPE-1), and 26 were somatic (i.e. unique to BM510 and formed during 

transformation). Notably, several DNA segments did not segregate with the respective 

chromosomes they originated from (Fig. 3a), indicating inter-chromosomal SV formation. 

We searched for co-segregation footprints (Supplementary Information) and identified four 

translocations in BM510, three of which were somatic (Fig. 3b,c). We then analyzed RPE-1 

and C7 for translocations and identified one in each (Table S6). As no translocation was 

present in all three cell lines, they all constituted somatic events.

The single translocation shared between RPE-1 and BM510 involved the aforementioned 

gained 10q segment, which cosegregated with chromosome X (Fig. 3b and Fig. S13). 

Because no breakpoint was visible on chrX we leveraged sister chromatid exchanges21 

to place the translocation to the tip of Xq (Supplementary Information), consistent with 

the published spectral karyotype27. Two somatic translocations in BM510 were formed 

through balanced reciprocal rearrangement of 15q and 17p (Fig. 3c). Notably, a somatic 

inversion was detected on the same 17p haplotype and shared one of its breakpoints with the 

reciprocal translocation (Fig. S14), suggesting these somatic SVs arose jointly, possibly 

involving a complex rearrangement process. In-depth analysis revealed the inversion 

encompassed the TP53 locus, which upon translocating fused the 5′ exons of TP53 to the 

NTRK3 oncogene32 (Fig. S14).

Again, bulk WGS and RNA-Seq analyses revealed excellent performance of our framework. 

We verified all translocations, with 4/5 recapitulated in WGS (Fig. 3d) and the remaining 

der(X) t(X;10) unbalanced translocation by the existing karyotype27. WGS failed to locate 

this translocation because the chrX breakpoint resides in highly repetitive telomeric DNA 

where read pair analysis is known to fail (Fig. S15); since scTRIP does not require 

breakpoint-traversing reads it is more sensitive than bulk WGS in such genomic regions. 

We also observed increased allele-specific expression of the duplicated haplotype predicted 

for the 10q segment, corroborating our haplotype placements (Fig. S16). Finally, we verified 
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the complex rearrangement in BM510 by identifying TP53-NTRK3 fusion transcripts and 

along with extreme NTRK3 overexpression (Fig. 3e), which confirms scTRIP can discover 

novel fusion genes.

Direct measurements of complex DNA rearrangements

Cancer genomes frequently harbor complex DNA rearrangements that can facilitate 

accelerated tumor evolution33. One example are breakage-fusion-bridge cycles (BFBs) 34–39. 

BFBs initiate when the loss of a telomere causes replicated sister chromatids to fuse and 

form a dicentric chromosome. During anaphase, a chromosomal bridge forms that can lead 

to another DNA break to initiate another BFB cycle14. As a consequence, BFBs successively 

duplicate regions in inverted orientation (i.e. generate InvDups) adjacent to a terminal 

deletion (here called ‘DelTer’) on the same homolog. BFBs rising to high CF can be inferred 

from bulk WGS by locating ‘fold-back inversions’ from read-pair alignments34; however 

owing to high coverage requirements this cannot be systematically achieved in single cells. 

We reasoned that scTRIP could provide a new opportunity to directly study BFB formation 

in single cells.

To investigate BFBs, we first interrogated C7, in which fold-back inversions were previously 

described28. scTRIP located a series of clustered InvDups on the 10p-arm, detected in 

152/154 cells (Fig. 4). Closer analysis of 10p showed an amplicon containing ‘stepwise’ 

InvDups with an adjacent DelTer on the same haplotype, consistent with BFBs (Fig. 4a,b 

and Fig. S17). The remaining two cells lacked the InvDups but showed a larger DelTer 

affecting the same 10p segment (Fig. 4b). Upon aggregating reads across cells, we identified 

8 discernable segments: the 10p amplicon comprising six step-wise copy-number changes, 

the adjacent 10p terminal deletion, and the centromere-proximal disomic region (Fig. 4c). 

We used these 8 segments to infer the cell-specific copy-number status for each cell (Fig. 

4d, Table S7).). This revealed three genetically distinct subclones: (i) 151 cells (i.e. the 

‘major clone’) showed ‘intermediate’ copy-numbers of 100-130 for the highest copy-number 

segment, (ii) two cells lost the corresponding 10p region through a DelTer, and (iii) one 

cell exhibited vastly higher copy-numbers (~440 copies) for this segment, suggesting it 

underwent additional BFBs (Fig. 4b and Fig. S18).

Additional somatic SVs identified in C7 provided further insights into the BFB event. 

We detected an unbalanced translocation stitching a duplicated 15q segment to the 10p 

amplicon (Fig. 4b and Table S6). The duplicated segment encompassed the 15q telomere, 

which likely stabilized the amplicon to terminate the BFB process. In agreement, the 

unbalanced translocation was absent from the two cells harbouring the extended DelTer, 

and further amplified in the cell with extreme 10p copy-number (Fig. 4b). A model of the 

temporal rearrangement sequence leading to the major clone is shown in Fig. 4e. These data 

underscore the ability of scTRIP to characterize BFB-related mutational processes.

Sporadic BFB formation in transformed cells

How often BFBs form in somatic cells is unknown. We searched all 379 RPE-1, C7 and 

BM510 cells for evidence of a BFB (Methods) and identified 15 additional cells exhibiting 

the InvDup-DelTer signature (Table S8). Out of these, 11 displayed a ‘classical’ BFB event – 
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an InvDup and DelTer with no other SV present (Fig. 4f and Fig. S19). The remaining four, 

further described below, showed additional SVs along with the InvDup-DelTer signature. 

We tested whether the InvDup-DelTer combination coincided by chance by asking whether 

an InvDup on one haplotype was ever adjacent to a DelTer on the other haplotype. Indeed, 

InvDup-DelTer structures always occurred on the same haplotype, consistent with the BFB 

model38. All 15 events were located in the transformed cell lines: 11 of them occurred in 

BM510 affecting 8% (11/145) of the cells, 4 occurred in C7 affecting 3% (4/154) of the 

cells, and none (0%; 0/80) were detected in RPE-1 cells. Copy-number estimates of the 

InvDup regions ranged from 3 to 9, indicating that up to three BFB cycles occurred (Fig. 

4f). Finally, all were singleton events located in isolated cells and not shared between cells 

(Table S8), and therefore likely reflect sporadically formed (and potentially ongoing) BFB 

cycles.

We reasoned that SVs identified in individual cells can serve as a proxy for active mutational 

processes. Indeed, we identified 60 additional chromosomes in BM510 with evidence of 

mitotic errors40 involving somatic gains and losses of entire chromosome arms (35/60; 

58%), terminal chromosome regions (17/60; 28%), and whole-chromosome aneuploidies 

(7/60; 12%). Moreover, nine cells showed multiple clustered rearrangements affecting the 

same haplotype, including the four cells harboring a sporadic BFB with additional SVs. By 

employing the infinite sites assumption37, we inferred the relative ordering of SVs occurring 

in these cells (Supplementary Information), and identified instances where the formation of 

an additional SV preceded the BFB, and cases where the SV succeeded the BFB (Fig. S20). 

This analysis also revealed a single cell exhibiting multiple reoriented and lost fragments on 

the same haplotype, resulting in 12 SV breakpoints that potentially arose through sporadic 

chromothripsis41,42 (Fig. 4g). Taken together, scTRIP enables the systematic detection of 

mitotic segregation errors, de novo SV formation and ongoing mutational processes acting in 

individual cells.

Karyotyping a patient sample from 41 single cells

To evaluate the diagnostic value of scTRIP, we next analyzed leukemic samples. Both 

somatic balanced and complex SVs, which typically escape detection in single cells, are 

abundant in leukemia26,41,43. We characterized patient-derived xenograft (PDX)44 samples 

from two T-cell acute lymphoblastic leukaemia (T-ALL) patients. First focusing on P33, a T-

ALL relapse of a juvenile patient with Klinefelter Syndrome, we sequenced 41 cells (Table 

S3). We used these to reconstruct a haplotype-resolved karyotype of the major clone to 200 

kb resolution (Fig. 5a). We detected the typical XXY karyotype (Klinefelter Syndrome), 

trisomies of chromosomes 7, 8, and 9, along with 3 regions of copy-number neutral loss-of-

heterozygosity (CNN-LOH) (Fig. S21 and Table S9). Furthermore, we observed 6 focal 

CNAs, 5 of which affected genes previously reported to be genetically altered in and/or 

‘driving’ T-ALL43,45–47 – including PHF6, RPL2, CTCF, CDKN2A and CDKN2B (Fig. 

5a, and Table S4). We also identified a t(5;14)(q35;q32) balanced translocation (Table S6) 

- a recurrent somatic SV in T-ALL known to target TLX3 for oncogenic dysregulation48. 

The majority of cells supported the karyotype of the major clone (Fig. 5b), with only few 

individual cells exhibiting karyotypic diversity (Fig. S22).
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We attempted to verify the major clone’s karyotype with classical cytogenetic karyotyping 

obtained during diagnosis - the current clinical standard to genetically characterize T-ALL. 

Although this verified the aneuploidies of chromosomes X, 7, 8 and 9, classical karyotyping 

missed all focal CNAs, and failed to capture the t(5;14)(q35;q32) translocation previously 

designated as ‘cryptic’ (i.e. ‘not detectable by karyotyping’)49. We next employed CNA 

profiling by bulk capture sequencing of P33 at diagnosis, remission and relapse50, as well 

as expression measurements (Supplementary Information). These experiments confirmed all 

(6/6; 100%) focal CNAs (Table S4), and verified TLX3 dysregulation (Fig. S23) supporting 

the t(5;14)(q35;q32) translocation. Thus, scTRIP’s haplotype-resolved karyotypes are highly 

accurate.

Novel and subclonal complex rearrangements uncovered in T-ALL

We next turned to a second T-ALL relapse sample obtained from a juvenile female patient 

(P1). We sequenced 79 cells (Table S3) and discovered two subclones, each represented by 

at least 25 cells (Fig. 5c and Table S4). First focusing on the clonal SVs, we found a novel 

2.6 Mb balanced somatic inversion at 14q32 (Fig. 6a). Interestingly, one of the inversion 

breakpoints fell into the same 14q region affected by the P33 t(5;14)(q35;q32) translocation 

(Fig. 6b).

In-depth analysis of this locus revealed the 14q32 inversion in P1 juxtaposed an enhancer 

elementcontaining region 3′ of BCL11B48,51 into the immediate vicinity of the T-cell 
leukemia/lymphoma 1A (TCL1A) oncogene (Fig. 6a and Fig. S23). Prior studies reported 

different enhancer-juxtaposing rearrangements in T-cell leukemia or lymphoma resulting 

in oncogene overexpression43,51,52,53 (Fig. 6b). RNA-seq indeed confirmed TCL1A is the 

most highly overexpressed gene in P1, and showed >4000-fold increased expression over 

other T-ALL samples (Fig. 6c). We reasoned that if TCL1A dysregulation was driven by the 

inversion, then TCL1A overexpression should be restricted to the inverted haplotype, which 

was confirmed by allele-specific expression (Fig. 6c, inset). These data implicate a novel 

T-ALL inversion driving oncogene expression, likely involving enhancer hijacking. Further 

studies are needed to assess recurrence of this inversion in other T-cell malignancies, and the 

diversity of oncogene-dysregulating SVs involving the BCL11B enhancer region.

We next analyzed subclonal SVs in P1, and discovered a low frequency (CF=0.32) series 

of highly clustered rearrangements affecting a single 6q haplotype. These comprised two 

Invs, an InvDup, a Dup, and three Dels, resulting in 13 breakpoints spanning nearly 90 Mb 

(Fig. 6d,e). All cells in the subclone exhibited the full set of breakpoints, the copy-number 

profiles oscillated between only three states, and they displayed islands of retention and loss 

in heterozygosity (Fig. 6f) – patterns reminiscent of chromothripsis41,42. To corroborate 

this, we performed 4.9 kb insert size mate-pair sequencing in bulk to 165X physical 

coverage. These deep sequencing data confirmed all 13 subclonal SV breakpoints, verifying 

the existence of a DNA rearrangement burst consistent with chromothripsis (Fig. 6g), and 

underscoring the ability of scTRIP to uncover low-frequency complex SVs in cancer cells.
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Discussion

scTRIP enables systematic SV detection in single cells by integrating three complementary 

data layers. We can now locate subclonal SVs at CF<1% and identify SV formation 

processes acting in single cells, addressing unmet needs10,13,26,55,56. The combined reagent 

costs are currently ~$15 USD per cell, and the protocol requires ~2 days to generate 

96 libraries. Previous single cell studies investigating distinct SV classes involved deeply 

sequencing only few cells following WGA10,17,57, and prior SV detection efforts using 

Strand-seq were centered on germline inversions23. scTRIP, facilitated by our Bayesian 

calling framework, enables systematic discovery of a wide variety of disease-relevant 

somatic SV classes, including repeat-embedded SVs largely inaccessible to standard WGS 

in bulk. SVs detected by scTRIP are haplotype-resolved, which helps reduce false positive 

calls and facilitates allele-specific expression analyses57,58.

We showcase how scTRIP can infer complex mutational processes by identifying sporadic 

BFBs in up to 8% of transformed RPE cells, revealing that somatic SV formation via 

BFB cycles is markedly abundant. Indeed, BFB cycles represented the most common SV 

formation process identified after chromosomal arm-level and terminal loss/gain events, all 

of which can result from chromosome bridges40,59. BFB cycles have also been reported 

in cleavage-stage in vitro fertilization embryos (revealed by hybridization-based single cell 

assays)58 and occur in a wide variety of cancers14, can precipitate chromothripsis37, and 

correlate with disease prognosis60. An estimated 20% of somatic deletions and >50% of 

all somatic SVs in cancer genomes arise from complex rearrangements25,26. By directly 

measuring these events in single cells, scTRIP can facilitate investigating their role in cancer 

evolution.

Our study also exemplified a potential value for disease classification. We constructed a 

haplotype-resolved karyotype of a T-ALL sample at 200 kb resolution using 41 single 

cells, amounting to only 0.9X cumulative genomic coverage. This revealed submicroscopic 

CNAs and oncogenic rearrangements invisible to methods currently used in the clinic, 

and showed four times more leukemia-related somatic DNA alterations than the classical 

cytogenetic karyotype. Classical cytogenetics is typically pursued for only a limited number 

of metaphase spreads per patient, and thus can fail to capture subclonal karyotypic 

heterogeneity readily accessible to our approach. scTRIP uncovered a low-frequency 

chromothripsis event, highlighting utility for disease prognosis, considering chromothripsis 

is associated with dismal outcome61. Future studies of aberrant clonal expansions in 

healthy individuals10 and lineage tracing62 may be facilitated by scTRIP. Another potential 

application area is in rare disease genetics, where scTRIP may help resolve “unclear cases” 

by widening the spectrum of accessible SVs leading to somatic mosaicism56. Finally, 

scTRIP could be used to assess genome integrity in conjunction with cell therapy, gene 

therapy, and therapeutic CRISPR-Cas9 editing, which can result in unanticipated SVs63,64.

scTRIP is currently limited to Strand-seq, which requires labeling chromosomes during 

replication. Cells with incomplete BrdU labelling, or those that have undergone two rounds 

of labelling, must be excluded prior to analysis21,65. Non-dividing, apoptotic, or fixed cells 

cannot be studied. Nonetheless, many key cell types are naturally prone to divide or can 
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be cultured, including fresh or frozen stem and progenitor cells, cancer cells, cells in 

regenerating or embryonic tissues, iPS cells, and cells from organoids.

Our approach enables studying somatic SV landscapes with much less sequence coverage 

than WGA-based methods. We demonstrated SV discovery using ~2000-fold less reads 

than required for read-pair or split-read based methods12. Single cell sequencing to deep 

coverage using WGA can map SVs <200 kb in size, and remains useful for detecting small 

CNAs or retrotransposons. However, WGA-based single cell SV analyses are subject to the 

limitations of paired-end analyses, allelic dropouts, low sensitivity in repetitive regions, and 

show limited scalability17. Low-depth and high-scale methods for CNA-profiling single cells 

exist and can detect CNAs of 1 to 5 Mb in size16,18. These show promise for investigating 

subclonal structure in non-dividing cancer cells harboring large CNAs, but miss key SV 

classes and fail to discriminate between SV formation processes.

In conclusion, scTRIP enables systematic SV landscape studies to decipher derivative 

chromosomes, karyotypic diversity, and to directly investigate SV formation in single cells. 

It provides important value over existing methods, and opens new avenues in single cell 

analysis.

Online Methods

Cell Lines and Culture

hTERT RPE-1 cells were purchased from ATCC (CRL-4000) and checked for mycoplasma 

contamination. The C29 hyperploid cell line was generated previously28. BM510 cells were 

generated newly using the CAST protocol and derived from the RPE-1 parental line (as 

previously-described28; see further detailed in the Supplementary Information). C7 cells 

were acquired from30. Cell lines were maintained in DMEM-F12 medium supplemented 

with 10% fetal bovine serum and antibiotics (Life Technologies).

Ethics Statement

The protocols used in this study received approval from the relevant institutional review 

boards and ethics committees. The T-ALL patient samples were approved by the University 

of Kiel ethics board, and obtained from clinical trials ALL-BFM 2000 (P33; age: 14 years 

at diagnosis) or AIEOP-BFM ALL 2009 (P1; age: 12 years at diagnosis). Written informed 

consent had been obtained from these patients, and experiments conformed to the principles 

set out in the WMA Declaration of Helsinki and the Department of Health and Human 

Services Belmont Report. The in vivo animal experiments were approved by the veterinary 

office of the Canton of Zurich, in compliance with ethical regulations for animal research.

Single cell DNA sequencing of RPE and T-ALL cells

RPE cells and PDX-derived T-ALL cells were cultured using previously established 

protocols28,67. We incorporated BrdU (40μM; Sigma, B5002) into growing cells for 18-48 

hours, single nuclei were sorted into 96-well plates using the BD FACSMelody cell sorter, 

and strand-specific DNA sequencing libraries were generated using the previously described 

Strand-seq protocol21,65. Note, the BrdU concentration used was recently shown to have no 
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measurable effect on sister chromatid exchanges24, a sensitive measure of DNA integrity 

and genomic instability24. To generate libraries at scale, the Strand-seq protocol was 

implemented on a Biomek FXP liquid handling robotic system, which requires two days 

to produce 96 barcoded single cell libraries. Libraries were sequenced on a NextSeq5000 

(MID-mode, 75 bp paired-end protocol), demultiplexed and aligned to GRCh38 reference 

assembly (BWA 0.7.15).

Library selection for scTRIP analysis

High quality libraries (obtained from cells undergoing one complete round of DNA 

replication with BrdU incorporation) were selected as described in21,65. This is important 

because incomplete BrdU removal or incorporation could lead to false discovery SV 

calls. Libraries showing very low, uneven coverage, or an excess of ‘background reads’ 

yielding noisy single cell data were filtered prior to analysis. Cells with incomplete BrdU 

incorporation or cells undergoing more than one DNA synthesis phase under BrdU exposure 

are largely excluded during cell sorting and thus get only rarely sequenced during Strand-seq 

experiments21,65, typically contributing to less than 10% of sequenced cells. In a typical 

experiment, ~80% of cells yield high quality libraries reflecting efficient BrdU incorporation 

in exactly a single cell cycle, and thus ‘unusable libraries’ do not palpably contribute to 

experimental costs.

Chromosome-length haplotype phasing of heterozygous SNPs

Our SV discovery framework ‘MosaiCatcher’ phases template strands using 

StrandPhaseR22. The underlying rationale is that for ‘WC chromosomes’ (chromosomes 

where one parental homolog is inherited as W template strand and the other homolog 

is inherited as C template strand), heterozygous SNPs can be immediately phased into 

chromosome-length haplotypes (a feature unique to strand-specific DNA sequencing). To 

maximize the number of informative SNPs for full haplotype construction we aggregated 

reads from all single cell sequencing libraries and an internal 100 cell control and 

performed SNP discovery by re-genotyping the 1000 Genomes Project (1000GP) SNP 

sites68 using Freebayes69. All heterozygous SNPs with QUAL ≥10 where used for haplotype 

reconstruction and single cell haplotagging (described below). From a typical Strand-seq 

experiment (such as RPE-1, where N=80 libraries were analyzed) we observe ~1.4% of 

heterozygous positions sampled in any given cell, with ~78% of all SNPs in a given sample 

covered at least once (and ~18% are covered by more than one cell). (Fig. S24)

Discovery of somatic deletions, duplications, inversions and inverted duplications in 
single cells

We developed the core workflow of ‘MosaiCatcher’ to enable single cell discovery of Dup, 

Del, Inv, and InvDup SVs from strand-specific sequence data. Input data to the workflow 

are a set of single-cell BAM files from a donor sample, aligned to a reference genome. The 

core workflow performs binned read counting, normalization of coverage, segmentation, 

strand state and sister chromatid exchange (SCE) detection, and haplotype-aware SV 

classification. A brief description of each step is provided below, and for additional details 

see Supplementary Information.
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Binned read counting—Reads for each individual cell, chromosome and strand were 

binned into 100 kb windows. PCR duplicates, improper pairs and reads with a low mapping 

quality (<10) were removed to count only unique, high-quality fragments.

Normalization of coverage—Normalization was performed to adjust for systematic 

read depth fluctuations. To derive suitable scaling factors, we performed an analysis of 

Strand-seq data from 1,058 single cells generated across nine 1000GP lymphoblastoid 

cell lines made available through the HGSVC project (http://ftp.1000genomes.ebi.ac.uk/

vol1/ftp/data_collections/hgsv_sv_discovery/working/20151203_strand_seq/), and pursued 

normalization with a linear model used to infer a scaling factor for each genomic bin.

Joint segmentation of single cells in a population—Segmentation was performed 

by jointly processing strand-resolved binned read depth data across all single cells of a 

sample, used as multivariate input signal with a squared-error assumption70. Given a number 

of allowed change points k, a dynamic programming algorithm was employed to identify 

the discrete positions of k change points with a minimal sum of squared error. Analyzing all 

cells jointly in this way rendered even relatively small SVs (~200 kb) detectable once these 

are present with sufficient evidence in the single cell dataset (e.g. seen in enough cells). The 

number of breakpoints was chosen separately for each chromosome as the minimal k, such 

that using k+1 breakpoints would only yield a marginal improvement, operationalized as 

the difference of squared error terms being below a pre-selected threshold (Supplementary 

Information).

Strand-state and SCE detection in individual cells—The interpretation of strand-

specific binned read counts relies on the knowledge of the underlying state of template 

strands for a given chromosome (WW, CC, or WC). These “ground states” stay constant 

over the length of each chromosome in each single cell, unless they are altered through 

SCEs21,71. To detect SCEs, we performed the same segmentation procedure described above 

in each cell separately (as opposed to jointly across all cells, as for the segmentation). 

We then inferred putative SCEs by identifying changes in strand state in individual cells 

that are otherwise incompatible with breakpoints uncovered by the joint segmentation 

(Supplementary Information). Leveraging these putative SCEs, we then assigned a ground 

state to each segment (Supplementary Information). To facilitate haplotype-resolved SV 

calling, we employed StrandPhaseR72 to distinguish segments with ground state WC, where 

Haplotype 1 is represented by Watson (W) reads and Haplotype 2 by Crick (C) reads, from 

ground state CW, where it is vice versa.

Haplotype-aware SV classification—We developed a Bayesian framework to compute 

posterior probabilities for each SV diagnostic footprint, and derive haplotype-resolved SV 

genotype likelihoods. To this end, we modeled strand-specific read counts using a negative 

binomial (NB) distribution, which captures the overdispersion typical for massively-parallel 

sequencing data54. The NB distribution has two parameters, p and r; the parameter p 
controls the relationship of mean and variance and was estimated jointly across all cells, 

while r is proportional to the mean and hence varies from cell to cell to reflect the 

different total read counts per single-cell library. After estimating p and r, we computed 
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haplotype-aware SV genotype likelihoods for each segment in each single cell: For a given 

ground state (see above), each SV diagnostic footprint translates into the expected number 

of copies sequenced in W and C orientation contributing to the genomic segment (Table 

S1), which gives rise to a likelihood with respect to the NB model. The fact that our 

model distinguishes WC from CW ground states (see Strand-state and SCE detection above) 

renders our model implicitly whole-chromosome haplotype-aware - a key feature not met 

by any prior approach for somatic variant calling in single cells. In addition to this, we also 

incorporated the count of W or C reads assignable to a single haplotype via overlapping 

SNPs in the likelihood calculation, and refer to this procedure as “haplotagging” (since it 

involves reads “tagged” by a particular haplotype). We modeled the respective counts of 

tagged reads using a multinomial distribution (Supplementary Information). The output is a 

matrix of predicted SVs with probability scores for each single cell.

SV calling in a cell population—Our workflow estimates CF levels for each SV and 

uses them to define prior probabilities for each SV (Empirical Bayes). In this way, the 

framework benefits from observing SVs in more than one cell, which leads to an increased 

prior and hence to more confident SV discoveries. Our framework adjusts for the tradeoff 

between sensitively calling subclonal SVs, and accurately identifying SVs seen consistently 

among cells. We parameterized this tradeoff into a ‘strict’ and ‘lenient’ SV caller, whereby 

the ‘strict’ caller optimizes precision for SVs seen with CF ≥5%, and the ‘lenient’ caller 

targets all SVs including those present in a single cell only. Unless stated otherwise, SV calls 

presented in this study were generated using the ‘strict’ parameterization, to achieve a callset 

that minimises false positive SVs (Supplementary Information). We explored the limits of 

these parameterizations using simulations, by randomly implanting Dels, Dups and Invs into 

single cells in silico. We analyzed 200 single cells per simulation, applying coverage levels 

typical for Strand-seq21 (400,000 read fragments per cell). We observed excellent recall and 

precisions for SVs ≥1 Mb in size when present with >40% CF (Fig. S5). And while we 

detected a decrease in recall and precision for events present with lower CF, we were able 

to recover smaller SVs and those with lower CF down to individual cells (Fig. S5). When 

comparing SV profiles between samples, such as to determine which SVs were unique to a 

sample or shared between samples 50% reciprocal overlap tests were performed.

Single cell dissection of translocations

We discovered translocations in single cells by searching for segments exhibiting strand-

states that are inconsistent with the chromosomes these segments originate from, while 

being consistent (correlated, or anti-correlated) in strand-state with another segment 

of the genome (i.e., their translocation partner) (Supplementary Information). To infer 

translocations, we determined the strand states of each chromosome in a homolog-resolved 

manner. In cases where strand states appeared to change across a haplotype (because this 

haplotype exhibited SVs or SCEs), we used the majority strand state (i.e. ‘ground state’, 

see above) to pursue translocation inference. We examined template strand co-segregation 

by generating contingency tables tallying the number of cells with equivalent strand states 

versus those not having equivalent strand states (see Fig. 3b). We employed Fisher’s exact 

test to infer the probability of the count distribution in the contingency table, followed by 

p-value adjustment73.
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Characterization of breakage-fusion bridge (BFB) cycles in single cells

To infer and characterize BFB cycles in single cells, we first employed our framework 

with lenient parameterization to infer InvDups flanked by a DelTer event on the same 

homolog/haplotype. We tested whether InvDup-DelTer footprints resulting from BFB cycles 

may arise in single cells by chance, by searching for structures where an InvDup on one 

haplotype would be flanked by a DelTer on the other haplotype (for instance, an InvDup 

(H1)-DelTer (H2) event, where H1 and H2 denote different haplotypes). No such structures 

were detected, and InvDup-DelTer footprints thus always occurred on the same haplotype, 

consistent with BFB cycle formation. To ensure high sensitivity of our single cell based 

quantifications shown in Fig. S17, we additionally performed manual inspection of the 

single cell data for evidence of at least one of the following rearrangement classes: (i) an 

InvDup, (ii) a DelTer resulting in copy-number=1 on an otherwise disomic chromosome. 

These cells were inspected for InvDup-DelTer patterns indicative for BFBs, based on the 

diagnostic footprints defined in Fig. 1.

Single cell based CNN-LOH discovery

For CNN-LOH detection, our framework first assembles consensus haplotypes for each 

sample, by analyzing all single cell Strand-seq libraries available for a sample using 

StrandPhaseR22. Each single cell is then compared to these consensus haplotypes in a 

disomic context, to identify discrepancies matching the CNN-LOH footprint. To detect 

clonally present CNN-LOH events, we used the 1000GP68 reference SNP panel to re-

genotype aggregated single cell libraries in each sample. These re-genotyped (observed) 

SNPs were then compared to the 1000GP reference sets to identify genomic regions 

showing marked depletion in heterozygous SNPs indicative for CNN-LOH. To this end, 

we downsampled the 1000GP reference variants to the SNP numbers observed in the 

single cell data, and subsequently merged both data sets (observed and reference variants), 

sorting all SNPs by genomic position. We performed a sliding window search through 

these sorted SNPs, moving one SNP at a time, and compared the number of observed and 

reference SNPs in each window by computing the ratio R=observed SNPs/reference SNPs. 

In heterozygous disomic regions, R values of ~1 will be expected, whereas deviations are 

indicative of CNN-LOH. Window sizes (determined by the number of SNPs in a window) 

were defined as the median SNP count per 500 kb window. We employed circular binary 

segmentation (CBS)74 to detect changes in R, and assigned each segment a state based on 

the mean value of R. Segments ≥2 Mb in size exhibiting mean values R≤0.15 were reported 

as CNN-LOH.

Bulk genomic DNA sequencing

Genomic DNA was extracted using the DNA Blood Mini Kit (Qiagen, Hilden, Germany). 

300 ng of high molecular weight genomic DNA was fragmented to 100 –700 bp (300 bp 

average size) with a Covaris S2 instrument (LGC Genomics) and cleaned up with Agencourt 

AMPure XP (Beckman Coulter, Brea, USA). DNA library preparation was performed using 

the NEBNext Ultra II DNA Library Prep Kit (New England Biolabs, Ipswich, USA). We 

employed 15ng of adapter ligated DNA and performed amplification with 10 cycles of PCR. 

DNA was size selected on a 0.75% agarose gel, by picking the length range between 400 
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and 500 bp. Library quantification and quality control was performed using a Qubit 2.0 

Fluorometer (Thermo Fisher Scientific, Waltham, USA) and a 2100 Bioanalyzer platform 

(Agilent Technologies, Santa Clara, USA). WGS was pursued using an Illumina HiSeq4000 

(Illumina, San Diego, USA) platform, using 150 bp paired-end reads. Mate-pair sequencing 

with large insert size (~5 kb) was pursued as described previously75. SV detection in bulk 

DNA sequence data was pursued using Delly231. RPE-1 WGS data was sequenced to 32× 

coverage.

Bulk RNA-seq

Total RNA was extracted from RPE cells using the RNeasy MinElute Cleanup kit (Qiagen, 

Hilden, Germany). RNA quality control was performed using the 2100 Bioanalyzer platform 

(Agilent Technologies, Santa Clara, USA). Library preparation was pursued with a Beckman 

Biomek FX automated liquid handling system (Beckman Coulter, Brea, USA), with 200 

ng starting material using TruSeq Stranded mRNA HT chemistry (Illumina, San Diego, 

USA). Samples were prepared with custom 6 base pair barcodes to enable pooling. Library 

quantification and quality control were performed using a Fragment Analyzer (Advanced 

Analytics Technologies, Ames, USA). RNA-Seq was pursued on an Illumina HiSeq 2500 

platform (Illumina, San Diego, USA), using 50 base pair single reads. For RNA sequencing 

in T-ALL, total RNA was extracted using TRIzol (Invitrogen Life Technologies). The RNA 

was than treated with TURBO DNase (Thermo Fisher Scientific, Darmstadt, Germany) 

and purified using RNA Clean&Concentrator-5 (Zymo Research, Freiburg, Germany). We 

required a minimal RIN (RNA Integrity Number) of 7 as measured using a Bioanalyzer 

(Agilent, Santa Clara, CA) with the Agilent RNA 6000 Nano Kit. Cytoplasmic ribosomal 

RNA was depleted by Ribo-Zero rRNA Removal Kit (Illumina, San Diego, CA) and the 

libraries were prepared from 1 μg of RNA using TruSeq RNA Library Prep (Illumina, San 

Diego, CA). These samples were sequenced on a Illumina HiSeq 2000 lane as 75 bp single 

ends. Fusion junctions were detected using the STAR aligner76.

Quantitative real time PCR (qPCR)

RNA from PDX-derived T-ALL samples was extracted using a RNeasy Mini kit according 

to manufacturer’s instructions (cat 74106, Qiagen, Hombrechtikon, Switzerland), and cDNA 

was generated using High Capacity cDNA Reverse Transcription Kit (Applied BioSystems, 

Foster City, USA). qPCR was performed using a TaqMan Gene Expression Master Mix 

(Applied BioSystems) in triplicate using an ABI7900HT Analyzer with SDS Plate Utility 

(v2.2) software. Threshold cycle values were determined using the 2-ΔΔCT method, 

normalized to human-GAPDH (Hs02786624_g1, Applied BioSystems).

Statistical Analysis

For experiments with replicates, the results are shown as means ± s.d. with replicates from 

independent biological experiments, unless stated otherwise. For translocation analysis the 

correlation values were determined using a two-sided Fisher’s exact test adjusted using the 

Benjamini-Hochberg procedure for false discovery rate (FDR) control, and allele-specific 

RNA-seq analysis was tested using two-sided pairwise likelihood ratio test with Benjamini-

Hochberg correction.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Haplotype-aware discovery of SVs in single cells.
(a) Overview of the Strand-seq protocol used to preserve strand-orientation and homolog 

(haplotype) identity. BrdU (Bromodeoxyuridine) is incorporated into dividing cells, 

followed by removal of the BrdU-containing strands (dashed line) through nicking, and 

short read sequencing of the remaining (template, solid line) strand21. W, Watson strand 

(orange); C, Crick (blue); H, haplotype. Right panel: haplotagging approach that assigns 

individual Strand-seq reads to either haplotype 1 (H1) or H2. Red lollipops mark reads 

assigned to H1 based on overlapping SNPs; blue lollipops mark H2 reads. From this, 
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three data layers are considered: 1. the total number of reads in a binned region are 

measured to calculate the ‘Depth’ layer, 2. the relative proportion of W and C reads are 

measured to calculate the ‘Strand’ layer, and 3. the number of W and C reads assigned 

to H1 or H2 are used to calculate the ‘Phase’ layer. (b) Scheme depicting how strands 

segregate during mitosis to reveal SVs in single cells. Del, deletion; Inv, inversion; Tr, 
translocation. Segments of derivative chromosomes share the same strand label during 

DNA replication and co-segregate. H1/H2 and h1/h2 designate haplotypes 1 and 2 for two 

different chromosomes. (c) scTRIP exploits read depth, strand ratio, and chromosome-length 

haplotype phase as data layers. Haplotype phase is assessed in a strand-aware fashion, 

with phased W reads shown as lollipops on left of ideogram and phased C reads shown 

to right (using the same haplotype colors as in (a)). An example “reference” state is 

shown, which contains 2N read depth, equal proportion of W:C reads and both haplotypes. 

Panels (d-f) depict diagnostic footprints for chromosomes where both haplotypes are labeled 

on different strands (‘WC/CW chromosomes’). Our framework also detects and scores 

equivalent footprints on CC and WW chromosomes (see Table S1). (d) Deletion (Del), 

detected as losses in read depth affecting a single haplotype, combined with unaltered 

read orientation. Duplication (Dup), detected as a haplotype-specific gain in depth with 

unaltered read orientation. (e) Balanced inversion (Inv), identified as haplotype-phased read 

orientation ‘flips’ with unaltered depth. Inverted duplication (InvDup), characterized by 

inverted reads detected for one haplotype coinciding with a read depth gain of the same 

haplotype. (f) Ploidy alterations can be detected as departures from diploid W and C 

segregation ratios (see also Table S2). (g) Balanced translocation show correlated template 

strand switches affecting the same paired genomic regions in cells harboring the SV.
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Figure 2. Analysis pipeline for locating somatic SVs in single cells.
Schematic shown for three single cells representing a heterogeneous population. (a) Single 

cell data are mapped to a reference genome (grey line) with Strand-seq reads (arrows) 

aligned in either the Watson (‘W’; orange) or Crick (‘C’; blue) direction. Left: reads are 

counted in 100 kb bins. Middle: Joint segmentation is performed on the binned data. 

Piecewise constant functions (black horizontal lines) are fitted to each segment and strand. 

Segmentation occurs across all cells based on change points in the fitted piecewise constant 

functions, to locate putative SV breakpoints between bin boundaries (vertical purple 
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lines). Right: Heterozygous SNP positions are used to build consensus haplotypes using 

StrandphaseR22, resulting in SNPs assigned to chromosome-length haplotypes designated 

‘H1’ (red) or ‘H2’ (blue). (b) Consensus haplotypes (now horizontal lines with SNP 

bubbles) are used to haplotype-tag (haplotag) individual Strand-seq reads in each cell. Any 

read overlapping a SNP is assigned to H1 (red lollipops) or H2 (blue lollipops) depending 

on the allele present in the read. Purple lines denote segment breakpoints. (c) Probabilistic 

model for SV calling. A multinomial distribution is used for the haplotagged read data (left 

panel). For each segment, the single cell data are considered as four different classes: C 

reads from H1 (C-H1), W reads from H1 (W-H1), C reads from H2 (C-H2), and W reads 

from H2 (W-H2). Random variables are represented by circles and parameter by boxes: N 

represents the true underlying copy-number (which we seek to infer) for each of these four 

categories, p the corresponding parameters of the multinomial distribution, and X represents 

the observed read counts in each category. A negative binomial (NB) distribution is used to 

model the total number of W and C reads (right panel). NB distributions for copy-numbers 

(CN) 0, 1, and 2 are depicted. Depending on the observed read counts (vertical dotted lines) 

for each segment, the likelihood of each CN is calculated. The full probabilistic graphical 

model is shown in Fig. S4. (d) Using this Bayesian model, the most probable SV type is 

assigned to each segment. In the schematic, two cells contain an inferred duplication on the 

H1 haplotype (Dup_H1; pink segment), and the other cell contains no SV (assignment to 

reference state; grey segment) (e) Example Strand-seq data analyzed with scTRIP for two 

RPE-1 cells and one C7 cell. RPE-1 cells exhibit a somatic duplication event (Dup_H1; 

chr3:60900000-62300000) absent in C7. Additional SVs called in Strand-seq data are shown 

in Fig. S8.
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Figure 3. Translocation discovery in single cells.
(a) In BM510, segments from chromosomes 10, 13, 15, 17 and 22 failed to co-segregate 

with the respective chromosomes they originated from, suggesting putative involvement in 

translocations (use of ‘tr’, as in “H2-tr’ or ‘chr10tr’, denotes the candidate translocation 

status of these segments). (b) Independent and correlated segregation patterns reveal 

translocation partners. Schemes to the left and right show haplotype-resolved template 

strand states of chromosomal segments for six representative cells, exemplifying the 

segregation patterns of the Left: non-reciprocal der(X) t(X;10) translocation, and the 
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Right: reciprocal t(15;17) translocation. Each colored box denotes the strand state for 

the segment as either Watson (orange) or Crick (blue). Grey arrows highlight pairwise 

‘correlated segregation’ between segments on derivative chromosomes, which always 

exhibit the same strand state (e.g. chrX and chr10tr) or always exhibit inverse strand states 

(e.g. chr15tr and chr17; reflecting indirect orientations of these translocation partners). 

The inversion within the translocated portion of 17p is denoted with a circular arrow. 

Pyramid in the center: Unbiased analysis of translocations in BM510 (N=144 single 

cells). The pairwise heatmap depicts the template-strand correlation values for each 

haplotype segment (H1, left; H2, right), illustrating the co-segregation diagnostic footprint 

of translocations (Fig. 1f). Correlation values are here expressed as Benjamini-Hochberg 

adjusted P-values obtained from a two-sided Fisher’s exact test, where P=0 indicates 

prefect correlation (i.e. co-segregation) and P=1 indicates no correlation (i.e. independent 

segregation). Orange boxes with black outline depict significant (P<0.01) correlations found 

for four cases corresponding to the derivative chromosomes discovered in BM510. (c) 
Cartoon representation of the four inferred chromosomes (outlined boxes in pyramid b) 

with significant correlations, including: unbalanced der(X) t(X;10), showing chr10q H2-tr 

gain attached to chrXq H2 (adjusted correlation value P=2.26×10-32), unbalanced der(13) 

t(13;22), showing chr22q H2-tr gain attached to chr13p H2 (P=5.52×10-41), and balanced 

der(15) t(15;17) and der(17) t(15;17), showing reciprocal exchange of chr15q H2 and 

chr17p H2 (P=4.75×10-29, and P=3.93×10-30, respectively) (also see Table S6). Dashed 

lines within chromosomes (chr) correspond to unassembled regions at acrocentric chr13 and 

chr15. (d) Circos plot depicting translocations (internal links) and averaged gene expression 

values across genomic windows77, computed from RNA-seq data generated for BM510 

(here denoted ‘B’), RPE-1 (‘R’) and C7 (‘C’). Fig. S16 resolves expression by haplotype. 

(e) Validation of gene fusion in BM510. RNA-seq based read depth for NTRK3 (green), 

NTRK3-AS1 (yellow) and TP53 (blue) depicted for C7, RPE-1 and BM510. Purple dashed 

lines: detected fusion junctions. Lower left corner: inferred fusion transcript. Purple boxes 

show start codon locations. Lower right corner: NTRK3 overexpression in BM510. WT1-3, 

RNA-seq replicates of RPE-1. Ex., exon.
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Figure 4. Single cell characterization of complex rearrangement processes.
(a) Strand-specific read depth of an example C7 cell showing a region of InvDup mediated 

amplification on 10p, with adjacent terminal deletion (DelTer) of the same haplotype, 

resulting from BFB cycles. (b) Depiction of three example C7 cells with different BFB 

statuses, based on estimated maximum copy-number (CN) of 1 (upper panel, cell without 

BFB), CN of ~110 (middle panel, major clone), and CN of ~440 (lower panel, amplified 

BFB) at the 10p amplicon region. These CN values correspond to the segment indicated 

in red, as defined in (c). For each cell, the corresponding gained segment on 15q is 

shown beneath, which scTRIP inferred to have undergone unbalanced translocation with 
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the amplicon region. Note, the translocation is absent from cells lacking the 10p amplicon 

(upper panel). Read counts for W (orange) and C (blue) are capped at 50 (*, saturated 

read counts; see also Fig. S18, which uses a different y-axis scale). Tr, translocation. 

(c) Aggregated read data from 154 C7 cells to highlight the step-wise CN change for 

the 10p amplicon. Colours indicate six segments identified within the amplicon, with 

mean CN shown by horizontal lines (red=221; blue=151; green=65; purple=37; orange=28; 

yellow=13). Grey: regions flanking the amplicon (d) Genetic single cell diversity within 

the 10p amplicon. CN (x-axis) values are shown across each individual sequenced C7 

cell (N=154; y-axis), to provide cell-by-cell estimates of CN for each segment defined in 

the merged data (shown in c) (see also Table S7). At least 3 different groups are readily 

discernible: high CN, intermediate CN, and loss of the 10p region (compare with panel 

b). Error bars reflect 95% confidence intervals. Arrows denote cells with CN=1 and CN 

of ~440 at the 10p amplicon. (e) Model of the mutational process leading to the observed 

structures seen for the ‘major clone’. Amplification via BFB cycles typically proceeds in 2n 

copy-number steps, suggesting ~7 successive BFB cycles occurred. According to our model, 

translocation of 15q terminal sequence stabilized 10p BFB. DSB, double strand break. (f) 
The scar of sporadic somatic BFBs, corresponding to InvDups flanked by DelTer on the 

same haplotype, identified in single BM510 cells. (g) Clustered rearrangements involving 

Dels and Invs on a single chr4 homolog of an individual BM510 cell. Shown is the binned 

read data (left) seperated into the three data channels typical to scTRIP.
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Figure 5. Single cell sequencing based karyotypes of PDX-derived T-ALL relapses.
(a) Haplotype-resolved consensus P33 karyotype constructed from 41 sequenced cells, 

using single cell sequencing based SV calls generated by scTRIP. Heterozygous SVs are 

depicted only on the haplotype they have been mapped to. Homozygous SVs (by definition) 

appear on both haplotypes. CNN-LOH, copy-neutral loss in heterozygosity (shown on both 

haplotypes)78. Chromosomes colored in pink reflect duplicated homologs. This T-ALL 

patient carries two chromosome X haplotypes as well as a Y chromosome, indicating 

transmission of an X and a Y chromosome from the father, whereas the mother contributed 

her X chromosome to the karyotype (Klinefelter or XXY syndrome). Affected leukemia-

related genes are highlighted in red. ‘BCL11B-enh’ denotes a previously described enhancer 

region in 3′ of the BCL11B gene. (b) “Heatmap” of SVs arranged using Ward’s method 

for hierarchical clustering of SVs genotype likelihoods in P33, showing the presence of a 

single dominant clone and evidence of few additional somatic DNA alterations resulting 

Sanders et al. Page 28

Nat Biotechnol. Author manuscript; available in PMC 2022 April 22.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



in karyotypic diversity in this T-ALL relapse. (c) “Heatmap” of SV events called in an 

additional T-TALL sample, P1. Red dotted box outlines a clear subclonal population in the 

sample, represented by 25 cells.
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Figure 6. Single cell sequencing of PDX-derived T-ALL relapse P1 reveals previously 
unrecognized SVs.
(a) Haplotype-resolved balanced 14q32 Inv inferred in P1 using scTRIP. The leftmost 

breakpoint (thick light blue line) resides close to TCL1A, whereas the rightmost breakpoint 

(thin light blue line) is in 3′ of BCL11B. (b) The rightmost Inv breakpoint falls into a “gene 

desert” region in 3′ BCL11B containing several enhancers. Black arrows show breakpoints 

of translocations resulting in T-ALL oncogene dysregulation from a recent study45. Colored 

arrows: 41 SV breakpoints in T-ALL donors P1 and P33. (c) Dysregulation of TCL1A in 
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conjunction with 14q32 Inv. Larger barplot shows TCL1A overexpression in P1 compared to 

five arbitrarily chosen T-ALLs (FDR=2.3E22 two-sided Wald test with Benjamini-Hochberg 

correction). Inset barplot shows allele-specific RNA-seq analysis demonstrating TCL1A 

dysregulation occurs only on the inverted (H2) haplotype (FDR 6.68E-21 two-sided pairwise 

likelihood ratio test with Benjamini-Hochberg correction). The center values in the graph 

indicates mean of independent biological replicates (n=2 for P1, P4, P7, P11, P12; n=3 

for P2). ***p<0.001. (d) Reconstruction of subclonal clustered DNA rearrangements at 6q 

via scTRIP. (e) Haplotype-resolved analysis of SVs clustered at 6q, all of which fall onto 

haplotype H2. (f) Detection of interspersed losses and retention of LOH in conjunction 

with the clustered SVs, indicative for a DNA rearrangements burst41. (LOH, signified by an 

abundance of red dots, was called as reported in the Methods. Regions with normal density 

of reference heterozygous SNPs (red), but with decreased density of additionally detected 

heterozygous SNPs (black), are indicative for LOH.) (g) Verification of subclonal clustered 

rearrangement burst at 6q, by bulk long-insert size paired-end sequencing75 to 165X 

physical coverage. Breakpoints inferred by scTRIP are shown as dotted lines, and scTRIP-

inferred segments are denoted using the letters A to L. Colored breakpoint-connecting 

lines depict the paired-end mapping based rearrangement graph (i.e., deletion-type, tandem 

duplication-type, and inversion-type paired-ends). Using bulk whole-exome and mate-pair 

sequencing, read-depth shifts at these breakpoints were subtle and thus, this subclonal 

complex rearrangement escaped prior de novo SV detection efforts in bulk.

Sanders et al. Page 31

Nat Biotechnol. Author manuscript; available in PMC 2022 April 22.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts


	Abstract
	Introduction
	Results
	Discovering disease-relevant SV classes by scTRIP
	Surveying SV landscapes in single cells
	Discovering somatic translocations and novel fusion genes
	Direct measurements of complex DNA rearrangements
	Sporadic BFB formation in transformed cells
	Karyotyping a patient sample from 41 single cells
	Novel and subclonal complex rearrangements uncovered in T-ALL

	Discussion
	Online Methods
	Cell Lines and Culture
	Ethics Statement
	Single cell DNA sequencing of RPE and T-ALL cells
	Library selection for scTRIP analysis
	Chromosome-length haplotype phasing of heterozygous SNPs
	Discovery of somatic deletions, duplications, inversions and inverted duplications in single cells
	Binned read counting
	Normalization of coverage
	Joint segmentation of single cells in a population
	Strand-state and SCE detection in individual cells
	Haplotype-aware SV classification
	SV calling in a cell population

	Single cell dissection of translocations
	Characterization of breakage-fusion bridge (BFB) cycles in single cells
	Single cell based CNN-LOH discovery
	Bulk genomic DNA sequencing
	Bulk RNA-seq
	Quantitative real time PCR (qPCR)
	Statistical Analysis

	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6

