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Abstract

Cancer is characterised by an accumulation of somatic mutations. These can generate cancer-

specific neoepitopes that are recognised by autologous T cells in the tumour-bearing host. As 

neoepitopes are not subject to central immune tolerance and not expressed in healthy tissues, 

they are attractive targets for therapeutic cancer vaccines. However, the vast majority of cancer 

mutations are unique for the individual patient. Harnessing the full potential of this rich source 

of targets requires individualised treatment approaches. A large body of computational algorithms 

and machine learning tools were developed for identification of mutations in sequence data, 

prioritisation of those likely to be recognised by T cells and the design of a tailored vaccine 

for every patient that is composed of multiple cancer mutations. The main scope of this 

review is to fill gaps in the integrated understanding of basic mechanisms of T-cell recognition 

of neoantigens and computational approaches for somatic mutation discovery and neoantigen 

prediction for cancer immunotherapy. We present a new classification distinguishing between 

guarding, restrained, and ignored neoantigens that is motivated by the key question of how 

neoantigens confer competent anti-tumour immunity in a given clinical context. Such a context-

based differentiation will contribute to a framework connecting neoantigen science to clinical 

settings and medical peculiarities of cancer disease and will enable future neoantigen-dependent 

therapies to provide greater clinical benefit.

1 Introduction

Mutated gene products can act as tumour neoantigens when their peptide breakdown 

products are presented as neoepitopes [G] on major histocompatibility complex (MHC) [G] 
molecules of the patient and recognised by CD4+ or CD8+ T cells1–4. T cells recognising 

neoepitopes with high avidity have been shown to drive efficacy of cancer immunotherapies 

such as immune checkpoint blockade (ICB)5–10 and adoptive T-cell transfer [G]11,12 The 
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number of somatic mutations in a tumour correlates with T-cell infiltration and is predictive 

for overall response rate and survival prolongation by immunotherapies across various 

cancer types13.

Not every mutation gives rise to a neoantigen. It has been reported that spontaneously 

occurring neoepitope-specific T cells reflect only 1-2% of the mutations in an individual 

tumour14,15. Also, not all neoantigens are equal in their ability to mediate T-cell mediated 

tumour cell killing and an anti-tumour effect. This review is focussed on neoantigens of 

relevance. These are defined as somatic mutations in cancer cells that are recognised by T 

cells and do contribute to manifesting an anti-tumour effect.

As somatic cancer mutations are not expressed in healthy cells and as T cells that may 

recognise them are not subject to central immune tolerance, neoantigens are considered 

safe and potent targets for T-cell-based immunotherapies. Due to the random nature of 

occurrence, somatic cancer mutations are highly individual. Each cancer patient has a unique 

mutation profile and presents a unique composition of neoepitope/MHC complexes (called 

‘neoantigenome’) on their cancer cells16. Therefore, the clinical use of cancer mutations 

calls for a truly individualised approach, which is associated with multi-faceted challenges.

While individualised cancer vaccines are the main scope of this review, predicting 

neoepitopes is also of interest for clinical applications in the cell therapy field, e.g. ex 
vivo stimulation of autologous T cells for enrichment of neoepitope specificities or cloning 

of neoantigen-specific TCRs (T-cell receptor) for T-cell reprogramming.

Engineering of an individualised cancer vaccine (Fig. 1) starts with the identification 

of tumour-specific non-synonymous [G] variants in protein-coding genes by comparing 

next-generation sequencing (NGS) data from the patient’s tumour and healthy tissue. 

Multi-component computational pipelines assess the mutant peptide regions for binding 

to the patient’s HLA (human leukocyte antigen) alleles and evaluate additional features 

of that mutated region (e.g. transcript expression level, clonality [G] and dissimilarity to 

self) that may contribute to the capability of a neoantigen candidate to induce potent and 

clinically meaningful anti-tumour T cells. Such data informs the selection of a tailored set 

of neoantigen candidates for on-demand production of a vaccine of unique composition for 

each patient17–20.

Accurate identification of mutations and selection of relevant neoantigen candidates guided 

by biological knowledge are the rosetta stone for clinical success of individualised 

neoantigen vaccination. The need for algorithms to serve this purpose has created a new, 

fast-evolving and highly cross-disciplinary research field.

This review explains basic immunological mechanisms involved in the mode of action 

of neoantigen vaccines. It gives a comprehensive overview of currently used algorithms 

and computational pipelines to predict neoepitope candidates, the biological features they 

assess, and their implementation from the perspective of clinical translation. It proposes a 

novel concept for classification of neoantigens based on the clinical context for which they 

are of interest. Challenges met in clinical translation of neoepitope cancer vaccines when 
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computational approaches become a part of the highly regulated drug development process 

are discussed, as are future directions for the field.

2 Basic principles of neoantigen presentation, T-cell recognition and 

immunity

Neoantigen-specific T-cell immunity follows basic principles of T-cell priming, activation 

and effector function, which involve mechanisms occurring in two compartments, namely in 

the tumour and in lymphatic tissue (Fig 2).

2.1 Presentation of neoantigens

Like any other endogenous cellular protein, neoantigens expressed in cancer cells 

undergo proteasomal degradation into smaller peptides. The peptides are processed in the 

endoplasmic reticulum and are loaded onto MHC-I molecules [G]. The resulting peptide/

MHC-I complexes including those, which harbour neoepitopes, are presented on the cancer 

cell surface for recognition by CD8+ T cells. Tumour cells may express MHC-II molecules 

either constitutively (which is rarely the case) or upon induction by interferon (IFN)-γ21. 

MHC-II molecules preferentially present peptides originating from exogeneous proteins or 

peptides from endogenous proteins that accessed the secretory and endocytic compartments. 

Binding of a peptide to MHC-II has less stringent sequence and length requirements than 

binding to MHC-I. Therefore, the likelihood of mutant peptides to be presented on MHC-II 

and the diversity of neoepitope/MHC-II complexes is higher and the mutanome [G] is 

particularly poised for immune recognition by CD4+ T-cells 22,23,20. The same mutation can 

be presented by both MHC-I as well as MHC-II when the respective neoantigen accesses 

both processing pathways and when the patient has an MHC-I as well as an MHC-II allele 

that is capable of complexing the respective mutated peptide with sufficient affinity19,20

In addition to tumour cells, cancers harbour immune cell infiltrates, including dendritic 

cells (DCs), macrophages and B cells that can act as professional antigen-presenting cells 

(APCs). Antigen uptake by these APCs occurs by mechanisms such as macropinocytosis 

of soluble antigens, receptor-mediated uptake of apoptotic vesicles by DCs, phagocytosis of 

tumour cells by tumour-associated macrophages, or Fc-receptor-mediated uptake of immune 

complexes. Tumour-infiltrating APCs activate antigen specific memory CD4+ and CD8+ T 

cells that have previously undergone cognate priming.

However, neither cancer cells nor tumour-infiltrating APCs are capable of direct priming 

naïve T cells. Priming of naïve T cells occurs almost exclusively in lymph nodes (LN) 

through highly specialised LN resident DCs. These professional APCs either sample 

soluble neoantigens from the extracellular fluid drained by lymph vessels from the tumour 

tissue24,25 or by active transfer from migratory APCs that had taken up the respective 

neoantigens in the peripheral tumour tissue26–28. Endocytosed antigens are processed and 

presented on MHC-II complexes for scanning by CD4+ T cells. DCs are also capable of 

routing endocytosed antigens into cytosolic compartments for proteasomal degradation and 

presentation on MHC-I molecules. This process called ‘cross-presentation’ is critical for 

priming and stimulation of antigen-specific cytotoxic CD8+ T cells29,30.
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2.2 Priming of neoantigen specific T cell responses

The priming, activation, expansion and subsequent fate of neoantigen-specific T cells 

is tightly controlled by fine-tuned mechanisms and affected by parameters, such as the 

density and stability of the peptide/MHC complexes on APCs, the precursor frequency 

and avidity of antigen-specific T cells, and the presence of costimulatory signals. The 

naïve T cell repertoire is shaped by central immune tolerance [G] established during 

thymic development, which involves the elimination of high-avidity autoreactive T cells 

that recognise MHC-I and MHC-II epitopes derived from germline-encoded self-antigens. 

As neoepitopes are non-self, they are not impacted by this mechanism. Naïve T cells 

recognising neoantigens remain susceptible to mechanisms of peripheral tolerance [G] 
which encompass clonal deletion31, conversion to regulatory T cells32 or induction of 

dysfunctional states such as anergy [G]33 and exhaustion34,35. Priming of naïve T cells 

requires a high level of peptide/MHC complexes along with co-stimulation36. Once they 

have been primed in the LN and transitioned to the memory state, cognate activation of 

T cells can be achieved with much lower levels of neoantigen presentation. The quantity 

of peptide/MHC complexes i.e. the level of epitope presentation is a function of gene 

expression, affinity of peptide/MHC binding and stability of the peptide/MHC complex37,38. 

Accordingly, neoantigens that are expressed at a robust level in the tumour and provide 

neoepitopes of sufficiently high affinity to MHC-I or II have a higher likelihood for effective 

cross-presentation of endocytosed antigens and priming of naïve T cells. Below these critical 

levels, neoantigens will induce neither T cell immunity nor tolerance.

2.3 TCR diversity [G] and TCR degeneracy [G]

TCRs bind to peptide/MHC complexes by interacting with a few contact sites of the 

peptide’s side chains that project out of the MHC groove (reviewed in39,40). The same 

neoepitope/MHC complex can engage T cells with diverse TCRs that may be composed 

of molecularly different TCR alpha and beta chains20,41–44 (Fig 3a,b). TCR diversity is 

expected to be broader for neoepitopes that have a higher dissimilarity to MHC ligands 

derived from self-antigens45, e.g. mutations that convert a non-binding peptide to a binding 

neoepitope, or novel open reading frames created by INDELs and gene fusions which alter 

more than merely a single amino acid. Also, higher dissimilarity to self is associated with 

a higher likelihood that potential high affinity binders were not deleted by central immune 

tolerance mechanisms.

Given the low affinity of a functional TCR/peptide/MHC interaction, a single TCR is 

able to bind various different peptide/MHC complexes, including epitopes that do not 

necessarily share sequence homology with each other and differ structurally46–48. Due to 

this TCR degeneracy, a mutant peptide may be recognised by cross-reactive memory T cells 

that were primed against an unrelated antigen e.g. from commensal bacteria or microbial 

pathogens49,50. Activation of T cells which were primed by an unrelated antigen is known as 

heterologous immunity [G] (Fig 3b,c).

2.4 Neoantigen driven immune effector mechanisms

Upon encountering antigens under conditions of co-stimulation, naïve CD8+ and CD4+ T 

cells are activated, expand by repeated cycles of cell division, leave the LN, and differentiate 
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into PD1+ effectors and memory T cells that are capable of infiltrating tumours. In the 

presence of a favourable tumour microenvironment (TME), activated neoantigen-specific T 

cells exhibit their effector functions by recognition of their antigens on intratumoural APCs 

and tumour cells and may indirectly or directly contribute to tumour control11,18,51–54.

CD4+ and CD8+ T cells collaborate in the eradication of tumours. While CD8+ T cells 

exert direct cancer cell killing, neoantigen-specific CD4+ T cells have a variety of effects 

that may promote profound inflammatory remodelling of the TME. CD4+ T cells may also 

exhibit direct cytotoxicity against tumour cells expressing MHC-II53,55–59 IFN-γ secretion 

by CD8+ and CD4+ T cells upon cognate antigen recognition induces an upregulation of 

MHC-I and II presentation on tumour cells and APCs which further sensitises recognition 

of neoantigens. Inflammation supports the cytotoxic activity of neoantigen-specific CD8+ 

T cells. The killing of tumour cells and release of tumour antigens results in antigen 

spreading51,60,61 and further re-stimulation and expansion of memory CD4+ and CD8+ T 

cells. The iteration of this sequence, called the cancer-immunity cycle51 is counteracted 

by numerous immune suppressive mechanisms that have evolved to safeguard from 

autoimmunity62,63.

The ultimate objective of a cancer vaccine is to re-ignite the cancer immunity cycle 

by priming of novel neoantigen-specific T cells or by activation of pre-formed ones, 

thus fostering a sustained adaptive anti-tumour immune response until tumour cells are 

completely eliminated.

Early evidence suggests that intratumour presentation of MHC-II neoepitopes is capable 

of stimulating and clonally expanding neoantigen-specific CD4+ T cells with a FoxP3+ 

regulatory T-cell (Treg) phenotype64. The TCR repertoire of the intratumorally expanded 

oligoclonal Treg T-cell population overlaps with the repertoire of peripheral blood Tregs 

and differs markedly from the intratumoral TCR repertoire of the conventional FoxP3- 

CD4+ T-cell population64,65. This suggests that intratumoral Treg cells are either specific 

for neoantigens that differ from those recognised by conventional CD4+ helper T cells 

or that they are derived from a different T-cell pool. It is also not clear whether these 

neoantigen-specific Treg cells arise from suboptimal priming of naïve CD4+ T cells driven 

by exposure to neoantigens under noninflammatory tolerogenic conditions66 or are derived 

from already established cross-reactive Treg T-cell populations67. It is conceivable that 

neoantigen-specific Treg cells could attenuate anti-tumour immunity in an antigen-specific 

manner, regardless of their origin, and that a better understanding of their specificity could 

help to improve neoantigen prediction algorithms.

2.5 Immune surveillance [G], immune escape [G] and immune editing

Heterogeneity is a hallmark of cancer. The genetic evolution of tumours is driven by 

selection of clones with fitness advantage. The dynamic interplay between immune 

surveillance and tumour progression50 results in primary and metastatic lesions of diverse 

clonal composition (Fig. 4).
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Evasion from T-cell immunity does occur in the course of a tumour’s natural evolution as 

well as under treatment and there are various mechanisms for tumours to escape immune 

surveillance.

Tumours may create an immuno-suppressive TME by up-regulating molecules such as 

PD-L168, TGF-beta69 or by promoting expansion of regulatory T cells70 that protect them 

from neoantigen-specific T cell immunity.

Further, tumour clones that are recognised by functional neoantigen-specific T cells may 

become subject to immune editing50. Selection of neoantigen-loss variants appears to occur 

frequently in immune-infiltrated tumours of treatment-naïve patients71–73, yet rarely in 

tumours with insufficient immune cell infiltration70,74. Combining multiple neoantigens in a 

vaccine rather than relying on a single antigen mitigates the risk of escape by antigen loss.

Alternatively, cancer cell clones may be selected that have defects in the antigen-

processing/-presentation machinery, such as loss of heterozygosity (LOH) [G] of MHC 

genes, downregulation and mutation of MHC molecules75, dysfunction of the transporter 

for antigen presentation (TAP)76 or mutations in the beta-2-microglobulin (B2M)77. These 

alterations disable cognate anti-tumour immunity at its roots and render tumours resistant 

to any treatment that is based on activity of neoantigen-specific T cells. This is where 

combination therapy comes in play with the objective of combining therapeutic vaccines 

with treatment modalities that have non-overlapping modes-of-action.

The risk for tumour immune escape is higher in metastatic disease. Each metastatic lesion 

can be viewed as independent island with its own immune microenvironment, immune 

escape strategies, evolution dynamics and neoantigenome78–80.

ICB can indirectly contribute to eliciting new neoantigen-specific T-cells as neoantigens 

released from dying tumour cells are taken up by APCs and T cells are primed and 

undergo efficient activation and expansion under the effect of ICB. This process is called 

antigen spreading and plays an important role in broadening and enriching the repertoire of 

anti-tumour T-cell responses60,61,81. Patients may develop resistance to ICB by outgrowth 

of subclones that do not express the restrained neoantigens and thus are not recognised by 

ICB-mobilised T cells (Fig. 4).

3 A context-based classification of neoantigens

One way to categorise neoantigens is based on the type of somatic mutation that creates 

the altered epitope and defines its molecular characteristics (Box 1). Single nucleotide 

variations (SNVs) in coding regions are the mutation type that is best studied in clinical 

testing. An important future field is to develop discovery tools for neoantigens created by 

cancer-specific INDELs (insertions and deletions), fusion genes and splice variants that have 

a lower degree of similarity to self-antigens than SNV-derived neoantigens.

We propose an orthogonal classification of neoantigens (Fig. 5, Table 2) that is motivated 

by the key question how to identify relevant neoantigens that convey proficient anti-tumour 

immunity. We believe that the answer to this question may differ depending on the clinical 
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context and needs to consider that mechanisms and cancer life cycle effects that may 

drive the formation of neoantigen-specific immune responses are diverse. It is yet not clear 

why some neoantigens induce functional T-cell responses spontaneously and others need 

intervention to do so. Another unknown is whether we can learn from neoantigens targeted 

by the most abundant, immunodominant, prognostically favourable T-cell specificities in 

treatment-naïve patients or from those which are associated with deriving clinical benefit 

from ICB therapy in order to improve computational pipelines for neoantigen vaccine 

design. Also, while the term ‘tumour rejection antigen’ has been coined for relevant 

antigens that induce proficient immunity and several such neoantigens have been reported in 

mouse models, the context, within which those tumour rejections occurred, differ as do the 

implications those individual studies may have for vaccine design (Fig.6).

The classification below differentiates neoantigens based on the clinical setting in which 

they gain relevance. It is meant to provide a framework that guides neoantigen discovery 

and characterisation studies, and helps to structure and analyse new and available datasets 

to address gaps in our understanding and develop a tailored approach to define neoantigen 

candidate features for vaccine design and beyond.

3.1 Guarding neoantigens [G]

Tumours are subject to T-cell surveillance. Consequently, spontaneously occurring 

neoantigen-specific CD4+ and CD8+ T cells are found in patients with treatment-naïve 

cancers15,41,50,82 Such neoantigens may have a guarding function by mediating early tumour 

rejection before a tumour becomes clinically apparent. Or they may decelerate tumour 

growth, inhibit metastatic dissemination and prevent recurrences after surgical removal 

of the primary tumour. The characteristic feature of guarding neoantigens is that their 

expression in the tumour is sufficient to drive clinically relevant anti-tumour immunity 

in the absence of immunotherapy. Guarding neoantigens may come in two flavours. 

Firstly, strongly antigenic ‘ supreme’ neoantigens that are robustly expressed in tumour 

cells and form neoepitopes with extraordinarily high-affinity MHC binding83 and stability 

(Fig 5). These features promote early onset priming and rapid and strong expansion of 

neoantigen-specific cytotoxic T cells that infiltrate and suppress the growth and metastatic 

dissemination of the primary tumour early in its life cycle before full manifestation of 

an immunosuppressive TME83. Guarding neoantigens are difficult to identify in human. 

The strongest evidence for the existence of such tumour rejection antigens comes from 

engraftment studies of very high mutational load mouse tumours with thousands of somatic 

mutations induced by UV irradiation or carcinogens. In these models, wild-type tumour cells 

expressing the respective neoantigens are rejected by naïve mice, whereas immune-edited 

tumour cell clones that have lost the respective neoantigens but express all other mutations 

grow aggressively83–85. Immunodominant neoantigens are derived from extremely rare 

mutational events and contribute to an improved clinical prognosis probably only in very 

high-mutational load tumours such as microsatellite instable cancers86.

The second guarding neoantigen type is recognised by pre-established, cross-reactive 

memory T cells. Examples are neoantigens cross-recognised by T cells formed against 

gut microbiota, previously encountered pathogens or persistent viruses50,87. Neoantigen 
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recognition by heterologous T cells has two important effects. Firstly, memory T cells 

have a 50-fold lower functional activation threshold and respond faster as compared to 

naïve T cells88. Thus, cancer mutations with low MHC binding affinity, low peptide/MHC/

complex stability or with low expression level that are incapable of priming naïve T 

cells may engage and expand pre-established cross-reactive memory T cells. Second, by 

definition pre-formed heterologous immunity is existent prior occurrence of tumour disease. 

Neoantigen recognition by cross-reactive, memory T cells early in the life cycle of a 

tumour may significantly shape the tumour-specific TCR repertoire towards high-affinity 

TCR binders, promote T-cell infiltration and growth inhibition of tumours, including those 

with low mutational load41. Heterologous immunity may explain that more than a quarter 

of neoantigen-specific T-cell responses identified by an unbiased screening with tumour-

infiltrating lymphocytes (TIL) is directed against neoepitopes with low (>500 nM) predicted 

HLA binding affinity15. Accordingly, clinically relevant heterologous T-cell immunity 

against neoantigens is expected to be largely driven by memory T-cell repertoire and by 

the affinity of the TCR to the peptitde/MHC complex rather than by MHC binding affinity 

of the mutant peptide. Neopitopes that are able to stimulate a more diverse TCR repertoire, 

e.g. those with a higher dissimilarity to self-antigens45 may be more likely to qualify for this 

subclass of cross-reactive neoantigens.

By definition, guarding neoantigens control the natural course of the disease and are 

associated with favourable prognosis of immunotherapy-naïve patients irrespective of the 

treatment. Only a few studies investigated the correlation between molecular neoantigen 

features [G] and favourable disease outcomes in suitable populations. One study showed 

that tumours of long-term survivors with pancreatic cancer in contrast to those from short-

term survivors harbour neoepitope candidates displaying a composite quality feature of (i) 

sequence homology with pathogen-derived peptides and (ii) stronger predicted HLA binding 

affinity of the neoepitope relative to its wild-type50 (differential agretopicity index [G]; 
DAI). Similarly, another study identified the mean DAI across all clonal mutations in a given 

tumour as predictor for increased survival in melanoma and lung cancer patients89.

ICB treatment or neoantigen vaccination may further augment pre-existent T-cell responses 

against guarding neoantigens qualitatively or quantitatively. A potential disadvantage of 

guarding neoantigens is that they are targeted early in the course of disease and thus are at 

risk for early immunoediting [G]41,72.

3.2 Restrained neoantigens [G]

Not all neoepitope-specific T cells that occur spontaneously in patients are fully functional. 

Neoantigen-specific T cells that are pre-existent but functionally impaired may require 

further invigoration to contribute to a favourable course of the tumour disease. This can be 

achieved by ICB therapy for which durable clinical responses have been shown to correlate 

with the expansion of neoepitope-specific T cells5–7.

We designated targets that are recognised by ICB reinvigorated T cells as restrained 

neoantigens. While restrained neoantigens are capable of priming T-cell responses, their 

antigenicity is weaker compared to supreme neoantigens and the primed T cells are not 

proficient or not sufficiently expanded to prevent disease progression. T cells primed by 
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restrained neoantigens infiltrate tumours and recognise their targets on cancer cells and 

APCs but are outpaced by tumour growth and immunosuppressed by the established TME. 

Antigen-pulsed migratory DCs require several days to get from the tumour to LN-resident 

DCs36 and priming of naïve T cells in lymphoid tissues requires a high level of neoantigen 

presentation. Thus, mutated peptides need to be robustly expressed in the tumour, exert high-

affinity MHC binding and build stable peptide/MHC complexes to give rise to restrained 

neoantigens (Fig 5b).

In contrast to guarding neoantigens that are identified based on their prognostic [G] impact, 

restrained neoantigens are defined by their predictiveness [G] for the clinical benefit 

conveyed by immunotherapies such as ICB (Table 2). Datasets for studying restrained 

neoantigens and their specific features may e.g. come from randomised trials that compare 

ICB treatment to some non-T-cell-activating standard of care.

One study showed that all identified T-cell responses in patients responding to ICB 

were directed against clonal neoantigens90. The clonality of mutations and the number 

of predicted neoepitope candidates per mutation91, the DAI89 and sequence similarity to 

known pathogen epitopes combined with the ratio-based DAI92 were found to be associated 

with clinical response to ICB. Oncogenic driver mutations [G] are typically clonal as they 

are critical for the survival of tumour clones and therefore less likely to be lost during 

immune editing. Neoantigen candidates derived from driver mutations were predicted more 

frequently in patients who responded to ICB93. In turn, patients with MHC alleles predicted 

to have poor presentation of driver mutations were shown to less likely respond to ICB94. 

SNVs5,7,95, as well as frameshift mutations and gene fusions have been reported to act as 

restrained neoantigens96–99.

Restrained neoantigens are discussed in this review in the context of ICB due to the clear 

association of their clinical effect with reactivation of impaired T cells. This principle can 

be extended to other immune-modulating therapies, e.g. T-cell homeostatic cytokines such 

as interleukin-2 (IL-2)100, once they have been shown to convey clinical benefit through 

pre-existent yet functionally impaired neoantigen-specific T cells.

3.3 Ignored neoantigens [G]

Only a very small fraction of mutations in a given human cancer appear to induce 

spontaneously occurring T-cell response14,15,101. Similarly in mice, a substantial fraction of 

mutations identified by NGS in syngeneic tumours were not spontaneously immunogenic23.

The lack of spontaneous immunogenicity does not mean that T cells against these ignored 

antigens would not be capable of contributing to tumour rejection. In fact, systematic 

immunogenicity studies in mice showed that 15-40% of the cancer mutations identified by 

NGS in murine tumours induce robust T-cell responses (with more CD4+ than CD8+ ones) 

when used as vaccine antigens23,102. A large portion of the induced immune responses were 

of high magnitude and resulted in shrinkage and rejection of established tumours, antigen 

spreading [G] and changes to the immunosuppressive environment23. Several clinical trials 

using individualised neoantigen vaccines in patients with high and low mutational load 

tumours such as melanoma, lung cancer, glioblastoma, ovarian cancer and pancreatic 
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cancer19,20 103–108 (reviewed in109,110) showed up to 70% immunogenicity across all 

neoepitopes used in those vaccines. The vast majority of these immune responses were 

not detectable prior therapy and de novo induced by vaccination19,20. The relevance of 

vaccine-induced neoantigen immune responses was supported by detection of infiltrating 

vaccine-induced T cells in post-treatment biopsies, killing of autologous patient-derived 

tumour cell lines in vitro, and patients with shrinkage of tumour lesions, objective clinical 

responses or reduction of recurrences20.

We propose the term ignored neoantigens for these mutant gene products that, although 

presented on MHC molecules, are incapable of eliciting a T-cell response and require 

vaccination to induce a clinically relevant T-cell response. We hypothesise that ignored 

neoantigens are characterised by a moderate level of neoepitope presentation which is below 

the threshold for priming of naïve T cells but above the level for recognition by memory 

T cells (Fig. 5). The purpose of a vaccine is to load LN-resident DCs with sufficient 

amounts of neoantigen to achieve priming. A substantial proportion of mutations encode 

neoantigens with either low expression and high MHC binding affinity, high expression and 

low binding affinity, or moderate expression and binding affinity. Thus, ignored neoantigens 

are a rich and complementary source of targets for neoantigen vaccines or cell therapy with 

individualised TCR-engineered T cells. Ignored neoantigens may be particularly relevant 

to stimulate poly-specific T-cell responses in patients with low mutational load tumours. 

Even though lower in frequency, guarding and restrained neoantigen candidates may be also 

highly relevant targets, to include into personalised vaccines.

As vaccine-induced T cells up-regulate PD120,111 even patients who are resistant or 

refractory to ICB monotherapy may benefit form combining vaccines and ICB and 

vaccines may expand the repertoire of pre-existent T cells for ICB107 to include ignored 

neoantigens. Moreover, by counteracting immunosuppressive mechanisms, ICB may lower 

the neoantigen presentation threshold required for priming naïve T cells, thereby broadening 

T cell responses by antigen spreading60,61,81.

4 Prediction of neoantigen candidates

4.1 Immunobiology driven approaches

The most basic prerequisite for an immune response is that the aberrant gene product that 

results from the somatic mutation is transcribed, translated, processed and presented on 

MHC molecules. Therefore, verification of expression and prediction of binding affinity to 

the patient’s MHC alleles are the two key upfront elements of current neoantigen prediction 

computational pipelines [G] (Supplementary Table 1).

Beyond these, other potentially relevant biological features are implemented into algorithms 

to rank neoantigen candidates (Table 3).

These include features that may impact proficiency of a presented neoepitope candidate to 

activate T cells (dissimilarity to self-antigens tested by sequence homology queries) or its 

likelihood of immune escape by outgrowth of antigen-loss variants (such as clonality of the 
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mutation computed by DNA sequencing data analysis or driver mutations determined by 

database queries).

Whereas the features described below are based on sound rationales, how to weight each 

of them for prioritising neoantigen candidates for vaccine design is not established, in 

particular given that features have not been correlated with context-based neoantigen classes. 

Our own benchmarking studies of neoantigen features indicate that a critical mass of 

available datasets for accurate prediction of immunogenicity does not yet exist, and datasets 

are too diverse and not standardised. Most immunogenicity studies use datasets derived from 

testing of pre-existing T cell specificities. These T cells are most likely a mixed basket 

including T cells primed by the neoantigen itself or T cells that benefit from heterologous 

priming by unrelated antigens. The context-based classification provided in Chapter 3 may 

contribute to a framework that differentiates neoantigen candidates based on the clinical 

question asked and tailors data mining approaches accordingly.

4.1.1 Transcript Expression—The density of detected peptide/MHC complexes 

correlates with protein levels and transcript expression112. Tumour cell clones that express 

neoantigens derived from high abundance transcripts are efficiently cleared under ICB 

therapy113 and downregulation of neoantigen candidates is an immune escape strategy72. 

Further, transcript abundance has been shown to compensate for low MHC binding affinity 

of a mutation 37. In aggregate, these data support the notion that high transcript expression is 

associated with a higher likelihood of functional T-cell response. Therefore, various studies 

use gene expression to rank neoantigen candidates15,20,23.

To quantify the expression of a mutation and its wild-type counterpart, both transcripts 

are searched in bulk RNA-seq data generated by NGS of RNA extracted from a tumour 

biopsy. Usually, expression analysis is performed only for the tumour tissue and not for the 

corresponding healthy tissue sample and tumour specificity of the mutation is confirmed by 

exome sequencing. Quantification of altered transcripts can be fast and reliable with tools 

such as kallisto, which pseudoaligns [G] reads against a reference transcriptome to detect 

the most likely transcript for each read114.

4.1.2 MHC binding, stability and cell surface presentation—The capability of 

a mutation to bind to at least one of the MHC alleles of the patient in question is the 

most elementary requirement for T-cell recognition. Collaboration of antigen-specific CD4+ 

and CD8+ T cells is critical for efficient anti-tumour immunity115. Expression of a single 

MHC-I neoantigen alone is not sufficient and at least one additional MHC-II neoantigen is 

required for meaningful anti-tumour immunity in mouse tumour models 53. Accordingly, an 

individualised vaccine should combine neoepitopes predicted to bind to MHC-I as well as 

MHC-II alleles of the patient.

Published tools that predict MHC binding affinity are trained on wet lab binding affinity 

data and/or eluted ligands detected by mass spectrometry. Recent benchmarking studies 

used ROC (receiver operating characteristic)-curve [G] analysis as the performance metric 

to assess prediction tools for MHC-I binding and presentation in humans116 or for T-cell 

responses in mice117. NetMHCpan118 and MHCflurry119 achieved the best ‘area under 
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the ROC curve’ (ROC-AUC) in these studies. Whereas these both tools are trained on 

binding affinity and eluted ligand data, MixMHCpred120,121 is trained on eluted ligands 

only. MixMHCpred predicts the likelihood of a given peptide sequence to be presented on 

the cell surface and achieves higher ROC-AUCs in comparison to the MHC binding tools in 

a benchmark study using ROC-curve analysis on a larger dataset of experimentally verified 

MHC-I-binding epitopes122. All tools perform sufficiently well for enriching peptides with 

decent MHC-binding properties. The lack of ligand data for rare MHC alleles is a limitation 

and is addressed by tools such as NetMHCpan that use MHC sequence homology with more 

frequent MHC alleles to infer potential ligand preferences123.

The stability of the neoeptiope/MHC complex has been proposed to be more important for 

immunogenicity prediction than the binding affinity, as higher stability may increase the 

probability of the complex being recognised by T cells124. Tools for stability prediction, 

e.g. NetMHCstabpan perform well to enrich for immunogenic mutations and will improve 

further with bigger training datasets becoming available 125,126

Patients with a complete germline heterozygosity at MHC-I loci have a better survival upon 

ICB therapy than patients exhibiting homozygosity for one or more MHC-I genes127, as a 

higher diversity of alleles increases the likelihood for a given neoantigen to find an allele to 

bind127–129.

NetChop130 or NetCTL131 predict proteasomal cleavage and transport into the endoplasmic 

reticulum by the TAP protein complex [G], which are prerequisites for an epitope to 

eventually be loaded onto an MHC-I molecule. However, as methods for predicting MHC 

presentation are trained on ligands eluted from MHC, which have gone through those earlier 

processing steps, the value of combining cleavage, transport and binding prediction tools is 

questionable.

4.1.3 Dissimilarity to self and similarity to pathogen-associated epitopes—
Dissimilarity to the non-mutated wild-type sequence (in particular if it is presented by one of 

the

patient’s MHC alleles) and, more broadly, to the self-proteome, may lower the likelihood 

that the respective neoepitope is subject to immune tolerance and increases the likelihood 

for the presence high-affinity T cells in the T-cell repertoire132,133. One approach to leverage 

the dissimilarity hypothesis is to use alignment scores resulting from BLAST (Basic Local 

Alignment Search Tool) [G] searches against the non-mutated proteome as substitute for 

TCR binding energies133. Another approach uses a kernel similarity measure for the mutated 

and the corresponding wild-type epitope132. These metrics were reported as predictive 

for identifying neoepitopes derived from SNVs and may be even more so for frameshift 

INDELs or fusion genes.

Sequence similarity of a neoepitope to pathogen sequences may be associated with a 

higher likelihood for cross-reactivity with preformed T cells directed against frequently 

encountered pathogens (reviewed in49). A study characterising neoantigens in pancreatic 

cancer patients identified the combination of DAI and sequence similarity to pathogen-
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associated epitopes as features for guarding neoantigens discriminating long-term and short-

term survivors50.

4.1.4 TCR recognition—Methods that address the TCR’s interaction with the 

peptide/MHC complex are based on predicting the amino acid side chains of the TCR that 

will face the MHC-bound peptide134 or the stability of the peptide-MHC complex which is 

associated with higher likelihood of TCR binding135. Exploratory approaches are underway 

that subject the amino acid sequence of the TCR to an artificial neural network [G] to 

predict the binding of a given TCR to the peptide/MHC complex136, thus circumventing 

the use of structural modelling. Another approach claims to predict the most likely cognate 

peptide/MHC target of a TCR137 based on the TCR sequence. However, these methods are 

not mature yet, operate at the limit of current computational algorithms, as the diversity of 

the MHC/peptide/TCR combination space is huge and the available experimental training 

data is not sufficient to train algorithms.

4.1.5 Mutation clonality and indispensibility—The clonal architecture of a cancer 

sample can be assessed by analysing the variant allele frequency [G] identified in a patient 

with PyClone138 or SciClone139 The robustness of the prediction depends on sample quality. 

A sample with low tumour content, for example, is unlikely to deliver an accurate clonal 

architecture. For robustness, multiple samples from the same tumour may be required, which 

is difficult to implement in a routine clinical setting.

Clonal and truncal mutations [G] may be preferable over subclonal and branched mutations 

[G], as they allow to address tumour heterogeneity, and target tumour cells with potentially 

higher fitness and tumour-promoting function140. T-cell specificities that target a few 

high quality neoantigens may be sufficient to drive tumour control in treatment-naïve 

cancer patients and may be predictive for prolonged survival in ICB treated patients90,141. 

Neoantigens that exist prior to genome doubling will have higher variant allele frequencies 

than those generated after genome doubling. In NSCLC more than 70% of patients have 

whole genome doubling as an early clonal event142.

The majority of driver mutations appear typically early in tumour evolution and have a high 

likelihood of being clonal94,143. Driver mutations per definition promote cancer cell fitness 

and are considered to be stable. Databases like COSMIC144 or DriverDB145 list known 

and functionally validated driver genes. While experimentally validated immunogenic driver 

mutations are rare42,146, computational methods have been developed that allow screening 

for novel driver mutations147.

Passenger mutations may also occur early and be clonal148. The designation ‘passenger’ is 

misleading as it implies that the respective mutated gene is dispensable and that the mutation 

does not provide an advantage for tumour cell survival and is prone to be lost during 

tumour evolution. Validation of a mutation to be a driver requires extensive experimental 

characterisation and proof that it transforms normal cells into tumour cells. Such studies are 

not undertaken for rare or unique mutations. As lack of evidence is not evidence of absence, 

mutations dubbed as ‘passenger’ may well provide a biological advantage in the setting of 

the individual cancer disease.
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Computational analyses indicate that driver mutations are less frequently presented on 

MHC-I and MHC-II128,129,149,150. For inducing anti-tumour immunity, the degree of 

foreignness of the vaccine antigens may be much more relevant than their functional role in 

the cancer cell.

4.1.6 Loss of heterozygosity of essential gene products—Genes are usually 

present in two copies within the genome. If an essential gene is subject to LOH and 

generates a neoantigen from the remaining allele, the tumour cannot escape by neoantigen 

loss, as the remaining allele is required for tumour cell survival. Therefore, mutations 

in essential genes undergoing LOH may be particularly excellent targets for neoantigen 

vaccination151. LOH in coding regions can be reliably predicted from deep sequencing152 

and microarray data analysis153. Genetic knockouts and gene silencing studies have 

provided lists of about 1,600-2,500 genes that appear to be essential for cell survival154–156 

and may facilitate prioritisation of neoantigen candidates.

4.2 Deep learning based approaches

Artificial neural networks are inspired by biological neural networks. To predict 

binding of epitopes to MHC molecules, artificial neural networks that were trained 

on data from MHC binding assays are explored119,136,157,158. Neural networks trained 

on high quality immunopeptidome data from monoallelic cell lines show excellent 

performance for prediction of MHC-I and MHC-II binding37,38,159. Also, physico-chemical 

properties (for example energies of attraction and repulsion, hydrogen bond energies 

and confirmation energies) derived from three-dimensional (3D) structure models of 

peptide/MHC interactions are being used to train neural networks with early promising 

results160. Experimentally generated 3D structural data (e.g. crystal structures from X-ray 

refraction experiments) is limited in availability. Structure-based neoantigen prediction 

strategies may benefit from availability of broader experimental data or as in silico modelled 

3D structures improve in accuracy for predicting MHC/ligand interactions.

Deep learning [G] models (Box 2) have led to critical breakthroughs in image analysis and 

speech recognition161 and are now being explored for immunogenicity prediction. Deep 

networks use multil-ayer architecture to adapt to complex relationships within the training 

dataset. They have the potential to uncover patterns in peptide sequences that are missed by 

other machine learning algorithms or are not reflected in current biological hypotheses.

Such networks were published for MHC-I and MHC-II binding and ligand prediction162. 

The deep learning approaches EDGE and MARIA model the presentation of MHC-I 

or MHC-II epitopes, and use transcript abundance and flanking sequence as additional 

features163,164. Application of MARIA164 to perform retrospective analysis of a dataset 

obtained from a melanoma neoantigen vaccine study showed that enrichment for 

neoepitopes that induced high-magnitude CD4+ T-cell responses. EDGE163 was used for 

neoepitope prediction in melanoma, gastrointestinal cancer and breast cancer and enriched 

for neoepitopes that expanded pre-existing CD8+ T-cell responses (Table 4). DeepHLA 

combines the prediction of a MHC binding score and an immunogenicity score in one 
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model165. Another approach subjects the amino acid sequence of the TCR to a deep artificial 

neural network to predict the binding of a given TCR to the peptide/MHC complex136.

While deep learning algorithms show promising results to a certain extent, further 

maturation is required prior broad use. One obstacle is the lack of sufficiently large and 

standardised datasets with high quality T-cell response data and discrimination between 

datasets reflecting immunogenicity [G] versus antigenicity [G]. Another obstacle is that 

datasets have to be well curated and balanced, with comparable numbers of positive and 

negative training samples for the network to learn correct patterns166. Precise deconvolution 

of the allele-specific peptide/MHC binding patterns is critical for the use of pan-allelic 

data from mass spectroscopy experiments. Moreover, deep learning approaches often lack 

interpretability, making it difficult for the user to deduce critical biological features.

5 Challenges in Translation

5.1 Technological challenges

5.1.1 Biosamples as analytes—As heterogeneity is a hallmark of cancer, multiple 

biopsies of the same tumour lesion result in different molecular profiles78,80 and neoantigen 

candidates identified in one metastatic lesion of a patient differ from those in a second 

metastatic lesion or the primary tumour79.

The primary tumour, even if it is a historical and archived sample, may inform on clonal and 

truncal mutations and on the seed clones of disseminated metastatic lesions140. Metastatic 

lesions that are biopsied at a point of time close to the planned vaccination reflect the 

most recent status of the neoantigenome167. There is evidence that guarding neoantigens 

expressed in the primary tumour are lost from metastatic lesions50. Ignored neoantigens 

are not subject to selective pressure and likely to be more homogenously expressed and 

preserved across different lesions even in advanced disease, higher metastatic load and 

increasing immune suppressive mechanisms.

Many protocols are based on a single biopsy that may neither fully capture the heterogeneity 

of the probed individual tumour lesion, nor be representative in case of oligo- or multi-

metastatic disease168. Thus, the resultant composite neoantigen vaccines may represent a 

minor proportion of the targets in a patient’s lesion, generating mixed responses at best.

Multi-region or even multi-lesion sequencing would require additional invasive procedures 

and is difficult to implement into clinical practice routines142,169. This dilemma is not 

new: standard-of-care treatments such as tyrosine kinase inhibitors or checkpoint inhibitors, 

for which a companion diagnostic approach determines eligibility, rely on single biopsies. 

This dilemma could be overcome by computational algorithms that untangle the tumour 

heterogeneity and infer higher order organisation of tumours based on single biopsies.

Collection and storage conditions of biosamples may affect sequencing data. Fresh frozen 

samples deliver the best data quality but require complex logistics. Formalin-fixed, paraffin-

embedded samples are broadly available, but the fixation process is associated with 

sequencing artefacts170. Biopsies are more convenient for patients than surgical resectates 
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but may yield insufficient amounts of analyte or even no tumour cells 171. As trivial as these 

hurdles may sound, they are relevant in practise172. A less invasive method such as liquid 

biopsy, which analyses circulating tumour DNA (ctDNA) from the patients’ blood, may 

provide a more comprehensive representation of multi-site disease and is easier to collect. 

While conceptually attractive the allele frequency of mutations in plasma DNA samples is 

often low and current technologies are limited to the detection of a predetermined set of 

mutations173. Further technological breakthroughs are required to enable a highly sensitive, 

unbiased identification of cancer mutations by liquid biopsies.

5.1.2 Mutation calling—The mutation calling process [G] begins with cleaning of 

sequencing reads, followed by sequence alignment [G] to a reference genome. The 

subsequent mutation calling has to distinguish accurately somatic variants from sequencing 

errors, sample preparation artefacts and germline mutations. Many software tools exists to 

address critical limitations of mutation calling. Commonly used tools (Table 5) vary in their 

ability to detect different mutation classes such as SNVs or INDELs, to handle tumour 

heterogeneity while maintaining acceptable levels of accuracy, and to deliver within an 

acceptable runtime. No single perfect solution exists and often the approach is to base the 

called mutations on the consensus of different tools174. Detection of SNVs is most advanced 

in terms of sensitivity and specificity, whereas these performance metrics are less favourable 

for e.g. INDELs175,176 or fusion genes177.

Tumour samples display a high degree of heterogeneity, e.g. with regards to clonality, 

somatic copy numbers and sample contamination with healthy cells178–180. Data generated 

by sequencing represents the average across all sampled cells. Therefore, the signal-to-noise 

ratio for the actual computational variant detection process is compressed. Heterozygous 

somatic SNVs in genes with a duplicated WT allele in a sample with only 30% purity 

can be a typical use case. In this example, the expected number of reads with the mutant 

variant would been reduced more than ten-fold to less than 5%, making the sequence change 

difficult to distinguish from noise.

The challenges that are posed by the intra- and inter-tumour heterogeneity call for improved 

approaches of integrating multiple data sources and variant types, as well as a structured 

reproducible workflow for analysing multiple samples from a single patient.

5.1.3 Dataset availability and quality—Setting parameters for neoantigen prediction 

algorithms and training them relies on the availability of well-curated datasets. Data 

integration and comparability is compromised by the lack of harmonised protocols for 

sequencing, mutation detection, neoantigen candidate prioritisation and immunogenicity 

testing. Immunogenicity datasets are often unbalanced, as the most likely immunogenic 

candidates are preferred for testing and the rules guiding candidate selection differ between 

studies. For many such datasets clear and consistent biological definitions are either not 

provided or not acknowledged. For example, depending on the question to be answered, 

meta-analyses pooling datasets of patients treated with different ICBs (e.g. blocking PD-1, 

PD-L1, CTLA4 or PD-1/CTLA4 in combination) or of datasets derived from patients in the 

adjuvant versus metastatic advanced setting is not advisable.
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Furthermore, various methods are used for assessing neoantigen-specific T-cell responses, 

including IFN-γ ELISpot assays with or without prior expansion of T cells in cell culture, 

intracellular cytokine staining and flow cytometry and peptide/MHC multimers (reviewed 

in181). The T-cell assays differ with regard to their sensitivity, accuracy and which T-cell 

phenotype they detect. Consequently, depending on the assay, pre-existing responses may 

be missed due to low sensitivity and guarding or restrained neoantigens may falsely be 

classified as ignored neoantigens. For instance, an immunogenicity dataset may represent 

CD8+ or CD4+ T-cell responses or both, may describe neoantigen-specific T cells that 

occur spontaneously, upon ICB therapy or vaccination, or may have been obtained with 

non-comparable assay methods. Efforts to compile sets of neoantigens identified in different 

studies are often compromised by missing essential technical and biological information that 

had not been documented182,183.

Long-term clinical outcome data differentiating efficacy endpoints such as objective 

response, progression-free survival, and overall survival from on-going clinical trials that 

study neoantigen vaccination, will be a valuable addition and could reflect anti-tumour 

efficacy of selected neoantigen candidates.

While there is some effort to achieve harmonised datasets, such as studies done by 

the TESLA (Tumour Neoantigen Selection Alliance) consortium126, the many variables 

involved and the polymorphic nature and inter- and intra-patient variability of key biological 

determiners (TCRs, MHCs) will likely require several thousands or more data points rather 

than the few hundreds that are available nowadays. Algorithms that allow the creation of 

accurate prediction models while trained on relatively few data points and application of 

advanced techniques such as active learning184 or transfer learning185 are required.

5.1.4 Vaccine design—Vaccine design has two components: (i) selection of the 

technology platform, and (ii) selection of the set of individual neoepitope candidates to 

be delivered by this platform.

The molecular nature of MHC-presented epitopes derived from mutations allows 

combination or concatenation of multiple short sequences representing neoepitope 

candidates. Published clinical studies used between 2 and 20 mutations per individual 

vaccine19,20,104. Many vaccine formats would allow administration of dozens of mutations 

per patient. Thus, a vaccine can be designed to feature different complementary categories 

of neoepitopes e.g. MHC-I and MHC-II, clonal and subclonal, ignored spiked with a few 

restrained and guarding neoantigens. This mitigates the risk of betting on a biological 

hypothesis which may later prove to be wrong.

Vaccine technologies are still at an experimental stage and various formats are being 

explored in clinical studies for individualised as well as off-the-shelf cancer vaccines (for 

review of cancer vaccine formats see186,187).

The most frequently used vaccine formats are mixtures of 15-30 aa long peptides 

corresponding to the mutated sequences with poly-ICLC as adjuvant19, and mRNA 
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formulations with intrinsic adjuvant activity which encode a string of multiple predicted 

neoepitopes20.

Moreover, pre-clinical or clinical trials explore viral vectors188–191 or DNA192–194 in 

conjunction with various adjuvants. For each vaccine format, the need for adjuvant and the 

specific vaccination schedule (requirement and frequency of boosts after initial priming) 

need to be determined individually. It complicates learning exercises that the vaccine 

technology will affect substantially whether a neoepitope candidate is delivered in a way 

that its potential to induce an immune response is actualised.

The vaccine format impacts speed, scalability and costs of manufacturing that is probably 

the most critical element for the viable implementation of individualised vaccines into 

clinical practice. A vaccine technology that is synthetic and allows for fast production at 

low cost by an unsophisticated, robust, invariant, and GMP (good manufacturing practice)-

compliant process is favourable.

Manufacturing individualised cancer vaccines requires a multitude of simultaneous, highly 

parallelised production campaigns, with each campaign representing a drug product 

for one individual. This is very different from the pure bulk-upscaling paradigm of 

manufacturing processes pursued in conventional pharmaceutical development. Suitable 

production technologies are required to be innovative, cost- and time-optimised and will 

benefit from. Emerging solutions for the mass production of customised products in the 

imminent future are potential enablers for individualised vaccine manufacturing. These 

may include full digitisation of production processes and autonomous cloud-controlled 

production plants that may arise based on advances in computational power, connectivity, 

human-machine interactions, robotics and innovative 3D technology enabling the building of 

parallelised miniaturised production lines at scale195,196.

5.2 Challenges for clinical application

This review focuses on the process of getting from a patient sample to an injectable vaccine 

composed of a unique set of neoepitope candidates. There are further critical challenges to 

get such a vaccine into clinical development and on a sustainable path suitable for potential 

registration and implementation into clinical practice (reviewed in16,197–199).

As for any drug, clinical efficacy and superiority over standard of care have to be shown 

in randomised trials. What is different, though, is that each patient in the investigational 

arm receives a drug of distinctive composition that is manufactured on-demand during the 

ongoing trial via a standardised process rather than being ready and released before the trial 

has started. This paradigm shift from a drug-centred to a patient-centred approach requires 

regulatory approval not of a single compound but rather the process from sample acquisition 

to vaccine design and production161,199,200 (Box 3).

One pertinent question is the most suitable clinical setting. Targeting patients with 

minimal residual disease has the advantage that immune-suppressive mechanisms are not 

firmly established and that turnaround time of a vaccine production is not a limiting 

factor. Efficient control of larger tumour loads, in contrast, may require combination 
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immunotherapies. Neoepitope vaccines are safe and well tolerated. Thus, combining them 

with other drugs carries low risk of added toxicities while leveraging synergistic modes 

of action. The combination of neoepitope vaccines with checkpoint inhibition keeps the 

repertoire of vaccine-induced T-cell specificities functional.

The most likely escape mechanisms from a strong multi-antigen T-cell response involve loss 

of the target antigen or of components of the antigen-presentation machinery. This can be 

addressed by combining the vaccine with approaches that do not depend on HLA-presented 

antigens, e.g. chimeric antigen receptor (CAR)-engineered T cells, antibodies or bispecific 

T-cell engagers.

6 Outlook

Boosted by technologies such as NGS, increased computing power and advanced algorithms 

the field of neoantigen identification has evolved enormously in the past decade. In parallel 

to the continuous progress and efforts invested in improving neoantigen prediction tools, 

clinical trials explore neoantigens as single or combinatorial targets for immunotherapy 

and generate data that contribute to an ever-clearer knowledge of the underlying science. 

ClinicalTrials.gov currently lists 61 clinical studies associated with the search terms 

“neoantigen AND vaccine”201. Reports from individualised neoantigen vaccination studies 

indicate early clinical activity signals of vaccines alone and in combination with PD(L)-1 

blockade19,20,104,106.

Further progress in NGS technologies202 and mass spectrometry-based MHC ligandome 

analysis121,203 will support the neoantigen field with higher resolution and lower noise. 

Technology advances will tap new neoantigen classes, for instance derived from non-coding 

and ‘dark matter’ regions of the genome and from non-canonical translation204,205.

While the understanding of anchor and TCR-facing residues within T-cell epitopes is 

evolving206,207, the potential of connecting neoantigen and TCR profiling datasets is not 

yet fully actualised. New prediction tools and studies incorporate TCR sequences and 

model the interaction of mutated peptide/MHC complexes with TCRs e.g. 136,137,208,209. 

Structural analyses of the interaction between TCRs and their cognate neoepitopes will 

provide deeper insights into the structure-dependent mechanisms of mutation-specific T-cell 

recognition that cannot be inferred from the sequence alone210. The underlying complexity 

needs to be tamed with new artificial intelligence-based applications and by substantially 

increasing computing power. Standardised datasets generated by using well-thought through 

experimental designs and accurate and sensitive computational workflows and featuring 

biological and clinical information will shape a robust foundation for closing existent 

knowledge gaps. Approaches towards true translational medicine such as the proposed 

context-based differentiation between guarding, restrained and ignored neoantigens will 

contribute to a framework that connects neoantigen science to clinical settings and medical 

features and peculiarities of cancer diseases enabling future neoantigen-dependent therapies 

to provide greater clinical benefit.
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Finally, once the technology to pinpoint the relevant neoantigens for an individualised 

vaccine design at a given time point is optimised and paired with concepts to use sequencing 

data for early recognition of acquired resistance mechanisms of an individual tumour, 

adaptation of an individual’s vaccine boosters to the dynamics of their disease over time is 

conceivable.
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Box 1

Classification of neoantigens according to molecular characteristics

Somatic mutations that are the basis for the foreignness of cancer cells may result in 

protein sequences that depending on the type of mutation are altered in different ways 

(FIG BOX1). An important future field of development is to tap the various categories 

described below and others (e.g. non-coding regions of the genome) to broaden the 

discovery space out of which neoepitopes can be predicted.

SNVs

Single nucleotide variants (SNVs) represent the exchange of single nucleotides within 

the genome and are the most abundant mutation type in the majority of cancers260. Most 

SNVs generate neoantigens with a single amino acid substitution. In very rare cases, e.g. 

if a native stop codon is destructed, SNVs may create longer neoantigen sequences.

SNVs were the focus of the first efforts of predicting neoepitopes and their application 

in clinical trials. SNV burden is predictive for the clinical efficacy of ICB8,261 and SNV-

derived neoantigens were successfully targeted in individualised neoantigen vaccination 

trials, e.g. in melanoma and glioblastoma19,20,104,106

Whereas individualised treatment remains the mainstream approach for the broader 

patient population, efforts to discover shared SNVs that would enable standard clinical 

trial and development routes are being pursued. Several experimental studies report 

neoantigens that derive from shared mutations (Table 1). The common oncogenic 

mutations KRAS G12D in patients with metastatic colorectal cancer and other tumour 

types, and IDH1 R132H in glioma can trigger antigen-specific immune responses 

associated with tumour regression42,52,108,146. However, overall, the vast majority of 

shared SNVs are rare and in general confined to small subsets of patients.

INDELs

Insertions or deletions of nucleotides (INDELs) can result in neoepitopes, however those 

generated by frameshift INDELs may be longer and unrelated to known sequences and 

thus have a higher likelihood to be immunogenic262.

However, INDEL mutations may introduce premature stop codons, which in turn can 

induce non-sense mediated decay (NMD) of the respective RNA. Of note, INDELs that 

are predicted to escape NMD, were shown to correlate better with clinical response 

to ICB as compared to INDELs in general or to SNVs263. Neoepitope candidates 

from INDELs show superior MHC binding capability as compared to SNVs. Tumour 

mutational burden analyses that include INDEL frameshift mutations correlate better 

with clinical response of melanoma patients to anti-PD1 or anti-CTLA4 than analysis 

based on SNV alone96.

The high incidence of INDEL mutations in tumour entities with low SNV burden96,264, 

may expand the application of neoepitope-based immune therapies to these tumour 

entities.

Fusion Genes
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Intra- and inter-chromosomal rearrangements may join two unrelated genes to produce 

a fusion gene. A prominent example is the BCR-ABL1 fusion gene in chronic 

myelogenous leukaemia (CML), that is found in ~90% of CML patients265. Experimental 

evidence supports immunogenicity of this shared fusion (TABLE 1). The vast majority of 

fusion genes, however, appear to be individual266.

In a head and neck cancer patient responding to PD-1 blockade, despite low SNV 

burden, a T-cell response against the DEK–AFF2 fusion gene was observed, while no 

neoantigens from other mutation classes were identified99.

Overall, gene fusions are considered to be relatively rare events267 and the 

immunotherapeutic utility of fusion gene-derived neoantigens is not fully grasped yet.

Splice Variants

Alternative splicing generates diversity and lineage-specificity by expression of multiple 

RNA and protein isoforms from one gene, is dysregulated in cancer cells and may 

generate neoepitope sequences268–272. If a somatic mutation in the respective gene results 

directly in its altered splicing, tumour specificity of the splice variant (which is a key 

defining criterion for a neoantigen) can be assumed. This may not be true for aberrant 

splice variants generated by other mechanisms such as cancer-associated epigenetic 

alterations. Here, physiologically expressed splice variants in a distinct cell lineage may 

be ectopically activated in cells of unrelated lineage.
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Figure Box 1. Mutation classes and neoantigen and neoepitopes derived thereof.
SNVs change a single amino acid. INDELs and fusion genes may be in-frame and 

preserve the original open reading frame or they may cause a frameshift, creating novel 

open reading frames downstream of the mutation site. Alternative splicing may occur 

by various mechanisms including the usage of alternative splice sites, skipping of exons 

or intron retention events. All of these classes may generate neoepitope sequences that 

are foreign to the immune system. Novel sequence regions derived from mutations are 

indicated in red.
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Box 2

Machine learning and deep learning.

Machine learning refers to the use of algorithms for learning patterns in data. Machine 

learning tasks may be divided into supervised (predicting a label) and unsupervised 

learning (pattern recognition). Deep learning describes a class of machine learning 

algorithms that employ deep neuronal networks mainly for supervised classification 

tasks. However, both regression as well as unsupervised learning can be performed with 

deep learning tools as well. Artificial neural networks are inspired by biological neuronal 

networks. In general, their architecture comprises an input layer, hidden layer(s) and an 

output layer. The input layer receives the data as numerical values. The association with 

weights and nonlinear transformation abstracts the input data during propagation across 

the hidden layers. Neural networks that support deep learning have more than one hidden 

layer, and the number of hidden layers defines the deepness of the network. The output 

layer provides the predicted class label. Training of a network involves comparison of the 

predicted label with the true label to calculate the loss function [G] that is optimised by 

updating the weights on the hidden layers. While deep learning is regularly applied in 

areas such as image processing, it is still in its infancy in fields in which the amount of 

high quality labelled data for the respective subject matter is insufficient; interpretation 

of neuronal networks is also not straightforward. Deep learning and its applications in 

biomedicine has been extensively reviewed elsewhere166,273.
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Box 3

Principles of technical and analytical software validation

The entire neoantigen prediction process relies heavily on software and computerised 

systems. For the application of such systems in clinical studies and later in a 

pharmaceutical product, the technical validation of the systems is a regulatory 

requirement. Validation is the continuous process of demonstrating that a computerised 

system is fit for the intended use and part of a quality assurance program. Good 

Automated Manufacturing Practice274 represents the industry standard for validation of 

automated systems, which includes any computer system, ranging from programmable 

calculators and embedded devices to super computers and any software running on those 

machines. GAMP reflects the requirements of the legislation called Good Manufacturing 

Practice (GMP), as is codified e.g. in the United States 21 CFR 210/211 or the European 

Union GMP guidelines. The basic validation process follows traditional software 

engineering practices, including detailed documentation of the requirements at different 

abstraction levels (e.g. user, functional and configuration), followed by documented 

qualification and testing of system components and finally the whole system. A key 

difference to pure software engineering is the inclusion of detailed risk evaluations 

at every stage, focusing on potential safety issues for the patient. Novel software 

engineering and computational concepts like agile development or cloud computing have 

been introduced into the GAMP framework in the recent years.

For analytical validation of the performance, robustness and repeatability of the process, 

the NGS process poses a challenge. A typical exome-sequencing experiment involves 

analysis of about 50 million genomic nucleotides as data points and random erroneous 

mutation calls will occur to some extent. Quality controls include demonstration of 

reproducibility and whole exome coverage. Optimised lab protocol and robust mutation 

calling algorithms are required to account for data obtained from low quality clinical 

samples. Machine learning based neoantigen prediction methods rely on the amount and 

quality of training data, which continuously and swiftly is growing. Increasing the size 

and quality of training datasets may improve the performance of such software tools 

even if the underlying algorithms are not substantially changed. Quality improvements 

on the fly may translate into better and more efficacious vaccines. As long as iterative 

improvements of the neoantigen prediction and individual vaccine design are not 

associated with safety concerns it is desirable to enable quality improvements updates 

within an ongoing clinical trial, a clinical development program or even once a product 

is approved. To this aim, a regulatory path must be defined, which allows the necessary 

degree of flexibility for process improvements while maintaining the safety properties of 

the product itself.
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Glossary

Adoptive T-cell therapy
Immunotherapy in which T cells are taken from the patient’s tumour tissue or blood, 

expanded in vitro and then transferred back to the patient to support the immune system’s 

natural fight against the cancer.

Alignment of NGS reads
Mapping sequencing reads to a reference genome to determine the genomic loci of 

origin.

Anchor residue
Position in a MHC epitope with specific amino acid preference.

Anergy
A hyporesponsive state in which an antigen experienced T cell is functionally impaired 

and does not adequately respond to cognate antigen exposure.

Antigen spreading
Expansion of an immune response to secondary epitopes, or other antigens that were not 

targeted by immunotherapy.

Antigenicity
Immune responses induced by vaccination as in the case of ignored neoepitopes.

Artificial neural network
Computing system which is inspired by biological neural networks and that applies tasks 

based on learned patterns.

BLAST
A tool to find local regions of similarity between biological sequences. It enables to 

compare a sequence of interest to a database of sequences and identify the sequences 

with highest local similarities.

Branched mutation
A mutation that occurs later during tumour evolution and is only present in a subset of 

tumour cells.

Cancer mutanome
Set of all non-synonymous somatic mutations occurring in a tumour.

Central tolerance
Thymic elimination of self-reactive T cells

Clonality
The fraction of tumour subclones that harbour a given mutation

Clonal mutation
A mutation that is present in all subclones of a tumour. In practise, the definition 

of clonal vs sublconal mutation is not standardised and depends on the experimental 

setting and bioinformatics tools as these provide a numeric estimation of clonality (e.g. 

PyClone138).
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Mutation calling process
Mutation calling strategy in which the overlap (consensus) from at least two different 

mutation callers is used to define the final set of mutational events.

Co-stimulatory signal
Secondary signal required to activate immune responses in the presence of antigen-

presenting cells.

de novo immune response
Vaccine induced antigen-specific T cell response that was not detectable prior 

vaccination. Used as opposed to the augmentation of a pre-existing T cell response.

Deep learning
Machine-learning methods using multi-layer models for feature extraction and pattern 

learning.

Driver mutation
A mutation that improves fitness of a tumour cell.

Differential agretopicity index (DAI)
Difference in MHC-I binding affinity between neoepitope and corresponding non-

mutated peptide.

Guarding neoantigen
A neoantigen that drives a prognostically relevant tumour immunity in the absence of an 

immunotherapy

Heterologous immunity
Cross-reactive T cell immunity induced by an unrelated antigen, often pre-existent before 

tumour onset.

Ignored neoantigen
A neoantigen lacks intrinsic antigenicity but could serve as target for immunotherapy

Immune surveillance
A hypothesis that assumes that immune cells monitor, identify and eliminate pre-

malignant or malignant cells in the body.

Immune escape
Mechanisms of tumour evolution allowing tumour cells to escape from a host’s immune 

response.

Immunoediting
A hypothesis that describes the close interaction between tumour and immune system 

and transition between immune protection against tumour development and tumour 

outgrowth in three phases: elimination, equilibrium, and escape.

Immunogenicity
Induction of immune responses without vaccination as in the case of guarding and 

restrained neoepitopes.

Loss function
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A function that calculates how well or poorly an algorithm models the given data by 

comparing the predicted values to the actual values.

Loss of heterozygosity
A locus with two different alleles loses one of these two copies.

MHC/HLA
Cell surface proteins that present peptide fragments for recognition by T-cells. MHC is 

the general term; HLA is used in the human context only.

MHC-I
The MHC-I molecule is a protein complex formed by beta-2 microglobulin and an alpha 

chained encoded in the HLA-A, HLA-B, HLA-C locus in human. MHC-I is expressed on 

the cell surface of all nucleated cells and presents intracellularly synthesised peptides to 

CD8+ T-cells. Antigen presentation has been reviewed in211,212.

MHC-II
The MHC-II molecule is a protein complex formed by an alpha and a beta chain 

that are encoded in the HLA-DR, HLA-DP and HLA-DQ locus in human. MHC-II is 

mainly expressed on the cell of specialised antigen presenting cells and presents mainly 

extracellular peptides to CD4+ T-cells. Antigen presentation has been reviewed in211,212.

Neoantigen feature
A feature or algorithm that can be used to rank neoantigen candidates.

Neoantigen prediction pipeline
Computational tool for neoantigen prediction, starting with mutation calling or a set of 

called mutation and covering the translation into mutated peptide sequences and ranking 

of neoantigen candidates by a neoantigen feature.

Neoepitope
A major histocompatibility complex (MHC) bound peptide that arises from a tumour-

specific mutation.

Non-synonymous mutation
A mutation that causes changes in the amino acid sequence of a protein.

Peripheral tolerance
Elimination or suppression of autoreactive T-cells or B-cell clones that escaped to the 

periphery.

Prognostic
Statement about the expected development of a disease based on its biology irrespective 

of a given treatment

Predictive
Statement about the expected response to therapy

Pseudoalignment
A pseudoalignment identifies the transcripts a RNA-seq read is most likely related to but 

does not specify how each nucleotide matches the reference like in a normal alignment.
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Restrained neoantigen
A neoantigen that drives tumour immunity upon immune checkpoint inhibition

ROC curve
A graphical plot that reflects the quality of a classifier by showing the true positive versus 

false positive rate across varying thresholds.

Spontaneous tumour immunity
T cell responses induced spontaneously in the course of tumour growth

TCR degeneracy
The ability of a single TCR to recognise diverse peptide/MHC complexes.

TCR diversity
The ability of a single peptide/MHC complex to engage antigen-specific T cells with 

diverse TCR alpha / beta chains

TAP protein complex
Protein complex of TAP-1 (Transporter associated with antigen processing 1) and TAP-2 

that imports peptides from the cytosol in to the endoplasmic reticulum.

Truncal mutation
A mutation that occurs early during tumour evolution.

Vaccine mediated immunity
T cell responses amplified or de novo induced by delivery and active exposure of the host 

to neoantigens.

Variant allele frequency
The fraction of sequence reads observed covering a mutation divided by the overall 

number of reads at that locus.
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Figure 1. Engineering individualised neoantigen vaccines.
Next-generation sequencing of a patient’s healthy tissue (e.g., PBMC, peripheral blood 

mononuclear cells) and tumour biopsies is performed. The sequencing data from tumour and 

normal DNA is compared to identify tumour-specific mutations. Mutations are prioritised 

as vaccine candidates based on their likelihood to elicit a T-cell response by computational 

methods such as MHC binding prediction, quantification of mutated transcript expression, 

clonality of the mutation and other features. Using the vaccine platform of choice 

(e.g. mRNA, long peptides) an individualised and poly-specific neoantigen vaccine is 

manufactured on-demand under GMP conditions. Neoantigen vaccination aims at restoring 

the cancer immunity cycle by inducing de novo T-cell responses that induce tumour killing 

and by supporting the shift from ignorance toward anti-tumour immunity. LOH: loss of 

heterozygosity, GMP: good manufacturing practice
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Figure 2. Mechanisms of neo-antigen-mediated tumour control.
Dying tumour cells release neoantigens that reach the draining lymph node either in a 

soluble form within the extracellular fluid or are transported from the tumour site by 

migratory antigen presenting cells (APCs). In the lymph node, highly specialised dendritic 

cells present the neoantigen on MHC-I or MHC-II molecules to naïve T cells for priming 

and activation. Activated neoantigen-specific CD4+ and CD8+ T cells leave the lymph node, 

enter the tumour and exert anti-tumour activities. APCs in the tumour microenvironment can 

activate antigen specific memory CD4+ and CD8+
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Figure 3. TCR diversity and degeneracy
A neoepitope (blue, mutant amino acid red) can be recognised by different T cells with 

molecularly different TCR alpha and beta chains (left, middle). The TCR/neoepitope contact 

residues (dark blue) may differ for individual T cells that recognise the same neoepitope. 

This is in particular the case for neoantigens resulting from a mutation that converts a 

non-binding wild type peptide into a binding mutant peptide. Also, a single TCR can 

recognise unrelated MHC peptide epitopes (right). For example, a T cell primed against 

a pathogen-derived epitope (purple) may cross-recognise a neoepitope presented on a 

tumour cell. MHC: major histocompatibility complex; TCR: T-cell receptor, B2M: Beta-2-

Microglobulin.
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Figure 4. Factors affecting neoantigen recognition and evolution.
Each lesion (primary or metastasis) of an individual tumour disease consists of different 

subclones, each of which may contribute sets of different neoantigens to the patient’s 

neoantigenome. Depending on whether the neoantigen is truncal clonal (neoantigen A), 

truncal clonal but lost in a metastasis by deletion or gene silencing (neoantigen B), clonal in 

a certain metastasis (neoantigen C) or specific for a certain subclone in a single metastasis 

(neoantigen D), neoepitope-specific T cells would target either all tumour cells (neoantigen 

A), all tumour cells of the lesions harbouring the neoantigen (neoantigen B), tumour cells of 

a distinct lesion (neoantigen C) or merely a single tumour subclone (neoantigen D).
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Figure 5. A context based classification of neoantigens
(a) The formation and evolution of neoantigen-specific T-cell responses depends on the 

clinical context. While ICB therapy boosts pre-existing T-cell responses, neoantigen cancer 

vaccines induce de novo responses or amplify preformed ones. (b) The robustness and 

level of a neoantigen presentation on LN-resident DCs defines the efficiency of cognate 

priming of T cells, while presentation on tumour-resident APCs and tumour cells activates 

primed cells at the tumour site. Neoantigen presentation is a function of expression level 

of the mutated protein, the binding ability of the mutated peptide to MHC and stability 

of the respective peptide/MHC complex. Memory T cell activation can be achieved with 

neoantigen presentation levels 50 fold lower than those required for priming of naive T cells. 

Dark red: supreme neoantigen; pink cross-reactive guarding neoantigen (c) Neoantigen-

specific T cell responses are driven by the presentation of neoepitopes on tumour cells, on 

tumour-infiltrating APCs, and on DCs in the draining lymph node. Priming of naïve T cells 

in the lymph node requires substantially higher neoantigen presentation than is required 

for stimulation of memory T cells. Guarding neoantigens are either highly expressed with 

superior binding and stability of the respective neoepitope/MHC complex (red) or exploit 

cross-reactivity to heterologously primed memory T cells (purple). Restrained neoantigens 

exhibit robust expression and strong MHC binding affinity/stability and are able to prime 

and expand naive neoantigen-specific T cells in the lymph node. Ignored neoantigens require 
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a vaccine to generate neoantigen presentation levels in the LN that allow priming. As long 

as neoantigen presentation is moderate (e.g., low expression/high affinity MHC binding 

(dark gray) or high expression/low MHC binding (light gray), T cells can be activated for 

effector functions in the tumour. NP: level of neoepitope presentation, LN: lymph node, 

APC: antigen-presenting cell, ICB: immune checkpoint blockade
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Figure 6. Discovery of tumour rejection antigens.
As the term “tumour rejection“ and the conditions under which to assess it are not 

standardised, experimental mouse model setups are used that differ conceptually and 

provide answers to different questions. These include tumour challenge of naive mice83,84 

as well as of tumour- or vaccine-experienced mice258,259 and assessment of rejection 

spontaneously83,84 or upon various modalities of immunotherapy6,23,53,102.
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Table 2
Classification of neoantigens by potential functional impact

Guarding neoantigens Restrained neo antigens Ignored neoantigens

Characteristic 
features

Supreme neoantigens 
with a strong 

antigenicity driving 
early priming and 
rapid expansion of 
neoantigen specific 

cytotoxic T cells

neoantigens cross-
recognised by pre-
formed memory 
T cells induced 
by heterologous 
immunity

Neoantigens that are 
immunogenic in the 

immunotherapy-naïve host and 
induce PD1+ memory T cells 
which proliferate and expand 

under ICB

Neoantigens which do not induce 
a relevant immune response in 
the tumour-bearing host but are 
able to drive tumour immunity 

once memory effector T cells are 
induced by vaccination,

Frequency Extremely rare <2% of all mutations <2% of all mutations 15-25% of all mutations

Examples in 
mice DDX585, SPTBN283 SIY87 LAMA46,53, ITGB153 KIF18b23,102

Examples in 
human n.a. MUC1650 ATR5 RETSAT19,20

Clinical 
relevance

Prognostically relevant drivers of anti-tumour 
immunity in the immunotherapy-naïve host.

Inactive due to 
immunosuppression in 

immunotherapy-naïve host. 
Main drivers of clinical ICB 

activity.

No impact on tumour control 
in immunotherapy-naïve or ICB-
treated host. Confer poly-specific 

anti-tumour T-cell control by 
broadening the repertoire of 
tumour-specific T cells upon 

neoantigen vaccination.
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Table 4
Examples for neoantigen prediction algorithms that are based on neural network and 
deep learning based

Name Short Description Reference

HLAathena Neural network for prediction of MHC-I epitope presentation 159

Neomhc2 Convolutional neural network for the prediction of MHC-II epitope presentation 38

EDGE Deep learning model for prediction of MHC-I epitope presentation 163,163

MARIA Multimodal recurrent neural network for predicting the likelihood of antigen presentation (MHC-II) 164

DeepHLA Deep learning model combining binding and immunogenicity model (MHC-I) 165

Structure Neural network on structural features that influence T-cell receptor (TCR) and peptide binding energies 160
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Table 5
State-of-the-art tools for mutation calling.

Software Scope Reference

Mutect / Mutect 2 Somatic SNVs + INDELs 244/176

Strelka / Strelka 2 Somatic SNVs + INDELs 245/175

VarScan 2 Somatic SNVs + INDELs. Germline variants. copy number variants 152

SomaticSniper Somatic SNVs 246

RADIA Somatic SNVs from DNA and matched RNA 247

FreeBayes SNP calling 248

samtools / bcftools Basic variant calling 249

Platypus SNP calling 250

CaVEMan Somatic SNVs 251

cgpPindel Somatic INDELs 252

SvABA Somatic INDELs 253

MuSE Somatic SNVs 254

SMuFIN Somatic SNVs + INDELs 255

GATK All purpose toolkit. including germline genotyper 256

NeuSomatic Deep Learning based somatic SNV detection 257
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