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Abstract

Osteoarthritis (OA) is a severely painful and debilitating disease of the joint, which brings about
degradation of the articular cartilage and currently has few therapeutic solutions. 2-dimensional
(2D) high-throughput screening assays have been widely used to identify candidate drugs with
therapeutic potential for the treatment of OA. A number of small molecules which improve the
chondrogenic differentiation of progenitor cells for tissue engineering applications have also been
discovered in this way. However, due to the failure of these models to accurately represent the
native joint environment, the efficacy of these drugs has been limited /in vivo. Screening systems
utilizing 3-dimensional (3D) models, which more closely reflect the tissue and its complex cell
and molecular interactions, have also been described. However, the vast majority of these systems
fail to recapitulate the complex, zonal structure of articular cartilage and its unique cell population.
This review summarizes current 2D high throughput screening (HTS) techniques and addresses
the question of how to use existing 3D models of tissue engineered cartilage to create 3D drug
screening platforms with improved outcomes.
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Introduction

2D high-throughput screening (HTS) assays have been widely used to test compounds for
therapeutic potential for the treatment of OA. However, success has been limited due to the
failure of these models to accurately represent the /n7 vivo environment. As a result, some
groups have developed 3D models, which simulate native cartilage tissue and its complex
cell and molecular interactions more accurately. This review summarises the current state-
of-the-art 2D and 3D high-throughput systems for cartilage drug screening (figure 1), and
addresses the question of how to use 3D models of tissue engineered cartilage to create
screening platforms with improved outcomes. Future steps needed for improved 3D models
will be identified.

2D screening platforms

Cartilage has good phenotypic outcomes which are amenable to screening platforms. For
example, the expression of type Il collagen, aggrecan and sulphated glycosaminoglycans
(sGAG) in the matrix are easily detected with a range of assays or dyes, and measurable
alterations in its mechanical properties occur as a result of pathology or aberrant
development 1. Cell-based assays, involving the application of robotics and multi-well plates
to screen vast libraries of chemical compounds for a potential effect on an identified target
or pathway 23 are a cornerstone of the drug discovery and approval process. Similarly,
though often on smaller scale, such screening methods have identified small molecules
which have generated much interest in the field of cartilage tissue engineering by drastically
improving the chondrogenic differentiation and/or anabolic activity of precursor cells and
chondrocytes.

Small molecules offer significant advantages over the growth factors and cytokines
traditionally used to direct stem cell fate — the most notable being reproducibility, reduced
immunogenicity, reduced manufacturing costs, improved stability (owing to low order
structure) and avoidance of xenogeneic sources 4. In addition, rapid HTS allows for
repurposing of small molecules with existing FDA approval which possess some hitherto
unknown beneficial effect on catabolic pathways associated with joint pathogenesis or on
cellular differentiation/anabolic activity. Add to that the reproducibility of these substances
and the resultant implications for adopting Good Manufacturing Practice (GMP), and this
renders therapies exploiting small molecules more amenable to clinical translation. Instead
of utilising growth factors with known modes of action in relevant cell signalling pathways,
the focus is now very much on identifying small molecules which act as agonists or
antagonists of those pathways, and 2D screening platforms are a rapid and cost-effective
means of doing so.

Cell sources for HTS

Primary chondrocytes appear to be the obvious cell choice for 2D screening assays
seeking to identify novel modifiers of anabolic/catabolic response. Unfortunately, the

issue of de-differentiation during the extensive cell number expansion period required for
significant scale-up limits the usefulness of these cells in HTS platforms. Chondrocyte
de-differentiation in monolayer culture is a well-established phenomenon, characterised by
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changes in morphology (from a rounded to a more fibroblastic structure) and reduction

in the expression of makers such as aggrecan and type Il collagen, with concomitant
increases in expression of type I collagen 2. Though some studies have utilized primary
chondrocytes in 2D screening assays /2, others have opted for induced cartilage models 10
or chondrogenic cell lines 1112, A recent study used the T/C28a2 cell line, in conjunction
with automated liquid handling and high content screening, to test 1120 compounds for
potential effectors of senescence and autophagy 9 (both associated with OA). For such
large-scale screens, sufficient cell numbers would be difficult to obtain without the use of a
cell line, although pluripotent cells may offer an alternative.

Interestingly, the majority of studies screening for potential novel inducers of chondrogenic
differentiation opt for bone marrow stromal cells (BMSC) as the cellular component of their
platform. Presumably this is due to their well-documented chondrogenic potential 13-15,
high proliferative capacity 16 and the relative ease with which they can be isolated 13,

In addition, safety and efficacy has been shown in a number of clinical trials 17 utilising
BMSC and they have demonstrated immune-modulatory and anti-inflammatory effects 18.
However, chondrogenic differentiation of these cells requires external media induction and
there is a large body of evidence (reviewed elsewhere) to suggest that they are not able

to produce hyaline cartilage 1°. A screening platform incorporating the cartilage superficial
zone-resident progenitors would be more relevant, although limited availability of these cells
would pose a barrier to high scale-up.

CRISPR gene editing allows for rapid and precise manipulation of target alleles without the
risk of tumorigenicity associated with previously favoured modalities 2021, This technology
could be utilised to overcome some of the barriers to scale-up by generating stem cells with
reduced susceptibility to senescence 2223 and increased differentiation potential 24, or by
triggering the re-differentiation of expanded chondrocytes 23, all of which would aid the
production of more relevant screening models.

Simple 2D screening platforms

2D screening platforms have yielded a number of promising candidates for cartilage tissue
engineering and for tissues with a similar developmental lineage (table 1). Small molecules
with therapeutic potential for cartilage repair have also been identified, including BNTA 11,
licofelone 26:27 and balicatib 428. Kartogenin (KGN), developed by the Novartis Research
Foundation 2°, is one of the more successful examples and demonstrates how effective
simple HTS can be. In this system 22,000 heterocyclic molecules were screened using a
384-well format seeded with human BMSC; the presence of chondrogenic nodules, stained
with rhodamine B and identified with simple light microscopy, revealed a “hit”. This small
molecule was also shown to promote an early cell condensation phenotype and production
of cartilage specific markers collagen type Il and sex determining region Y-box 9 (SOX9).
Since then, a number of groups have confirmed its beneficial effects on chondrogenic
differentiation 7 vitro 39-32 and reported promising outcomes in small animal cartilage
injury models 30:32,

The simplest 2D models comprise monolayer cell culture, with the addition of a molecule/
molecular library to the culture medium and measurement of a simple output via a
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microplate reader or microscope. Choi et al. 33 wished to demonstrate that they could
create a synthetic sulphonamide analogue of a protein kinase A inhibitor (the commercially
available H-89), which had previously been shown to induce chondrogenic differentiation
in rodent BMSC 34, In this model, human adipose-derived stem cells (ASC) were seeded
into individual 60 mm dishes and cultured for 11 days with their in-house library of H-89
analogues. Aggrecan protein expression was subsequently assessed via an enzyme-linked
immunosorbent assay (ELISA) and “compound 6” was identified as a novel chondrogenic
inducer 33. Though this system proved effective on a small-scale with a known target, it
does not lend itself to HTS and would be too laborious for a larger number of candidate
molecules. Nevertheless, these simple screening systems are widely adopted in research
institutes and undoubtedly have their place. Scaling up of such systems, with the use of
multi-well plates and multichannel pipettes (or even robotic liquid handling systems) is
also fairly commonplace. Shi et al. 11 managed to screen 2320 natural and synthetic small
compounds using a 96-well format seeded with a murine chondrogenic cell line. Again, cells
were seeded in monolayer and molecules were added to the growth medium; proteoglycan
production was assessed after 5 days via Alcian Blue staining and simple light microscopy.
Though labour-intensive, this initial screening represents the limit of automation that many
labs can achieve and allowed for a rapid narrowing of the number of candidate compounds,
which were interrogated with increasingly complex and rigorous methods until BNTA was
identified as a potential therapeutic agent for OA.

Despite initial excitement following the discovery of the molecule described above, none
currently have market approval for the treatment of OA. Licofelone completed phase 111
clinical trials over a decade ago but, owing inconclusive results, was never submitted for
regulatory approval 3538, Trials with Balicatib were terminated after completion of phase

I1 when an increased risk of cardiovascular events was reported in patients receiving the
drug 37. KGN is currently undergoing phase 11 studies for the treatment of OA, with results
anticipated in late 2021 38(P2), SM04690, a Wnt pathway inhibitor whose chondroinductive
properties were again identified with the aid of HTS 19, is now in phase 111 clinical trials for
the treatment of knee OA 39,

Advanced 2D screening platforms

Some groups have sought to increase the physiological relevance of their 2D screening
systems by introducing an extra level of complexity. One study reported the use of

a microfluidics device to determine the optimum concentration of their candidate drug
resveratrol for the proliferation of primary rodent chondrocytes 8. As a system for optimising
the dose of a drug with known benefits, this technique offers some useful insight; the authors
presumably wished to increase proliferation of terminally differentiated chondrocytes for
subsequent use in their animal model. However, proliferation is not the primary desirable
outcome of a chondroinductive molecule and may come at the expense of cartilaginous
matrix production 40, Therefore, for a chondrogenic screening model, alternative outputs
such as sGAG production would have been more relevant. Gradients do have well
established physiological relevance, however 41, and the use of microfluidics to create them
can be of great benefit in screening systems. However, production of these (usually) bespoke
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systems is costly, time-consuming, and rarely compatible with commercially available liquid
handling systems, thus presenting barriers to scale-up.

Another means of increasing the physiological relevance of 2D screening platforms is to
introduce extracellular matrix (ECM)-mimicking chemical and mechanical properties. A
number of these systems, though designed for other tissue types, could easily be adapted for
cartilage screening models 4243, Others have sought to bridge the gap between 2D and 3D
screening platforms by creating hydrogels with tuneable chemical and mechanical properties
onto which cells can be seeded 74445 To date this has not been attempted for cartilage
screening models, but would be a useful addition to protocols as chondrocytes are known to
be mechanoresponsive 46,

Limitations of 2D platforms

2D screening systems offer numerous advantages and will undoubtedly continue to prove
useful in both research environments the pharmaceutical industry. However, there are

a number of well-documented limitations to these systems and candidate molecules,

which initially appear promising, often fail to perform /n vivo. Cells cultured in 3D are
exposed to a microenvironment which more closely mimics the native tissue from which
they are derived — in addition to the obvious geometrical parallels, they are exposed to
paracrine signals from neighbouring cells, more comparable mechanical properties, and
concentration gradients of growth factors, cytokines, nutrition and oxygen. It has also been
well-documented in tumour models that cells cultured in 3D conditions demonstrate reduced
drug sensitivity and require dosages that may be orders of magnitude higher than their
monolayer counterparts 47-49. ECM sequestering of soluble factors 50 and reduced mass
transfer to the deeper regions of constructs 47 are likely to account for this observation.
Whatever the mechanism, it is clear that dosage ranges determined from 2D screening
platforms are unlikely to prove effective /n vivo. Additionally, 2D models do not allow for
the application of physiologically relevant mechanical stimulation during the culture period
or for the use of changes in mechanical properties as an output measure. Given that cartilage
is adept at withstanding a relentlessly harsh dynamic environment 1, these are important
considerations for anyone seeking to create a reliable 7n vitro model.

3D screening platforms

3D models can reflect the spatial relationships between cells at different stages of
differentiation in their extracellular matrix and more closely represent systems and functions
in the human body 52, A recent review of the benefits of 3D culture concluded that it
generally results in improved differentiation, protein/gene expression, viability and drug
susceptibility compared to monolayer culture; and when it comes to translating the findings
of in vitrowork to in vivo applications, 3D systems invariably perform better 53, Cell-cell
and cell-matrix interactions change dramatically when cells are taken from their native tissue
to a 2D culture system where they are forced to adapt to a flat, smooth and extremely rigid
surface; therefore, it is no surprise that effects observed under these conditions are often lost
upon transfer to a more physiologically relevant microenvironment 54,
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Given that monolayer screening platforms often fail to predict efficacy /n vivo, a number
of groups have sought to develop systems which recapitulate some of the tissue’s native
architecture while allowing for large-scale and rapid outcomes (table 2). This is no trivial
task and, while many of these models are unlikely to be adopted by the pharmaceutical
industry without further development, they have proven invaluable in research settings and
offer a way forward in terms of reducing the need for animal models. The number of
models designed to probe for potential cartilage therapies/inducers of differentiation are
relatively small, but many of the systems designed for other tissues could easily be adapted
for chondrogenic applications.

Disease models are often adopted for the screening of potential novel therapeutic molecules,
as changes in pathogenesis are relatively straightforward to detect via histology or gene/
protein expression analysis. /n7 vitro OA models can be chemically induced via cytokines
or collagenases %56, mechanically induced with the application of injurious strains 5596,
or generated from chondrocytes donated by OA patients (with obvious limitations) °7.
Mechanically induced models, analogous to post-traumatic OA, are a useful tool but do
not offer much insight into the earlier stages of pathology, whereas chemically-induced
models require a combination of factors at a range of carefully controlled concentrations
and exposure times to be truly representative 56. There are a large number of genetic risk
factors associated with OA susceptibility including interleukin 1 beta (1L-18), hyaluronan
synthase 2 (HASZ2), lubricin, matrix metalloproteinase 13 (MMP13) and connexion 43
(CX43) 21, CRISPR gene editing technology has been used to ablate expression of these
alleles for tissue engineering purposes 22:25:58-60 hyt could be used to increase the
expression of disease-linked alleles in order to create precision cellular models 82 which
allow interrogation of the earlier stages of OA and identification of novel effectors of early
pathogenesis.

High-throughput production of 3D cartilage models

Despite the many advantages of 3D culture, it is more labour-intensive and, in the case

of spheroid production, requires large cell numbers. This is especially problematic for high-
throughput applications where speed is paramount and large numbers of uniform constructs
are required. A number of groups have developed high-throughput systems for generating
cartilage microaggregates, which are readily compatible with standard micro-well plates
62-65_Conical microwells can be fabricated from non-adherent materials such as agarose
62,64 or PDMS ©3 with the aid of a rigid negative template and then punched into discs
which fit easily into multi-well tissue culture plates. Primary chondrocytes 62:64 and BMSC
63 seeded into these micro-wells have been shown to perform at least as well as traditional
spheroids in terms of chondrogenic matrix production and gene expression, and far better
than monolayer culture where dedifferentiation to a fibroblastic phenotype is usually
observed. In addition, the number of cells required to produce these micro-aggregates
ranges from 5000 83 down to 100 2 — a significant reduction from the 200,000 minimum
required to form larger pellets. One issue with these microscale cultures is the potential for
aggregates to move out of their wells during medium changes. Futrega et al. overcame this
problem by placing a nylon mesh over their PDMS discs, the pores of which were sufficient
to admit single cells during seeding but small enough to prevent the loss of the multicellular
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aggregates that subsequently formed 3. Another group generated large numbers of columnar
cartilage aggregates, by culturing and differentiating adipose-derived stem cells inside the
PLA-coated pores of poly(L-glutamic acid)/adipic acid hydrogels 6. Cells, preferentially
bound to the PLA, gradually released thiol-containing molecules, which cleaved the PLA
and enabled them to detach and formation aggregates.

Although spheroids lend themselves well to scaled-up fabrication, hydrogels allow for
better mass transfer and can mimic the endogenous ECM more closely; therefore, a
high-throughput system for producing cartilaginous hydrogels may be more appropriate

for screening purposes. Witte et al. recently developed a microfluidics system for the

rapid production of cell-laden alginate-fibronectin microgels 8°. Good viability, proliferation
and production of chondrogenic markers were reported in both articular chondrocytes and
BMSC encapsulated in the gels, however, as no monolayer or standard 3D controls were
included, it is difficult to compare the performance of this model with lower throughput
systems.

High density spheroid and micromass culture

For cartilage tissue engineering, spheroids (also referred to as pellets), being the most
effective in terms of chondrogenic matrix production, are the gold standard. Unsurprisingly,
therefore, this model has proven popular as a 3D screening platform for potential joint
therapies and chondrogenic differentiation. Given their tumour-mimicking morphology,
spheroids are also popular in cancer drug screening 6768, These self-assembling, cell-dense
constructs are compatible with high-throughput due to the relative ease with which they
can be formed in round bottom multi-well plates 9. One consequence of spheroid culture
(particularly those exceeding 500 um diameters 7%:71) is that nutrients and waste products
are not able to diffuse evenly throughout the compact cell/ECM structure 2. Though this
often leads to compromised viability within the core of tumour spheroids 71~73, hypoxic
conditions (which mimic native articular cartilage) have actually been shown improve the
expression of cartilage-specific markers in chondrogenic spheroids 7476,

The most basic (and arguably most scalable) attempts at creating 3D chondrogenic screening
platforms have utilised high density culture of cell lines in multi-well plates. In an

early example, Greco et al. added anabolic TGFR or catabolic IL-18 to micromasses and
investigated the effects of two anti-inflammatory drugs on sGAG accumulation and the
expression of anabolic/catabolic genes 7. Although the outputs of this system were fairly
low-throughput, other groups have increased the speed of data acquisition from standard
SGAG and gene expression assays by performing them /n situ, sometimes with the aid of
liquid handling systems 78.79,

Fluorescent reporter systems have also proven useful in spheroid-based platforms. Willard
et al. used TGFR-3 and murine tail fibroblast-derived induced pluripotent stem cells (iPSC),
which had been pre-selected for COLZA1 expression based on a green fluorescent protein
(GFP) reporter system, to make pellets in a 96-well format 7. Once formed, pellets were
challenged with pro-inflammatory interleukin-la (IL-1a) to create a disease model. Five
candidate OA drugs were incorporated into the model and SGAG loss to the medium was
assessed via 1,9-Dimethyl-Methylene Blue (DMMB) assays, performed /2 situ in standard
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microplates. The relatively simple outputs of this platform lend themselves to scale-up and
high-throughput, which makes it a promising alternative to standard 2D systems. However,
the model takes over 5 weeks to set up and involves a degree of handling, wherein pellets are
transferred to 96-well plates, which significantly reduces its appeal. In a simpler iteration,
Dennis et al. recently used a fluorescent reporter system to screen for vitamins and minerals
with the potential to enhance chondrogenic differentiation 89, The use of a chondrogenic

cell line, transformed with a collagen type Il promoter-driven reporter system, provided a
rapid output metric and facilitated the combinatorial screening of a large number of small
molecules with anabolic potential.

Post-traumatic OA models can also be generated from spheroids with relative ease.
Mohanraj et al. used a high-throughput device to mechanically challenge their constructs by
applying injurious compressive force 8. After the application of three potential therapeutic
compounds, SGAG level was determined with DMMB assays and Alcian Blue staining.
Unfortunately the outputs for this platform are laborious and the initial culture period is
particularly lengthy; the only high-throughput aspect here is the application of injurious
compressive force using an indentation device compatible with standard multi-well plates.
Alcian Blue staining is tried and tested method of assessing the anabolic effects of
compounds on chondrocytes, however, and can easily be adapted for high-throughput
systems. Parreno et al. 82 eluted the dye from their 96-well format screening platform and
measured it spectrophotometrically via a microplate reader. Liquid handling systems, which
are compatible with standard well-plates, could further increase the throughput of these
models.

Spheroids recapitulate the key features of solid tumours, including geometry and limited
mass transfer to the core region 83. As such they have been successfully adopted in a number
of screening platforms for potential cancer treatments 84-88. Creation of spheroids from
cancer cell lines via robotic liquid handling/automated pipetting systems in non-adherent
96-well 8586 or 384-well 8 plates is a relatively straightforward and rapid process and

such equipment, already heavily utilised by the pharmaceutical industry, is becoming more
commonplace in research laboratories. These platforms are used to screen large libraries

of potential chemotherapeutics and, where cell death/stunted growth is the primary goal,
output measurements are easily generated with simple assays and microscopy techniques.
Assessing the effects of small molecules on cartilage development or degradation requires
more complexity in this regard, but nonetheless the design of these models could prove
useful for this application. One group developed a two-phase system wherein cells were
confined to a nanolitre volume of dextran via droplet immersion into a well of poly(ethylene
glycol) (PEG) solution and subsequently formed micro-aggregates 8688, This system is
completely automated, compatible with 96- 86 and 384-well 88 plates and can be adapted

to include co-culture of multiple cell types, which would be an interesting avenue for
models of cartilage given that endogenous tissue is in close proximity to the subchondral
bone and its population of progenitor cells. Additionally, this model demonstrated that the
effective dosage range of two commonly-used anti-cancer drugs was significantly higher for
spheroids than for cells cultured in monolayer, reinforcing the importance of 3D platforms
which recapitulate the native ECM. Hanging droplets can also be used to produce large
numbers of spheroids for screening purposes, either with the use of microfluidic systems 84
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or microarray spotters 87. However, these models usually require a degree of handling and/or
the application of bespoke equipment, significantly reducing their throughput.

Lack of homogeneity in both size and shape of spheroids, is a common issue which

can limit hinder the reproducibility of data for drug screening purposes 89. The use of
conical multi-well plates for generation of the constructs and the subsequent application

of imaging software to select only the most spherical has been suggested by one group as
the best means of eliminating variability 8. Another study showed that spheroids generated
from adipose derived stromal cells in non-adhesive hydrogel micro-moulds demonstrated
homogeneous size and shape, while those formed using primary chondrocytes did not 0.
Therefore, spheroid uniformity is an important consideration for any groups seeking to
utilise this model for HTS systems.

Another factor reducing the appeal of spheroids for screening purposes is the necessity for
high cell numbers, which poses a significant barrier to scale-up. Huang et al. were able to
adapt this model to an impressive 384-well format, using just 10,000 bovine BMSC per
pellet, with the aid of an automated liquid dispensing device and a Breathe-Easy® sealing
membrane to eliminate the requirement for medium changes 8. Automated in-well digestion
and DNA/sGAG assays were the primary output measures for this system, rendering it a
truly high-throughput 3D screening platform.

In summary, spheroids are a sound 3D model for cartilage tissue engineering, which

mimic the cell-cell and cell-ECM interactions of early development and have been shown
enhance chondrogenic differentiation in vitro 91, In addition, their relatively straightforward
production and proven scalability mean they offer a promising alternative to existing 2D
drug screening platforms. A spheroid-based screening platform, which produces uniform
structures from a plentiful cell-source and utilises some of the rapid output measures
outlined above, could offer a realistic alternative to the 2D platforms currently favoured

by the pharmaceutical industry.

Mature cartilage is a highly structured, viscoelastic material and markedly acellular
compared to most tissues 219192, For these reasons a large number of studies have sought to
create alternative 3D models of cartilage from hydrogels, which mimic some of the tissue’s
key structural properties. In terms of predicting effective dosage ranges, there is also some
evidence that these models are more effective than pellets; one study showed that oral cavity
cancer cell-laden alginate displayed a chemo-sensitivity comparable to native tumour tissue,
whereas cell-dense spheroids required significantly higher doses 48,

A particular advantage of hydrogels is that their cell densities can be carefully controlled,
which could be especially useful for models of cell-sparse tissues like articular cartilage.
Simple hydrogel systems can easily be utilised for drug screening purposes 93 and rapid
production of large numbers of cell-laden constructs has been demonstrated via droplet
formation 94-97 or 3D printing 98. Major drawbacks of droplet-based hydrogel systems,
however, are that constructs are cultured together in one volume of medium and a high
degree of liquid handling is required for processing. Large combinatorial hydrogels with
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gradients of tethered chemical ligands have also been used in high-throughput screening
platforms 99:100, byt again constructs are cultured in a shared media pool, meaning

that paracrine effects from neighbouring regions cannot be ruled out. To overcome this
limitation, high-throughput microgel systems with discrete wells have also been utilised;
although generation of these models requires access to expensive specialist equipment 9.

Microfluidic devices have been used to culture hydrogels in dynamic conditions, thus
creating shear forces and concentration gradients which help to recapitulate the endogenous
environment. Li et al. 191 reported the use of such a device to screen the combinatorial
effects of two growth factors on type Il collagen production in Matrigel-encapsulated
chondrocytes. Immunostaining of the entire polydimethylsiloxane (PDMS) chip, with the
aid of image analysis software, allowed for rapid data acquisition. Accommodating just 3
culture chambers, this platform cannot be deemed high-throughput, but a scaled-up version
of this technology could prove invaluable in determining the optimal concentration of small
molecules with anabolic potential.

Recently the benefits of spheroids and hydrogels have been combined to create hybrid
models, whereby small cell aggregates (as opposed to single cells) are encapsulated within
hydrogels 192, Kolb et al. developed a complex model in which aggregates of recombinant
protein-expressing cell lines were co-encapsulated in PEG 193, Used in conjunction with

a reporter cell line that gives rapid outputs, this combinatorial microgel platform certainly
lends itself to high-throughput systems and could easily be adapted for cartilage screening.
However, initial generation of multiple protein-expressing cell lines is a lengthy process
compared to standard screening methods and may deter interest from the pharmaceutical
industry.

Organoids are similar to spheroids, but are generally defined by three key features: they
must be formed from multiple cell types or stages, must have some aspect or function

of the tissue they are modelling and must develop following the same basic patterning
104,105 There are well-described organoid models for tissues such as brain 106, stomach
107 and liver 108 which fulfil all of these criteria. However, cartilage “organoids” are often
simple spheroids composed of just one cell type. The distinction between spheroids and
organoids is a difficult one to make with hyaline cartilage, which naturally comprises
mainly one cell type and is a tissue (albeit a highly structured zonal one) rather than

an organ, such as the brain. Though cartilaginous spheroids are sometimes referred to as
“organoids”, for the purposes of this review the term “organoid” will be reserved for tissue
with more complexity. Few attempts have been made to culture cartilage organoids with
structures, cell densities and niche properties more characteristic of the native tissue than
the high density pellet culture described above. In one example, however, O’Connor et al.
created an osteochondral organoid, by using TGFR-3 and bone morphogenetic protein 2 to
mirror endochondral ossification in induced pluripotent stem cell (iPSC) micromasses 109,
Comprising a cartilaginous core with a calcified outer ring, this model could prove very
useful for the screening of potential modifiers of OA, which is after all a disease of the
entire joint, including the subchondral bone 110.111 Although the 73-day culture period is
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not ideally suited to high-throughput processes, the expansion capacity of iPSC is a real
advantage in this regard. Furthermore, the use of these cells presents greater opportunity for
conducting patient- and/or disease-specific drug screening.

Cartilage-on-a-chip technology

Organ-on-a-chip technology may be a promising alternative approach to the creation of 3D
cartilage models, as it lends itself to the formation of stratified structures. As screening
platforms, these niche-mimicking structures are also more likely to give meaningful results
and reduce the risk of futile investment in fruitless products.

Rosser et al. recently described a system in which fibrin-encapsulated chondrocytes were
loaded into 3 mm semi-circular tissue chambers embedded into PDMS slabs 112, A
microfluidics system was used to drive medium past only the flat side of the chamber,
thus creating cyclic shear forces and concentration gradients which mimicked the articular
surface and underlying, avascular tissue. Cells in this system retained their rounded
morphology and chondrogenic gene expression, unlike their monolayer counterparts.
Incorporation of pro-inflammatory cytokines to the system demonstrated its potential as

a screening platform, but output measures were relatively low-throughput. In a similar
model, Ochetta et al. went a step further by incorporating a sub-chamber into their PDMS
stamp to enable the application of confined compression, thereby generating the crucial
mechanical stimulus to which the joint is subject 113. Chondrocytes, encapsulated in PEG
hydrogels, were loaded into the micro-chambers and high compressive loads were applied
in order mimic OA pathogenesis. A range of commonly-used anti-inflammatory and anti-
catabolic drugs were added to the medium for 3 days before tissue integrity was assessed
with sSGAG and matrix metalloproteinase 13 assays. This model is especially versatile, as
compressive loads can be adjusted to recapitulate normal joint conditions for the purpose
of screening potential chondrogenic/anabolic compounds. Both of these cartilage-on-a-chip
systems utilise microfluidics technology to rapidly produce potentially large numbers of
chondrocyte-laden hydrogel constructs, which mimic not only the mechanical properties
of articular cartilage but also its physiological gradients and dynamic environment. One
drawback to this technology is the requirement for custom moulds which are not compatible
with standard microplate readers and, therefore, not amenable to high-throughput assay-
based outcomes. However, the PDMS stamps described here can be fabricated to match
the dimensions of standard microscope slides, thereby allowing for the use of automated
microscopy as a means of increasing the throughput of these systems.

Neither of the cartilage-on-a-chip models described above attempted to recreate the zonal
compartmentalisation of articular cartilage, nor was inclusion of cells at different stages

of differentiation considered. Lin et al. 114 addressed this issue by using iPSC to create

an osteochondral “tissue chip”. iPSC-derived progenitors were encapsulated in gelatin and
cultured in a dual flow bioreactor, whereby cells at the base of the construct were exposed
to osteogenic cues and those at the top to chondrogenic cues, with a natural gradient across
the depth of the gel akin to the native environment (figure 1E). After 28 days of culture,
good expression of chondrogenic and osteogenic makers were seen in the upper and lower
regions of the chip respectively; induction of an OA disease phenotype was then achieved
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with the addition of interleukin-18 (IL-1R) to the medium for 7 days. By incorporating
progenitor cells, multiple tissue types, dynamic conditions and tuneable concentration
gradients, this model recapitulates the endogenous joint environment more closely than
the vast majority described to date. To demonstrate its potential as a screening platform,
the FDA-approved drug Celecoxib was administered to the system, resulting in significant
decreases in expression of catabolic and inflammatory factors. This versatile model also
has the potential to screen novel inducers of anabolic response in cartilage tissue, simply
by omitting the IL-1R culture period. The authors do not comment on the capacity of this
system for generating and maintaining large numbers of constructs, and the output measures
adopted (primarily gene expression analysis) are not amenable to high-throughput. As a
system for optimising the concentration of small molecules identified by other screening
platforms, however, this model certainly holds great promise.

Outlook for 3D screening platforms

3D models, which more accurately recapitulate mature cell-cell and cell-ECM interactions
and display patterns of spatial gene and protein expression more akin to the native

tissue environment 52, have gained popularity in recent years. In addition, a promising
number of studies have demonstrated that high-throughput production of 3D cartilage
models is possible and that rapid outputs are achievable with the aid of technology

such as robotic liquid handling systems. Access to such technology poses no barrier

for large pharmaceutical companies and is becoming more commonplace in smaller labs
9.10,43,84,94.95 Nonetheless, 3D models require longer culture periods, are more labour-
intensive and can lack the requisite reproducibility for scale up 52. Models incorporating
the full cascade of chondrocyte differentiation present /n vivo are also lacking; a platform
with such complexity might more accurately predict /7 vivo drug response, but would
undoubtedly require greater investment of both time and funds. For smaller labs, where
there is less emphasis on high-throughput, 3D platforms are widely utilised for small-scale
screening and optimisation of established anabolic/catabolic agents. Complex models such
as organoids are unlikely to be adopted by pharmaceutical companies in the near future
for the screening of vast chemical libraries, however, large-scale spheroid culture 78 and
high-throughput hydrogel production 9 offer a realistic alternatives to the inadequate 2D
systems currently employed.

Conclusion

High-throughput screening platforms are essential for identifying small molecules with the
potential to modify both chondrogenic differentiation and cartilage catabolic processes.
2D systems, which are economical, compatible with robotic liquid handling technology
and offer rapid output metrics are currently favoured by the pharmaceutical industry. A
number of potential disease-modifying OA drugs have been discovered in this way, as
have molecules such as KGN, which hold great promise for cartilage tissue engineering.
However, 2D culture systems do not reliably represent /7 vivo conditions and often fail

to predict efficacy in subsequent animal models. 3D models recapitulate the cell niche
more closely, produce superior cartilage /in vitro and show differential dose responses

to disease modifying drugs. A range of 3D models (including spheroids, hydrogels and
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organ-on-a-chip) have been adapted to create screening platforms for cartilage and many
other tissue types. Drawbacks of these systems include longer culture periods, necessity for
higher cell numbers, increased handling and increased costs. However, in order to reduce
the requirement for animal models and to limit wasted investment in ineffective drugs,

it is essential that research institutes and the pharmaceutical industry alike move towards
the use of effective 3D models for screening purposes and design new approaches which
encapsulate the complexity of zonal structures and cell types within the cartilage matrix.
If 3D platforms are to be adopted on a large-scale for pharmaceutical drug screening,
economic considerations must be carefully balanced with the need for outcomes which
accurately predict /n vivo response. Initial investment in systems with more physiological
relevance could ultimately mitigate the fruitless development of drugs which fail to obtain
market approval.
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Impact statement

Currently, the use of 2D screening platforms in drug discovery is common practice.
However, these systems often fail to predict efficacy /n vivo, as they do not accurately
represent the complexity of the native 3D environment. This article describes existing 2D
and 3D high throughput systems used to identify small molecules for OA treatment or

in vitro chondrogenic differentiation, and suggests ways to improve the efficacy of these
systems based on the most recent research.
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2D 3D
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I_ﬂ Homogeneous Combinatorial Dynamic
Hydrogels Multi-well « LS Multi-well
plates r j plates
Multi-well Hanging . Beads/ Custom
droplets
plates drop culture
v ; Sy chambers
- I c
Multi-well LM 4 ] (= S
plates ” v - NS —
A i b Custom 5 e e
— = m— culture ——
S LRy e chambers | < Microfluidics

Figure 1. Schematic of existing 2D and 3D drug screening platforms for cartilage and tissues of a
similar lineage.

Blue boxes denote model type, black boxes denote culture formats. A. 2D multi-well plate
format (reprinted by permission from Nogueira-Recalde et al. %). B. Combinatorial hydrogel
system on glass slide format (reprinted by permission from Tong et al. 4°). C. 3D hydrogel
microfluidic platform (reprinted by permission from Li et al. 191). D. Osteochondral chip
screening platform (reprinted by permission from Lin et al. 114)
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