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Image-based computational models of the heart represent a powerful tool to shed new 
light on the mechanisms underlying physiological and pathological conditions in cardiac 
function and to improve diagnosis and therapy planning. However, in order to enable 
the clinical translation of such models, it is crucial to develop personalized models 
that are able to reproduce the physiological reality of a given patient. There have been 
numerous contributions in experimental and computational biomechanics to characterize 
the passive behavior of the myocardium. However, most of these studies suffer from 
severe limitations and are not applicable to high-resolution geometries. In this work, we 
present a novel methodology to perform an automated identification of in vivo properties 
of passive cardiac biomechanics. The highly-efficient algorithm fits material parameters 
against the shape of a patient-specific approximation of the end-diastolic pressure-volume 
relation (EDPVR). Simultaneously, an unloaded reference configuration is generated, where 
a novel line search strategy to improve convergence and robustness is implemented. Only 
clinical image data or previously generated meshes at one time point during diastole 
and one measured data point of the EDPVR are required as an input. The proposed 
method can be straightforwardly coupled to existing finite element (FE) software packages 
and is applicable to different constitutive laws and FE formulations. Sensitivity analysis 
demonstrates that the algorithm is robust with respect to initial input parameters.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Computational models of the heart are widely recognized as a powerful tool for the quantitative analysis of cardiac 
function. Their ability to explore mechanistic relationships of all variables of interest at high spatio-temporal resolution has 
turned computational models into an important, if not indispensable, adjunct in any basic research study. More recently 
though, driven by advances in medical imaging and simulation technologies, a translational trend has emerged that is 
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geared towards turning cardiac modeling from a research tool into a clinical modality for diagnosis, stratification, and 
therapy planning [46,76,60].

However, unlike in basic research applications where a representative “one heart fits all” model is suitable to investigate 
generic mechanisms, in clinical scenarios the use of patient-specific models is of fundamental importance. Computational 
models must be built to represent the physiological reality of a given patient to provide a basis for therapeutic decisions for 
the specific patient, not for a representative average patient.

This process of minimizing the difference between the predictions of a computational model and clinical observations, 
referred to as “model personalization” or “digital twinning”, is challenging to achieve [59]. Cardiac function emerges as a 
complex interplay between different physics — electrophysiology, mechanics, and hemodynamics. While accurate mechanis-
tic computational models of each of these physical components exist and anatomically accurate multiphysics models of the 
heart, e.g., [6,50,80], are considered to be the state-of-the-art, they comprise a larger number of parameters, most of which 
cannot be observed in vivo or not at all. Thus, model parameters have to be inferred indirectly from clinical observable 
quantities which are, in general, afflicted with a significant degree of observational and residual uncertainties [52,51].

Integral model components in modeling cardiac function are constitutive relations which characterize the passive biome-
chanical behavior of myocardial tissue. The development and parameterization of these models is an active area of research, 
see [10] and references therein. As microstructural material components along local material axes determine the orthotropic 
behavior of the myocardium, recent experimental research has focused on multiaxial mechanical testing and microscopi-
cal investigations of the underlying structure [17,77,81]. These experiments are usually performed under artificial ex vivo
conditions using excised tissue specimen from specific locations within the myocardium. While these experiments are an 
indispensable source for informing modeling, their inherent underlying limitations and uncertainties should be kept in 
mind when incorporating such data into models. The tissue is usually excised during autopsies within 12h of death and 
then stored in a suitable solution until testing. The testing should ideally take place immediately, but, in practice, may be 
postponed for weeks, although it has been shown for collageneous tissues that changes in microstructure and mechanics 
occur in as little as 48h after removal from the body [36]. Available material parameters are usually fitted to a normalized 
stress-strain curve obtained from multiple patients and used to represent the overall passive mechanical behavior of the 
ensemble. It is known though that tissue properties vary to a significant extent between individuals and throughout the 
myocardium. Additionally, even if orthotropic, microstructurally-based models are utilized, the underlying orthotropic fiber 
and sheet arrangement in the myocardium cannot be determined with certainty for individuals. To achieve translation it is 
therefore key to develop a methodology that facilitates the efficient, robust and, ideally, automated identification of model 
parameters from clinical observations in vivo [6].

A method towards in vivo passive parameter estimation was proposed by Augenstein et al. [5]. They utilized an ex vivo
experimental method based on the combination of tagged magnetic resonance imaging (MRI) and simultaneous pressure 
recordings to estimate passive material properties in arrested pig hearts. The fiber architecture was incorporated from 
diffusion tensor MRI and the findings were validated against a silicon gel phantom with known material properties, proving 
that cardiac MRI can be used to extract meaningful material properties. Further work on isolated hearts combined with FE 
analysis was then conducted by e.g. Nair et al. [56], where an ex vivo rabbit left ventricular (LV) model was used for strain 
matching.

To take a step towards the translation of passive material identification into the clinics, in vivo MRI combined with ex vivo
diffusion tensor MRI was carried out in heart failure patients [85] and, using a sequential quadratic programming optimiza-
tion technique [12], passive material parameters were identified [86]. These studies used either transversely isotropic laws 
such as the Guccione law [32] or orthotropic laws such as the Holzapfel-Ogden (HO) model [39]. Further, initial parameter 
sets fitted to ex vivo experimental data (e.g. [33]) are taken and either only the isotropic parameter is varied [86,4,21] or two 
scaling parameters [58,46,72,64] are introduced to preserve the overall orthotropy of the material parameters. Additionally, 
material parameters of these laws are often correlated [70], and hence the unique identification poses a non-trivial problem.

Early studies attempted to identify material parameters based on non-invasive imaging of strain via MRI [57,92]. How-
ever, in vivo MRI strain measurements have major caveats as they vary among methods, modalities, and software version 
and mostly lack proper validation [2,69]. In addition, MRI strains are not usually acquired during routine clinical exams, and 
hence pressure-volume (PV) relations are more commonly used to estimate material parameters. There are two common fit-
ting targets used in literature: fitting to displacement curves obtained from several frames during diastole or approximation 
of the empirical EDPVR by a power law as proposed by Klotz et al. [45].

Inverse estimation of patient-specific parameters is now widely used, where parameters of a forward problem are tuned 
to match PV-curves and motion fields available from clinical imaging [24], a method which was first used by Ghista 
et al. [28]. Xi et al. [89,90] utilized a reduced-order unscented Kalman filter [54] and later 3D tagged MRI to simulate 
unloading and estimate parameters in a reformulated Guccione law to overcome the problem of non-unique constitutive 
parameters. They used an early diastolic frame as the reference configuration and 29 frames per cycle for the fitting. As-
ner et al. [4] jointly estimated the reference state and passive parameters using deflation, considering a parameter sweep 
consisting of 25 simulations to assess the parameter space and find the minimum of the objective function. Gao et al. [24]
used the first frame of early diastole as the unloaded reference configuration and assumed a population-based end-diastolic 
pressure, ped, of 8 mmHg as no pressure recordings were available. They proposed a multi-step non-linear least-squared 
optimization procedure for the inverse estimation of all parameters of the HO law. The performance of multiple constitutive 
laws were compared by Hadjicharalambous et al. [34], who used 3D tagged MRI and a parameter sweep. The initial parame-
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ter set was chosen to match the Klotz relation. They found that the HO law provided the best balance between identifiability 
and model performance. Recently, Nasopoulou et al. [58] used 2D tagged MRI to improve the identifiability of parameters of 
the Guccione law by combining deformation and energy analysis to uniquely constrain the parameters. In more detail, the 
exponential scaling factor α was estimated through the minimization of an energy-based cost function. Then, a mechanical 
simulation was performed in a second step to optimize the linear isotropic parameter with a cost function based on differ-
ences in displacements. For this, the first frame and the two last frames of diastole were used to be compared to simulations 
of passive inflation. Finsberg et al. [20,21] used the backward displacement method to find the unloaded configuration and 
fitted one parameter of a reduced HO law with an initial guess of other parameters similar to Asner et al. [4].

The empirical EDPVR as proposed by Klotz et al. was utilized as a fitting target by, e.g. Nordsletten et al. [63], to esti-
mate the unloaded geometry of human hearts. Simulations of passive inflation were conducted and compared to the Klotz 
relation, using least-square constraints on volume and pressure. In 2013, Krishnamurthy et al. [46] estimated the unloaded 
bi-ventricular geometry using a backward displacement method. They scaled parameters of a reduced HO law to fit the 
empirical Klotz curve by adjusting them manually and varying exponential parameters within a range of 15% of their initial 
values taken from experiments performed on canine tissue [17]. In 2018, Palit et al. [66] provided a summary of parameters 
of the HO law available in literature and examined the influence of ped, fiber orientations and geometry on the estimated 
parameters. They used an objective function which minimized the differences between the simulated and real LV cavity vol-
ume and used the Klotz curve as a fitting target albeit they had no pressure recordings and assumed ped to be 10 mmHg. 
The initial parameters were estimated by a Latin hypercube sampling (LHS) which generated 50 initial data sets. Sack 
et al. [72] used a similar approach, minimizing the error with respect to both pressure and volume. Initial parameters were 
fitted to data from [77] and scaled with one scaling parameter for the linear terms and one for the exponential terms to 
match the Klotz relation. For the passive filling calibration, they defined an objective function as the difference in pressure 
values along the PV-curve combined with a single measure of end diastolic volume, V ed. Genet et al. [26] calibrated two 
parameters of the Guccione law [32] using two nested loops: first, to optimize a parameter b, that defines the nonlinearity 
of the stress-strain relationship, such that the resulting loading curve is close to the Klotz curve and second, the scaling 
parameter of the Guccione law was optimized for a given b such that computed and prescribed end-diastolic pressures 
match.

In this paper, we present a novel model function-based fitting method (MFF) to find personalized material parameters 
for passive mechanical modeling of the heart. Only image data at one time point to create the anatomical model and one 
measured data point of the EDPVR are required as an input. The approach simultaneously personalizes passive material pa-
rameters and generates an unloaded reference configuration which is crucial for the image-based modeling of biomechanical 
LV diastolic function. In this regard, we also present an improved backward displacement algorithm where robustness is en-
hanced by a novel line search strategy. The MFF method was tested on a cohort of 19 LV meshes [49]. Excellent agreement 
with the empirical Klotz EDPVR was obtained for all cases under study. As the determination of an unloaded reference 
configuration and the identification of parameters is carried out simultaneously, the method is highly efficient, requiring 
only a small number of forward simulations (≤ 10 for all cases). Hence, computational costs were only about 2 to 3 times 
the cost of a standard passive inflation experiment. The versatile workflow is applicable to a large variety of constitutive 
models, model functions, and FE formulations and can be coupled to established FE software packages with relative ease. A 
thorough sensitivity analysis demonstrates the robustness of the method with regard to input uncertainty.

2. Methods

2.1. Patient data

Clinical data from the CARDIOPROOF study (NCT02591940), a recent clinical trial, was available, which includes data of 
NAS = 12 aortic valve stenosis (AS) patients and NCoA = 7 aortic coarctation (CoA) patients. As indicator for treatment, valve 
area and/or systolic pressure drop across the valve was taken into account for AS cases, whereas for CoA cases treatment 
indicators included an echocardiographically measured peak systolic pressure gradient across the stenotic region greater 
than 20 mmHg (2.66 kPa) and/or arterial hypertension. The institutional Research Ethics Committee approved the study fol-
lowing the ethical guidelines of the 1975 Declaration of Helsinki. From the participants’ guardians written informed consent 
was attained. A detailed description of the data acquisition process and clinical protocols used in this study were reported 
in [19]. Pressure measurement in the LV, namely invasive catheterization, was routinely acquired in patients suffering from 
CoA only, making measured values of pdat

ed solely available for this group. For AS cases pdat
ed was determined empirically by 

statistically analyzing a reference data pool of N = 290 patient cases treated for AS. For more details on the reference data 
pool see the supplementary material of [49].

2.2. Unloaded reference configuration

To find an unloaded reference configuration Sellier [75] proposed an iterative, fixed-point method for general elasto-
static problems, see Fig. 1 for a schematic and Algorithm 3 in Appendix A. In each iteration k a forward problem φ(Xk)

is solved, where a measured in vivo pressure is applied to an interim reference configuration with coordinates Xk . This 
results in updated configurations with coordinates xk and, subsequently, the per node displacement vector between the 
3
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Fig. 1. Schematic for Sellier’s backward displacement method, see Algorithm 3 in Appendix A. A forward inflation problem φ (blue curve) is solved in the 
first iteration (it1), where a measured in vivo pressure ped is applied to an interim reference configuration with coordinates X0 = xdat . This generates an 
updated configuration with coordinates x0. Subsequently, the per node displacement vector between the updated deformed configuration and the target 
in vivo configuration (R0) is computed. Finally, the reference configuration is updated by subtracting this per node displacement vector (blue dashed line). 
This iterative procedure is repeated until a given error tolerance ε between the computed reference configuration and the given in vivo configuration is 
reached. Here, the algorithm converges to the unloaded reference configuration X∗ after four iterations. (For interpretation of the colors in the figure(s), 
the reader is referred to the web version of this article.)

updated deformed configuration and the target in vivo configuration Rk is computed. Finally, the reference configuration is 
updated by subtracting this per node displacement vector. This iterative procedure is repeated until a given error tolerance 
ε between the computed reference configuration and the given in vivo configuration is reached and hence the unloaded 
reference configuration X∗ is found. Rausch et al. [68] augmented this approach, see Algorithm 4 in Appendix A, based on 
Aitken’s delta-squared process [1] that increases the convergence rate and also significantly accelerates the method. Both 
fixed-point approaches are simple and versatile and can be coupled to existing FE software packages with relative ease and 
have thus been applied to a number of biomechanical modeling problems, e.g., [41,43,87].

However, for some of our LV models the augmented approach still diverged and unfavorable updates of the reference 
vector even resulted in a failure of the algorithm. Since our parameter fitting approach described later in Section 2.3.2 is 
based on a robust unloading strategy for soft tissues, we further improved this iterative method by a line search strategy 
based on Armijo [3], see Algorithm 1. Here, unfavorable search directions are damped and with this improvement the 
unloading algorithm was robust for all cases and in most cases the procedure was sped up. See Table A.10 for a comparison 
of the robustness and computational times for the three specified unloading algorithms.

We successfully applied Algorithm 1 to all 19 LV models of the cohort from Marx et al. [49], as well as meshes of 
bi-ventricular, see Karabelas et al. [42], and four-chamber models from the cohort presented by Strocchi et al. [78].

2.3. Constitutive fitting

2.3.1. Constitutive models
The myocardium is considered as a non-linear, hyperelastic, nearly incompressible, and orthotropic material with a lay-

ered organization of myocytes and collagen fibers that is characterized by a right-handed orthonormal set of basis vectors; 
see [10] for a great review on material properties and constitutive modeling of the passive mechanical behavior of my-
ocardial tissue. The basis vectors consist of the fiber axis f 0, which coincides with the orientation of the myocytes, the 
sheet axis s0 and the sheet-normal axis n0. To enforce the condition of a nearly incompressible material, the strain energy 
function �, is split into a volumetric U ( J ) and an isochoric part �isc(C):

�(C) = U ( J ) + �isc(C). (1)

In this relation, C = F � F is the right Cauchy–Green deformation tensor, with F the deformation gradient. U ( J ) is composed 
of the bulk modulus κ � 0 kPa and a penalty term related to the Jacobian of the deformation gradient J = det(F ) and we 
choose

U ( J ) = κ

2
ln( J )2 (2)

for all considered material models. One of the simplest constitutive laws to model rubber-like materials is the isotropic 
Demiray model [16]
4
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Algorithm 1 Augmented Sellier’s Inverse Method with Armijo strategy.

1: initialize X0 = xdat; R0 = 0; k = 0; β = 1.0
2: initialize �min which determines the maximal number of Armijo steps; we used �min = 1

8
3: do
4: � = {

1, 1
2 , 1

4 , . . . , �min
}

5: for � ∈ � do
6: solve forward problem, x� = φ

(
Xk

)
7: calculate nodal error vector, R� = x� − xdat

8: if k > 0 then

9: update augmentation parameter,β = −β
Rk−1 : [R� − Rk−1

]
[

R� − Rk−1
] : [R� − Rk−1

]
10: end if
11: update reference vector, X� = Xk − �β R�

12: compute maximal nodal error, r�,‖x‖∞ = max
i∈[1,Nnodes]

∥∥∥x�
i − xdat

i

∥∥∥
2

13: if k = 0 or r�,‖x‖∞ < r‖x‖∞ break
14: end for
15: determine �∗ such that

∥∥∥R�∗ ∥∥∥ = min
�∈�

{∥∥∥R�
∥∥∥}

16: update, xk = x�∗
, Rk = R�∗

, Xk+1 = X�∗

17: compute maximal nodal error, r‖x‖∞ = max
i∈[1,Nnodes]

∥∥∥xk
i − xdat

i

∥∥∥
2

18: update counter, k = k + 1
19: while r‖x‖∞ ≥ ε
20: unloaded reference configuration, X∗ = Xk

�(C) = U ( J ) + a

2b

{
exp

[
b(I1 − 3)

] − 1
}
, (3)

with the invariant I1 = tr(C) and parameters a > 0 kPa and b > 0. Here, C := J−2/3C is the isochoric part of the right 
Cauchy–Green tensor resulting from the multiplicative split proposed by Flory [22] to model the nearly incompressible 
behavior of elastic materials.

Single Fung-type exponential models, e.g., Guccione et al. [31], Usyk et al. [82], can be generalized to

�(C) = U ( J ) + a

2

[
exp(Q ) − 1

]
, (4)

where

Q = bff E
2
ff + bss E

2
ss + bnn E

2
nn + 2bfs E

2
fs + 2bfn E

2
fn + 2bns E

2
ns. (5)

Here,

E ff = f 0 · E f 0, Ess = s0 · Es0, Enn = n0 · En0,

E fs = f 0 · Es0, E fn = f 0 · En0, Ens = n0 · Es0

are projections of the Green-Lagrange strain tensor E = 1
2 (C − I) and parameter a > 0 kPa serves as a stress-like scaling. 

The dimensionless parameters bff, bss, bnn > 0 account for the mechanical behavior of the tissue along the fiber (f), sheet (s) 
and sheet-normal (n) direction, and bfs, bfn, bns > 0 account for structural interactions. For parameter values of the different 
single Fung-type exponential models considered, see Table 1.

Holzapfel and Ogden [39] proposed a separated Fung-type exponential model which can be generalized to

�(C) = U ( J ) + a

2b

{
exp

[
b(I1 − 3)

] − 1
} +

∑
i=f,s,n

ai

2bi

{
exp

[
bi(I4i − 1)2

]
− 1

}

+
∑

i=fs,fn,sn

aij

2bij

{
exp

[
bij(I8i j)

2
]
− 1

}
, (6)

with parameters a(•) ≥ 0 kPa and b(•) > 0, invariant I1 = tr(C), unimodular fourth-invariants

I4f = max
(

f 0 · C f 0,1
)
, I4s = max (s0 · C s0,1) , I4n = max (n0 · Cn0,1) ,

such that contributions of compressed fibers are excluded, and interaction-invariants

I8fs = f 0 · C s0, I8fn = f 0 · Cn0, I8sn = s0 · Cn0.

Note that for the anisotropic contributions in Equation (6) the deformation gradient F and the right Cauchy–Green tensor 
C remain unsplit to avoid nonphysical results [35,74].
5
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Table 1
Default material parameters for the considered single Fung-type exponential materials. Column 
‘Model’ gives the short name for the constitutive law; ‘Ref.’ the reference for the parameter fitting; 
‘Property’ the material property specified by the parameter set; and in the following a list of the 
material parameters. Note that only the scaling parameter a has a unit (kPa), all other parameters 
are dimensionless.

Model Ref. Property Parameters

a [kPa] bff bss bnn bfs bfn bns

Guccione [31] trans.-isotr. 0.876 18.48 3.58 3.58 3.58 1.627 1.627
Usyk [80] orthotropic 0.88 5.0 6.0 3.0 10.0 2.0 2.0

Comparing to experimental data, Holzapfel and Ogden reduced the constitutive law with the full set of invariants (6) to 
a simplified model with the parameters a, af, as, afs > 0 kPa and b, bf, bs, bfs > 0.

Further, several papers [18,33,77] deal with in-plane and out-of plane dispersion of collagen fibers along the f 0 and s0

direction. According to Eriksson et al. [18] this is modeled by modifying the unimodular fourth-invariants to

I∗4i = κi I1 + (1 − 3κi)I4i, i ∈ f, s. (7)

Dispersion parameters have been identified previously by mechanical experiments on passive cardiac tissue by Sommer 
et al. [77] and are set to κf = 0.08 and κs = 0.09.

For parameter values of the considered separated Fung-type exponential models, also often referred to as HO-type models, 
see Table 2.

2.3.2. Fitting with model function
Due to limited availability of clinical data representing the EDPVR, the passive biomechanical material model is fitted to 

the empirical Klotz EDPVR estimated from a single measured PV-pair [45]. A more detailed description about the method 
proposed by Klotz et al. [45] can be found in Appendix B.

Fitting is done by adjusting material parameters of the constitutive relation during the unloading procedure (Algorithm 1) 
such that the cavity volume of the unloaded reference configuration X∗ matches V klotz

0 , see Equation (B.1), and such that 
the simulated PV-curve matches the EDPVR as predicted by Equation (B.2). In particular, the parameters are varied in each 
unloading step as follows: consider

	(x, x0) = a

2b

{
exp

[
b

(
x − x0

x0

)]
− 1

}
, (8)

a function commonly used to describe the passive diastolic PV relation [61], with parameters a and b. We use a Levenberg–
Marquardt least-squares algorithm to fit the model function 	(x, x0) to the Klotz relation, where x ∈ {V klotz

i (pi) : i =
1, ..., nls} are the volumes as predicted by the Klotz power law (B.2) and x0 is the predicted volume of the unloaded 
geometry V klotz

0 (B.1). Here, nls is the number of loading steps and pi are equidistant pressures in the interval [0, ped], 
hence, p0 = 0 and pnls = ped. After convergence of the fitting method we get the parameter set [aklotz

fit , bklotz
fit ]. Both fitting 

parameters are always strictly positive, due to the convexity of the Klotz relation and the design of the model function (8). 
In a second step the procedure is repeated for the simulated PV-curve in the current step k of the unloading algorithm with 
x ∈ {V sim

i (pi) : i = 1, ..., nls} being the volumes at the different loading points and x0 the cavitary volume of the current 
reference configuration Xk , to obtain the parameter set [asim

fit , bsim
fit ]. The parameter fitting is an extension of the unloading 

algorithm described above, see also Algorithm 2. Thus, we use the same index k to specify the current iteration step while 
index i specifies the current loading step of the forward simulation. Note that asim

fit > 0 holds, due to the fact that an in-
crease in pressure leads to an increase in volume, and bsim

fit 
= 0, due to the design of the model function (8). We compute 
the scalings

ascale = aklotz
fit

asim
fit

, bscale = bklotz
fit

|bsim
fit | . (9)

Here, the absolute value of bsim
fit is chosen, as this fitting parameter might be negative in rare circumstances when the 

simulated PV-curve is concave. Also, for the unlikely case of a linear PV-curve, bsim
fit is close to 0, leading to a very large 

scaling parameter bscale. Hence, to avoid large jumps in the material parameters, we define the bounding interval I = [ 1
5 , 5]

with ascale and bscale taking the value of the closest bound if ascale /∈ I or bscale /∈ I , respectively.
Finally, all parameters of the material model in Equations (3) to (6) are updated for the upcoming unloading step k + 1

according to

ak+1 = ascale · ak , bk+1 = bscale · bk . (10)
(•) (•) (•) (•)
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Ref.’ the reference for the parameter fitting; ‘Property’ the 
e parameters b(•) are dimensionless. Model “HO dispersion” 

bfs afn [kPa] bfn asn [kPa] bsn

5.295 1.345 2.017 0.947 4.514
5.691 – – – –
11.602 – – – –
6.28 – – – –
– – – – –
– – – – –

7

Table 2
Default material parameters for the considered Holzapfel–Ogden (HO) type materials. Column ‘Model’ gives the short name for the constitutive law; ‘
material property specified by the parameter set; and in the following a list of the material parameters. Note that parameters a(•) have a unit (kPa), whil
includes dispersion of collagen fibers based on (7).

Model Ref. Property Parameters

a [kPa] b af [kPa] bf as [kPa] bs an [kPa] bn afs [kPa]

General HO [30] orthotropic 0.180 9.762 2.204 21.597 0.098 49.878 0.508 27.719 1.291
Reduced HO [30] orthotropic 0.809 7.474 1.911 22.063 – – 0.227 34.802 0.547
Original HO [39] orthotropic 0.33 9.242 18.535 15.972 2.564 10.446 – – 0.417
HO dispersion [33] orthotropic 0.4 6.55 3.05 29.05 1.25 36.65 – – 0.15
One fiber HO [39] trans.-isotr. 0.809 7.474 1.911 22.063 – – – – –
Demiray [16] isotropic 1.0 6.5 – – – – – – –
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The aim of this scaling step is to get the current simulated loading curve to converge against the empiric EDPVR. When 
the material is too stiff (V klotz

0 < V sim
0 ), then stress-like a(•) parameters are scaled with a value less than one (ascale < 1) 

to soften the material; vice versa when the material is too soft (V klotz
0 > V sim

0 ), then the stress-like a(•) parameters are 
scaled with a value greater than one (ascale > 1) to increase stiffness. Further, when the simulated loading curve is too 
straight, parameters b(•) are increased (bscale > 1); and vice-versa when the simulated loading curve is too bent, then b(•)

are decreased (bscale < 1). These changes to the current parameter setting are ensured by the independent fitting of the 
model function first to the Klotz-curve and second to the current loading curve and the scaling as described in Equations
(9) and (10). Interactions between simultaneous changes of a(•) and b(•) parameters are settled with the iterative approach 
extending the unloading algorithm as described above. Upon convergence of the algorithm in step k, see Section 2.3.3
for convergence criteria, we get the unloaded configuration X∗ = Xk and final parameter set a∗

(•) = ak
(•) and b∗

(•) = bk
(•) , 

see Algorithm 2 and Fig. 2.
Note that all discussed material models require that ak

(•) > 0 and bk
(•) > 0 for all k and hence ascale and bscale have to be 

positive, which is guaranteed by design. Additionally, we point out that for all simulations where the initial loading function 
was concave the presented algorithm still converged in a satisfactory manner.

To verify the proposed MFF approach, a more costly cost function based fitting (CFF) approach was established and 
applied to the available patient data. For details see Section 3.4.

2.3.3. Error estimates and goodness of fit
To check for convergence, detect potential stagnation, and measure goodness of fit of the proposed method, several error 

estimates were introduced, which are described in detail below. The difference of V 0 and V ed between the simulated and 
the empirical Klotz EDPVR was quantified by the difference of the initial volumes

rV 0 =
∣∣∣V klotz

0 − V sim
0

∣∣∣ , (11)

where V sim
0 is the cavity volume of the reference configuration Xk at the current unloading step k, and the difference of 

end-diastolic volumes

red =
∣∣∣V dat

ed − V sim
ed

∣∣∣ , (12)

where V dat
ed is the measured end-diastolic volume and V sim

ed is the cavitary volume of the inflated configuration xk . For 
convergence we chose an error tolerance of εvol = 0.5% of V dat

ed such that red < εvol and rV 0 < εvol.
The difference between the simulated and measured end-diastolic geometry was calculated by consideration of the 

maximal nodal error

r‖x‖∞ = max
i∈[1,Nnodes]

∥∥∥xk
i − xdat

i

∥∥∥
2
, (13)

where ‖•‖2 stands for the �2-norm and Nnodes represents the total number of nodes in the geometry. To obtain convergence, 
r‖x‖∞ was required to be smaller than 0.1 mm. Finally, we define the error in parameter update between unloading iterations 
as

rparam = max(|1 − ascale|, |1 − bscale|), (14)

which is used to detect stagnation of the algorithm and required to be smaller than 0.001 for convergence.
To define the goodness of fit for the simulation outcome in terms of the fitted curve and the Klotz curve, the relative 

difference of initial volumes

rV 0,rel =
∣∣∣V klotz

0 − V sim
0

∣∣∣
V dat

ed

· 102, (15)

and the relative area difference

r An,rel = r An

Aklotz
· 102 (16)

of the normalized curve to the area under the Klotz curve Aklotz were calculated. The absolute area difference r An between 
two curves in the 2D space is computed by the method introduced by Jekel et al. [40], which positions quadrilaterals q
between two curves and subsequently calculates the sum of their areas

r An =
∑

Aq,
q

8



L. Marx, J.A. Niestrawska, M.A.F. Gsell et al. Journal of Computational Physics 463 (2022) 111266
Algorithm 2 Fixed-point algorithm to identify myocardial passive material parameters and the unloaded reference configu-
ration.
1: initialize geometry, X0 = xdat; k = 0; β = 1.0
2: initialize PV-pair from measured data pdat

ed , V dat
ed

3: initialize default parameters with values from the literature, a0
(•) = ainit

(•) and b0
(•) = binit

(•)

4: compute empirical EDPVR as proposed by Klotz et al. [45], see Appendix B, using PV-pair pdat
ed , V dat

ed

5: fit model function Equation (8) to the Klotz relation and obtain aklotz
fit and bklotz

fit
6: do
7: perform inverse method step, Algorithm 1 states 3–16, using parameters ak

(•), bk
(•)

8: retrieve current reference configuration Xk+1 and simulated loading curve
9: fit model function Equation (8) to current loading curve and obtain asim

fit and bsim
fit

10: compute scalings ascale = aklotz
fit /asim

fit and bscale = bklotz
fit /|bsim

fit |
11: update parameters ak+1

(•)
= ascale · ak

(•)
and bk+1

(•)
= bscale · bk

(•)

12: update counter, k = k + 1
13: compute error estimates as in Section 2.3.3 and check convergence
14: while not converged
15: unloaded reference configuration: X∗ = Xk

16: fitted parameter set: a∗
(•)

= ak
(•)

and b∗
(•)

= bk
(•)

Fig. 2. Graphical representation of the fixed-point algorithm to identify myocardial passive material parameters and the unloaded reference configuration. 
Starting from an initial geometry X0 obtained from image data and initial parameters ainit

(•) , binit
(•) from the literature, we perform an iterative procedure to 

find estimates for the unloaded reference configuration X∗ and personalized passive material parameters a∗
(•), b∗

(•) . While iterating, the simulated loading 
curve (in green) gets closer to the empiric EDPVR [45] (in red) which is determined by a measured pressure volume pair (pdat

ed , V dat
ed ). Convergence of the 

algorithm is based on error estimates given in Section 2.3.3.

using Gauss’ area formula

Aq = 1

2
|x1 y2 + x2 y3 + x3 y4 + x4 y1 − x2 y1 − x3 y2 − x4 y3 − x1 y4| ,

where (xi, yi) represent the vertices of a quadrilateral.

2.4. Numerical framework

The unloading and parameter estimation scheme was implemented in the FE framework Cardiac Arrhythmia Research 
Package (CARP) [83]. The simulations were constrained by applying spring-like boundary conditions at the rim of the clipped 
aorta and over the epicardial surface at the apex of the LV, respectively, see [49,79]. For all the passive inflation simulations 
we rely on solver methods established previously [9] which have been verified in a N-version benchmark study [47]. In 
brief, the linear systems were solved by a generalized minimal residual method (GMRES) with a relative error reduction of 
ε = 10−8. Efficient preconditioning was based on the library PETSc (https://www.mcs .anl .gov /petsc/). For all cases we used 
100 loading steps to ramp up the pressure from p = 0 to p = ped. To speed up computations, we limited the number of 
Newton steps to two for the passive inflation simulations during the unloading scheme. This did not alter simulation results 
and is justified as we were only estimating the unloaded reference configuration and material parameter sets. For the MFF 
with the Levenberg–Marquardt least-squares algorithm we used Python V. 3.8 and packages NumPy V. 1.16.6 and SciPy V. 
1.2.3; see [55] for details on the implementation of this algorithm.

To validate our results, we performed a passive inflation experiment that starts with the found unloaded reference 
configuration and the determined parameter set. For this passive inflation we used a fully converging Newton algorithm 
9
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Table 3
Fitting results for all N = 19 cases are listed in terms of final scaling parameters, ascale
and bscale after convergence of the algorithm, and measures of goodness of fit, rV 0,rel

and r An ,rel , along with input parameters, V dat
ed and pdat

ed , used to compute the Klotz 
EDPVR. Mean values and standard deviation (SD) of goodness of fit measures were com-
puted separately for each etiology. The whole set of fitted parameters for these cases is 
given in Table C.11.

Case-ID Input Parameters Fitted Parameters Goodness of Fit

V dat
ed pdat

ed ascale bscale rV 0,rel r An ,rel

[ml] [kPa] [%V dat
ed ] [%Aklotz]

01-CoA 155.65 1.75 0.3418 0.5988 0.16 10.00
02-CoA 230.23 2.56 0.5776 0.5671 0.18 11.87
03-CoA 96.48 0.72 0.2111 0.5054 0.16 8.34
04-CoA 92.86 0.61 0.1308 0.6887 0.16 9.86
05-CoA 152.83 1.49 0.3278 0.5458 0.17 9.69
06-CoA 159.27 1.07 0.2576 0.6258 0.13 7.38
07-CoA 123.72 1.09 0.3651 0.5387 0.11 8.39

Mean (SD) 0.15 (0.03) 9.36 (1.47)

01-AS 239.95 2.80 0.3422 0.4496 0.15 14.22
02-AS 275.31 2.80 0.2953 0.5647 0.16 14.29
03-AS 220.46 2.80 0.2972 0.5081 0.20 14.77
04-AS 97.27 2.80 0.1550 0.6813 0.18 14.71
05-AS 175.89 2.80 0.2511 0.6868 0.17 14.41
06-AS 237.83 2.80 0.2947 0.5526 0.17 14.55
07-AS 120.33 2.80 0.2116 0.5774 0.18 14.77
08-AS 281.70 2.80 0.3204 0.7124 0.15 14.10
09-AS 128.09 2.80 0.2427 0.5729 0.16 14.47
10-AS 208.75 2.80 0.3303 0.5043 0.16 14.41
11-AS 154.64 2.80 0.2406 0.6297 0.16 14.46
12-AS 169.14 2.80 0.1840 0.6567 0.17 14.54

Mean (SD) 0.17 (0.02) 14.48 (0.21)

with a relative �2-norm error reduction of the residual of ε = 10−6 and 100 loading steps. All goodness of fit measurements 
in the sections below were calculated using the PV-curve of this validation experiment.

3. Results

3.1. LV patient cohort results

The MFF method as described in Section 2.3.2 was executed for all N = 19 patient cases. Parameters of the reduced 
HO constitutive law were fitted using initial values from the literature, see Table 2. P1-P0-elements with the bulk modulus 
κ = 650 kPa were utilized for all cases and simulations were run on the Vienna Scientific Cluster 4 (VSC-4) using 96
cores. Given the convergence criteria as presented in Section 2.3.3, the MFF algorithm converged for all 19 cases and fitting 
results are summarized in Table 3. Cases with best (06-CoA) and worst (03-AS) fit were distinguished by calculating the 
relative area difference r An,rel, see Equation (16), and used for further analysis in the sections below. The Klotz curve and 
the simulated PV-curve for these two cases are visualized in Fig. 3. Even for the worst case the fitted model approximated 
the Klotz curve remarkably well, with an almost exact match in terms of V klotz

0 and V dat
ed . Indeed, the MFF method achieved 

excellent goodness of fit for all cases.
Run-times tul for the MFF method which include unloading and parameter fitting were between 10.85 min and 

74.18 min. For the subsequent passive inflation experiment for validation the run-times tval were between 6.31 min and 
24.50 min. As expected, computational cost increased with mesh size, see Fig. 4.

Further, the influence of the input parameters V dat
ed and pdat

ed on goodness of fit, more precisely r An,rel, is shown in Fig. 5. 
No trend can be recognized for different end-diastolic volumes V dat

ed while it appears that lower end-diastolic pressures pdat
ed

might lead to better fits; this is investigated further in Section 3.3.

3.2. Results for different constitutive laws

The default constitutive law in Section 3.1, i.e., the reduced HO law with initial material parameters from Guan et al. [30], 
was chosen simply because this study is one of the most recent papers with fits to data from human ventricular my-
ocardium. In this section, we show that the method described above works equally well for a large variety of constitutive 
laws, in fact most of the laws that are currently used to model passive myocardium.

To this end, we applied the MFF method using the different constitutive laws listed in Tables 1 and 2 for the case with 
best (06-CoA) and the worst (03-AS) fit in Section 3.1. P1-P0-elements were used and all simulations were run on VSC4 
10
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Fig. 3. Fitting results of case 06-CoA (left) and 03-AS (right) are shown. The measured end-diastolic PV-point is marked in blue and used as a starting point 
for the Klotz EDPVR (dashed gray). V klotz

0 is shown as a vertical line in solid gray, while the fitted relation is visualized in solid red.

Fig. 4. Relation of run-times for unloading tul (left) and validation tval (right) to mesh size in terms of number of elements is visualized. Data from CoA 
Cases is shown as xxdjitsots, whereas data from AS Cases is marked as crosses.

Fig. 5. Influence of input parameters V dat
ed (left) and pdat

ed (right) on relative area difference r An,rel is shown. Data from CoA cases is marked as dots, whereas 
data from AS cases is marked as crosses.

using 96 cores. Normalized fitting results for cases 06-CoA and 03-AS are given in Fig. 6 and Table 4 showing excellent fits 
and almost similar PV-curves for all material laws. Due to its simplicity and isotropic nature, the Demiray material model 
resulted in the lowest number of iterations and shortest run-times for both example cases. More complex orthotropic 
models needed more iterations of the MFF algorithm and thus also run-times increased. Overall, MFF simulations were 
tractable with a computational run-time below 2.5 hours for all experiments.

3.2.1. Results for locking-free finite elements
It is well known that simple P1-P0-elements may suffer from locking effects and hence other FE formulations are re-

quired for certain applications where accurate stresses are essential. To show the capabilities of the MFF method in this 
11
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Fig. 6. Fitting results of case 06-CoA (left) and 03-AS (right) using different constitutive laws are shown. The normalized Klotz EDPVR (dashed gray) is 
visualized along with the respective normalized fitted curves.

Table 4
Fitting results for case 06-CoA and 03-AS using different material laws are shown in terms of fitted scaling 
parameters, ascale and bscale , and measures of goodness of fit, rV 0,rel and r An ,rel .

Case 06-CoA Case 03-AS

Fitted Parameters Goodness of Fit Fitted Parameters Goodness of Fit

Material Model ascale bscale rV 0,rel r An ,rel ascale bscale rV 0,rel r An ,rel

[%V dat
ed ] [%Aklotz] [%V dat

ed ] [%Aklotz]

Guccione 0.0863 1.8189 0.16 7.44 0.1235 1.4884 0.21 14.74
Usyk 0.0607 3.9060 0.19 7.65 0.1068 2.7406 0.24 15.81
General HO 0.2630 0.5892 0.11 7.27 0.3034 0.4702 0.20 14.76
Reduced HO 0.2576 0.6258 0.13 7.38 0.2972 0.5081 0.20 14.77
Original HO 0.0473 0.8441 0.17 7.59 0.0615 0.6707 0.22 14.79
HO dispersion 0.2973 0.6781 0.14 7.65 0.3554 0.5354 0.23 14.83
One fiber HO 0.2649 0.6382 0.12 7.74 0.2934 0.5518 0.19 14.50
Demiray 0.5050 1.0502 0.16 7.49 0.4955 0.9411 0.14 14.52

Fig. 7. Fitting results using P1-P0-elements (solid blue) and locking-free P1-P1-elements (solid orange) are compared for case 06-CoA (left) and 03-AS 
(right). The Klotz EDPVR is shown in dashed gray.

scenario, we applied the algorithm to cases 06-CoA and 03-AS using stabilized, locking-free P1-P1-elements [44] and an 
incompressible material, i.e., 1/κ = 0. Normalized fitting results for the two example cases are presented in relation to re-
sults obtained above using P1-P0-elements in Fig. 7 and Table 5. The PV-curves and the measures of goodness of fit rV 0,rel

and r An,rel show that the method works equally well for stabilized P1-P1-elements. Looking at the parameter values in Ta-
ble 5 we can see that ascale is smaller and bscale is larger for P1-P0-elements compared to the locking-free elements. This 
is anticipated as the fitting compensates for a certain degree of locking in the P1-P0-element formulation and thus it gives 
parameters that correspond to a softer material. Unsurprisingly, run-times were significantly longer when a stabilized P1-P1 
FE formulation was used: 32 min vs 246 min for case 06-CoA and 61 min vs 364 min for case 03-AS, whereas iteration 
numbers of the MFF algorithm were similar.

We could achieve similar results with locking-free MINI elements as introduced by Karabelas et al. [44]; only run-times 
varied a bit compared to the stabilized P1-P1 formulation.
12
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Table 5
Fitting results for case 06-CoA and 03-AS using P1-P0-elements and stabilized P1-P1-element are com-
pared in terms of fitted scaling parameters and measures of goodness of fit.

Case 06-CoA Case 03-AS

Fitted Parameters Goodness of Fit Fitted Parameters Goodness of Fit

Elem. Type ascale bscale rV 0,rel r An ,rel ascale bscale rV 0,rel r An ,rel

[%V dat
ed ] [%Aklotz] [%V dat

ed ] [%Aklotz]

P1-P0 0.2576 0.6258 0.13 7.38 0.2972 0.5081 0.20 14.77
P1-P1 stab 0.3800 0.5386 0.08 8.36 0.4260 0.4512 0.19 13.93

Fig. 8. Behavior of the Klotz EDPVR relation is shown for varying end-diastolic PV-points. First, V dat
ed was varied while keeping pdat

ed constant and vice versa. 
Normalized curves match for alternating V dat

ed (left) while curves for alternating pdat
ed (right) differ in shape.

3.3. Sensitivity analysis

To show robustness of the proposed MFF methodology, a sensitivity analysis was performed to investigate the influence 
of clinical data uncertainty in terms of the end-diastolic PV-point used for computation of the Klotz EDPVR, changes in my-
ocardial fiber orientation, altered model parameters used as initial guess and variations of the bulk modulus κ , respectively. 
The sensitivity analysis was executed for example case 03-AS using the reduced HO material law and P1-P0-elements if not 
mentioned otherwise.

3.3.1. Influence of variations in the end-diastolic PV-point on fitting outcome
The behavior of the Klotz curve was investigated changing the inputs V dat

ed and pdat
ed independently and subsequently 

comparing the normalized curves. For that purpose, n = 20 evenly spaced values in the range of 93-282 mL for V dat
ed and 

0.61-2.80 kPa for pdat
ed were chosen; range boundaries correspond to the respective minimum and maximum values in the 

patient cohort data. For the variable held constant the mean values (V
dat
ed = 175 mL and pdat

ed = 2.26 kPa) obtained from 
the cohort data were taken. First, V dat

ed was varied while keeping pdat
ed constant and vice versa. Normalized results of the 

generated curves are visualized in Fig. 8. It shows that curves generated with alternating V dat
ed match when normalized, 

whereas normalized curves resulting from alternating pdat
ed differ.

For that reason, varying V dat
ed will have little effect on the goodness of fit of the MFF method. We could also observe 

this behavior previously in Fig. 5. Hence, the sensitivity of the proposed MFF method was studied for varying pdat
ed only, 

considering deviations of ±10%. Results in Fig. 9 and Table 6 suggest that fitting results are better for Klotz EDPVR that 
have higher normalized pressure values, especially in the lower normalized volume region. Material parameters change for 
different values of pdat

ed , but no particular trend is recognizable.

3.3.2. Sensitivity to fiber orientation
Default myofiber orientations varying from −60◦ epicardial, αepi, to 60◦ endocardial, αendo, were chosen and perturbed 

by 25 %. This resulted in fiber angles of −75◦ and −45◦ in the outer wall and 75◦ and 45◦ in the inner wall, respectively. 
Sheet and sheet-normal directions were adapted accordingly to preserve the orthogonal system of local fiber coordinates. 
Results of fitting performance are visualized in Fig. 9 and values of fitted parameters and measures of goodness of fit are 
summarized in Table 7. As expected, parameter values are changing with the fiber orientation, as myocyte directions have 
a great impact on local material stiffness. Further, we can observe that the goodness of fit of the MFF algorithm is almost 
indifferent to changes in fiber orientation, leading to almost the same PV-curves in Fig. 9.
13
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Fig. 9. Fitting results with respective Klotz EDPVR (dashed curves) for case 03-AS are compared for varying pdat
ed (left) and changing fiber angles (right).

Table 6
Fitting results for case 03-AS are compared for varying pdat

ed in 
terms of fitted parameters and measures of goodness of fit.

Fitted Parameters Goodness of Fit

pdat
ed Deviation ascale bscale rV 0,rel r An ,rel

[kPa] [%V dat
ed ] [%Aklotz]

2.52 −10% 0.3410 0.4985 0.21 12.34
2.80 0% 0.2972 0.5081 0.20 14.77
3.08 +10% 0.4903 0.3803 0.22 7.68

Table 7
The influence of change in fiber orientation on fitting results in terms of fitted param-
eters and goodness of fit is listed.

Fitted Parameters Goodness of Fit

Fiber Orientation Deviation ascale bscale rV 0,rel r An ,rel

[%V dat
ed ] [%Aklotz]

αepi = −45◦ , αendo = 45◦ −25% 0.2768 0.5005 0.19 14.68
αepi = −60◦ , αendo = 60◦ 0% 0.2972 0.5081 0.20 14.77
αepi = −75◦ , αendo = 75◦ +25% 0.3207 0.5161 0.20 14.84

3.3.3. Influence of initial model parameters on fitting outcome
To show the robustness of the method, the influence of variations in initial model parameters of the reduced HO material 

model was investigated. LHS from pyDOE V. 0.3.8 was used to create n = 10 different sets of initial scaling parameters 
{ascale, bscale} in the interval (0, 1). For all executed simulations the exact same parameter set and goodness of fit were 
obtained, also matching results with the default initial parameter set {ascale = 1, bscale = 1}, see case 03-AS in Table 3. While 
this shows the high robustness of the MFF algorithm, we cannot prove uniqueness and the run-times of the simulations 
varied significantly: tul = 39.48−302.25 min; depending on how close the initial parameters are to the final parameter set.

3.3.4. Influence of variations in bulk modulus on fitting outcome
Finally, sensitivity of the method to changes of the bulk modulus κ was studied using both P1-P0-elements and locking-

free, stabilized P1-P1-elements. Simulations were run for example case 03-AS for κ = {1000, 3000, 5000} kPa. Additionally, 
default values were chosen for P1-P0-elements (κ = 650 kPa) and for P1-P1-elements (1/κ = 0). Results are visualized 
in Fig. 10 and summarized in Table 8. The forward simulations were not robust for P1-P0-elements and κ = 5000 kPa
resulting in an irregular curve in Fig. 10(left). This is a shortcoming of the penalty formulation and P1-P0-elements, not 
the MFF method itself. We can see that for P1-P0-elements the material parameters vary greatly with the bulk modulus κ , 
compensating locking effects with material parameters that correspond to a softer material. However, when using P1-P1-
elements, the method was not sensitive to changes in κ . Material parameters and goodness of fit are similar, which is a 
further indication of the robustness of the MFF algorithm.

3.4. Comparison to fitting with cost functional and parameter space sampling

To compare and verify the results of the MFF approach we implemented an ad hoc optimization procedure, based on 
cost functional fitting (CFF), to find sets of material parameters. To penalize deflections at lower and higher pressures and 
14
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Fig. 10. Fitting results for case 03-AS are compared for different values of κ using P1-P0-elements (left) and stabilized P1-P1-elements (right).

Table 8
Fitting results for case 03-AS are compared for different values of κ using P1-P0-elements and sta-
bilized P1-P1-elements.

P1-P0-elements P1-P1-elements

Fitted Parameters Goodness of Fit Fitted Parameters Goodness of Fit

κ ascale bscale rV 0,rel r An ,rel ascale bscale rV 0,rel r An ,rel

[kPa] [%V dat
ed ] [%Aklotz] [%V dat

ed ] [%Aklotz]

default 0.2972 0.5081 0.20 14.77 0.4260 0.4512 0.19 13.93
1000 0.2614 0.5199 0.22 15.26 0.4266 0.4511 0.19 13.93
3000 0.1149 0.6263 0.30 18.08 0.4264 0.4511 0.19 13.92
5000 0.0340 0.8113 0.41 20.15 0.4266 0.4511 0.19 13.94

additionally penalize the difference to the volume of the unloaded geometry as determined by the Klotz relation (B.1), we 
chose the following cost functional:

J so2 = 1

2

∑
p

(
V klotz(p) − V sim(p)

V dat
ed

)2

+ 1

2

∑
V

(
pklotz(V ) − psim(V )

pdat
ed

)2

+ γ

(
V klotz

0 − V sim
0

V dat
ed

)2

. (17)

Here, the first term is the sum of squared normalized volume differences, the second term is the sum of squared normalized 
pressure differences, and the third term serves to further ensure that V klotz

0 and V sim
0 are close, with γ > 0 a weighting 

parameter; in all presented simulations we chose γ = 1. A downhill-Simplex based fitting (Nelder–Mead method) from 
SciPy was used to carry out the optimization, where we chose an absolute error of 0.001 in the parameter update between 
iterations to be acceptable for convergence. We tried different varieties of CFF, the above described method with Equation
(17) proved to be the most efficient.

Results The CFF approach was executed for the two example cases (06-CoA and 03-AS) with the reduced HO constitutive 
law, P1-P0-elements, and the bulk modulus κ = 650 kPa. We used default values for the material parameters as in Table 2
scaled by a factor of 0.5 as we already expect from results in Table 3 that material parameters from the literature are in 
general too stiff; this scaling sped up computational times considerably.

Using the Nelder–Mead algorithm we optimized (i) nopt = 1 scaling parameter (ascale) which was applied to all material 
parameters a(•) , whereas all b(•) parameters of the model were scaled with 0.5; (ii) nopt = 2 scaling parameters (ascale, 
bscale), with ascale applied to all a(•) parameters and bscale applied to all b(•) parameters of the model; and (iii) nopt = 3
scaling parameters (ascale, biso

scale, baniso
scale ), where ascale is the scaling parameter that was applied to all a(•) parameters; biso

scale
is the scaling parameter that was applied to b in the isotropic contribution of the constitutive law; and baniso

scale is the scaling 
parameter that was applied to all b(•) parameters of the anisotropic contribution.

We used bounds such that all scaling parameters are > 0.1 to prevent that parts of the constitutive law are eliminated. 
The case nopt = 4, where additionally a from the isotropic contribution and all a(•) from the anisotropic contribution were 
scaled by two different parameters, was not converging for the patient-specific cases within a reasonable amount of time 
(72 hours). We performed the optimization using values from the literature, see Table 2, as starting values (no init) as well 
as using the MFF approach to generate initial guesses for the parameter scalings (init).
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Fig. 11. Normalized fitting results of case 06-CoA (left) and case 03-AS (right) executed using the reduced HO constitutive law with initial guesses from 
literature (no init) and with a MFF initialization step (init) as initial guess. Outcomes of the CFF method, optimizing one, two, or three parameters, 
nopt = {1, 2, 3}, are compared.

Table 9
Fitting results in terms of fitted scaling parameters and measures of goodness of fit for the two example cases executed using the reduced HO 
constitutive law with parameters from literature [39] (no init) as initial guess and with an MFF initialization step (init). Outcomes of the CFF 
method, optimizing one, two, or three parameters, nopt = {1, 2, 3}, are listed with number of iterations (it.) of the Nelder–Mead algorithm.

Case 06-CoA Case 03-AS

Fitted Parameters Goodness of Fit Fitted Parameters Goodness of Fit

Mode nopt it. ascale biso
scale baniso

scale rV 0,rel r An ,rel it. ascale biso
scale baniso

scale rV 0,rel r An ,rel

[%V dat
ed ] [%Aklotz] [%V dat

ed ] [%Aklotz]

init 1 17 0.3475 0.5000 0.5000 0.027 11.13 9 0.2982 0.5000 0.5000 0.024 14.72
2 46 0.2365 0.6493 0.6493 0.002 8.30 73 0.2588 0.5252 0.5252 0.001 15.43
3 94 0.2371 0.6827 0.6274 0.001 8.20 78 0.2571 0.5524 0.5144 0.002 15.59

no init 1 20 0.3477 0.5000 0.5000 0.025 11.15 22 0.2969 0.5000 0.5000 0.016 14.72
2 41 0.5427 0.3255 0.3255 0.009 28.13 80 0.2587 0.5252 0.5252 0.000 15.40
3 130 0.2382 0.7321 0.5948 0.008 8.43 167 0.2588 0.5979 0.4881 0.001 15.03

Results are summarized in Table 9 and in Fig. 11 and we see that the worst fit was obtained for case 06-CoA optimizing 
two parameters and using initial values from the literature (no init), where the Nelder–Mead method got stuck in a local 
minumum. For nopt = 1 similar results were reached when using values from the literature (no init) and initial scalings 
generated by a MFF (init). Best fits were acquired for nopt = 2 with MFF initialization and nopt = 3 in both variants. For case 
03-AS obtained fitted parameters and goodness of fit were very similar for both initialization variants. Overall, results did 
not deviate much when one, two, or three parameters were optimized. In general, simulations run with default parameters 
from the literature needed more Nelder–Mead iterations compared to simulations with MFF iterations and thus also run-
times were longer (>1.5 times as long).

Comparison of MFF and CFF approaches Fitting outcomes of MFF (Table 3) and CFF (Table 9) agree well in terms of fitted 
parameters and measures of goodness of fit. Also the PV-curves of the MFF and CFF approach match almost exactly in 
Fig. 12 where the MFF result is compared to the best fit of the CFF method. However, since a full unloading step has to 
be solved in each Nelder–Mead iteration, the number of passive inflation simulations for the CFF approach is significantly 
larger compared to the MFF method: 79/156/516 vs 8 for 06-CoA and 110/460/835 vs 10 for 03-AS for CFF no init and 
nopt = 1/2/3 fitted parameters vs. MFF; thus also the run-time of the CFF approach was considerably longer compared to 
the MFF approach: 330/546/2095 min vs 32 min for 06-CoA and 541/2197/3974 min vs 61 min for 03-AS for CFF no-init 
and nopt = 1/2/3 fitted parameters vs. MFF.

4. Discussion

4.1. Comparison to other methods and the state-of-the-art

This study describes a novel methodology to fit passive mechanical parameters of the myocardium. Additionally, the 
algorithm computes an unloaded reference configuration where a new line search strategy was implemented that improves 
the robustness of a previously introduced backward-displacement method. We have demonstrated that the presented MFF 
method is an efficient, robust, and versatile approach for the automated identification of model parameters from clinical 
image data using the empirical EDPVR as proposed by Klotz et al. [45] as a fitting target. With this, the MFF algorithm 
16
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Fig. 12. Comparison of fitting outcomes of MFF and CFF for case 06-CoA (left) and case 03-AS (right).

only requires image or mesh data from one time instance during diastolic filling and a single measured data point of the 
EDPVR as inputs. Hence, the MFF method does not depend on a known approximation of the reference configuration which 
is a limitation of previous works [34,58]. This is of particular interest as often only a single anatomical snapshot taken 
within the diastatic window is available from clinical studies. Alternatively, previously generated geometries can be used 
for the MFF algorithm and thus no additional segmentation work is required to estimate material parameters for already 
existing meshes. Note that in many cases pressure and volume at end-diastole and image acquisition are not synchronized 
as both involve different modalities, e.g., catheter-based pressure measurement vs. echocardiography/CT/MRI. However, the 
presented method will still work if the image is scanned during early diastole or diastasis given an estimate of the pressure, 
pimage, in the image-based geometry. Then, the first step of the unloading algorithm will be performed using pimage and 
the maximal nodal error comparing simulated and measured geometries Equation (13) is computed at this pressure. See 
also Finsberg et al. [21] for a similar workflow.

Contrary to other studies that jointly estimate material parameters and the unloaded reference configuration [4,21,20,62], 
we did not require to fix any parameters of the material law. To the best of our knowledge this is thus the first study that 
allows to fit not only for the predicted volume of the reference configuration V 0 but also for the shape of the EDPVR. In 
opposition to studies above, we could apply our algorithm to much finer meshes (up to 1.5 million elements) and still keep 
simulations tractable with regard to computational cost. This is essential for many translational application of computational 
models in industry or in the clinic where time constraints apply.

Parameter estimation results are in line with previous studies where experimental parameters from the literature were 
also often considered as too stiff [41,72,84]. Fittings are in a similar range compared to [26, Table 1], [34, Figure 10], and [62, 
Table 2] for the Guccione law; and [4, Table 6] and [21, Table A1] for the one-fiber HO law; in these studies the authors 
were also able to reproduce the Klotz curve. Comparison of parameter values presented in other studies is difficult as these 
did not take the Klotz relation into account [58,90] or used different ratios between parameters [72].

To verify our novel MFF approach we implemented an ad hoc CFF based optimization procedure. Here, MFF and CFF 
approaches yield similar fitting results distinguishing the MFF approach as the superior method due to significantly shorter 
run-times and a higher robustness. While the MFF approach converged for all examined patient-cases, the more expensive 
CFF approach did not. This was due to time constraints on clusters and numerical problems stemming from instabilities 
of the forward solver owing to very soft material parameters chosen by the Nelder–Mead algorithm. For the latter case, 
we returned a very high cost, however, for some patient-specific geometries this still led to convergence problems. We 
further showed that even if a CFF approach is pursued, the MFF method can be used as a fast approach to generate an 
initial guess to improve convergence and efficiency. Note that for the CFF approach with nopt = 3 scaling parameters, we 
fitted the material parameters of the isotropic and the anisotropic contribution independently. Nevertheless, we are aware 
that it is hardly possible to estimate the degree of anisotropy based solely on pressure-volume data. Here, experimental 
setups – as, e.g., described in papers mentioned above for default material parameters (Tables 1 and 2) – are by far better 
suited. For the MFF approach we thus keep the degree of anisotropy as it was given by default parameter sets and we do 
not distinguish between isotropic and anisotropic parts. For the sake of comparison, we tried the CFF approach also with 
3 and 4 fitting parameters. As we can see in Table 9 the CFF approach with 3 fitting parameters did not improve results. 
Further, the CFF approach with 4 fitting parameters did not converge within a reasonable amount of time. In regard of the 
methods discussed in this paper we thus conclude that it is not worth pursuing an independent fitting of the isotropic and 
anisotropic contribution and, consequently, it is better to keep the degree of anisotropy as it was determined in experiments.

There are several other works that discuss the determination of the reference configuration from a loaded state, e.g., 
[29,48,67]. Each of these algorithms, as well as Algorithms 3 and 4, can be used instead of Algorithm 1 as a basis for the 
presented MFF approach to fit passive mechanical parameters of the myocardium. We only need the loading curve generated 
by inflating the unloaded reference configuration to a prescribed pressure as an input.
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Finally, compared to some above-mentioned studies, the proposed method can be coupled with relative ease to estab-
lished FE software packages. It only requires a limited number of passive inflation simulations, a standard experiment in 
all continuum mechanics simulators, and basic least-squares fitting tools which are available through open-source packages 
such as SciPy.

4.2. Computational costs

For all patient-specific cases, run-times for the MFF method (between 10.85 min and 74.18 min) were only 2 to 3 times 
higher compared to a standard passive-inflation experiment. Note that a further speed-up is possible by using only one 
Newton step during unloading, making the MFF method sometimes even faster than a single passive inflation experiment. 
However, in this case we observed stair-casing effects in the simulated PV-curve that might affect results to a minor degree. 
Also, a considerably lower number of loading steps will accelerate simulation times. In this scenario, the least-squares fitting 
to the piece-wise linear PV-curve could be less accurate.

The high efficiency of the parameter fitting is of utmost importance as the computational burden imposed by high-
resolution patient-specific models demands fast numerical methods to keep simulations tractable.

4.3. Versatility of the workflow with respect to material laws and FE formulations

The MFF approach works for various material models including the most widely used passive cardiac tissue models, 
e.g., HO-type and Fung-type materials as introduced in Section 3.2. Run-times and iteration numbers of the MFF algorithm 
varied to a small degree with complexity and anisotropy of the model. Convergence with criteria discussed in Section 2.3.3
was reached for all constitutive laws within 10 iterations. It is worth mentioning, that the MFF using the Klotz curve as 
a target did not work for the isotropic neo-Hookean and Mooney–Rivlin materials. Though sometimes used for cardiac 
mechanics [15,73], also Hadjicharalambous et al. [34] reported previously that with these constitutive laws the Klotz curve 
could not be reproduced. This is suggestive of such materials being inappropriate to model cardiac tissue. The problem for 
the fitting in our case is that the PV response with these materials results in a concave curve – as also observed in [34, 
Figure 12] – while the Klotz curve is convex. Hence, the presented MFF failed, however, our approach might still work with 
these materials for other applications than cardiac mechanics with target functions that are not necessarily convex.

We could further show that the MFF approach can be used with different FE formulations such as P1-P0 elements 
and locking-free stabilized P1-P1 and MINI elements. Here, the locking-free elements resulted in material parameters that 
correspond to a stiffer material as the fitting compensates for locking effects in the P1-P0-element formulation. As expected, 
run-times are significantly higher for locking-free elements; still the efficiency of the MFF approach allowed for unloading 
and parameter estimation within reasonable time frames.

4.4. Goodness of fit and sensitivity analysis

We were able to show that our method allows to match the predicted volume of the unloaded geometry V klotz
0 and 

the given end-diastolic volume V dat
ed almost perfectly while reproducing the shape of the PV-curve within uncertainty of the 

empiric Klotz relation (Table 3). It is important to note that the EDPVR cannot be accurately determined in vivo for a number 
of fundamental limitations. First, the LV volume during diastolic filling depends on the pressure difference between LV cavity 
and intra-pericardial pressure and is also influenced by the presence of time-varying non-zero active stresses. Time-varying 
intra-pericardial pressure is non-negligible and influenced by intra-thoracic pressure modulated by breathing and, as such, 
cannot be recorded easily beyond specifically designed experiments [38,37]. Further, tails of the active stress transients 
during diastole depend on cytosolic calcium, the state of Troponin-C buffering as well as the spatially varying sarcomere 
geometries. None of these factors can be monitored. As such, the time course of active stresses during diastole must be 
considered unknown, albeit efforts have been invested to estimate these [91]. The Klotz relation has been shown to be 
robust across species and a range of pathological conditions under ex vivo conditions where both volume and intra-cavitary 
pressure can be controlled with higher accuracy, but, owing to its empirical nature, must be considered an approximation 
of the EDPVR in an individual patient under in vivo conditions.

Independently of the uncertainties a Klotz-based surrogate EDPVR is afflicted with, the application to the patient cohort 
resulted in excellent fittings to the Klotz curve for all cases with a goodness of fit measure r An ,rel ranging between 7.38% 
and 14.77%. Also rV 0,rel was very low for all cases, although a small trend towards better fits in the CoA cases was observed. 
Note that only for these cases the measured pressure was available, see also Section 3.3.1.

The influence of the input pressure pdat
ed was noticeable, resulting in different shapes of the Klotz EDPVR (Figs. 8 and 9) 

and therefore in different material parameters. This influenced the goodness of fit to some extent, hence, the sensitivity to 
this measure should be considered, especially in the case when invasively measured pressures are not available.

Fiber orientations are known to have a great impact on cardiac mechanics simulations [25,71], thus, the influence of 
variations of the fiber angle α on fitting performance is an integral point of the sensitivity analysis. Variations of fiber 
angles resulted in very similar outcomes in terms of goodness of fit as well as computational cost. The altered stiffness due 
to altered fiber directions was compensated by the variation of material parameters, hence resulting in similar PV-curves.
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Changes in initial guesses for model parameters were not reflected in the fitting outcome at all and resulted in the same 
fitted material parameters and curves. Only the run-times for unloading varied when using initial guesses lying further from 
the final result. This robustness of the approach is essential for the interpretation of material parameters for characterizing 
patient pathology and understanding changes in material properties under HF conditions.

The fitting outcome was not sensitive to variations of the bulk modulus κ when using locking-free elements. However, 
for P1-P0-elements the shape error increased for higher values of κ , compensating for the increased locking of the P1-P0-
elements. As in all simulations modeling nearly-incompressible behavior of soft tissue, special care has to be taken when 
setting this parameter for simple linear elements.

Finally, the choice of the model function (8) was motivated by the mathematical structure of the constitutive laws and 
the Klotz relation. In Appendix D, we could demonstrate that several other model functions can be used for the fitting, all 
leading to excellent results. As the MFF approach is applicable to many kinds of target loading curves other than the Klotz 
relation, the definite choice of the model function is specific to the problem.

4.5. Limitations

First, the workflow presented in this paper relies on the empiric Klotz relation. However, the approach also works in 
the exact same fashion for other experiment-based PV-curves, discrete data points obtained from loading experiments, or 
experimental/clinical in vivo measurements of the EDPVR.

Second, as residual strain is not considered, in general, this method does not generate a uniform fiber-stretch field which 
is generally assumed at end-diastolic state [14,23,65]. Heterogeneity in fiber stretch in an end-diastolic state impairs the 
Frank-Starling mechanism, as shown in a recent modeling study [8]. In future studies, the presented workflow will be 
extended by using ideas based on growth and remodeling [27,88] to address this issue.

Third, we presented the methodology only for single-chamber LV models, while solid- and electromechanical whole-
organ simulations of the heart are becoming feasible [9,11,72,78]. Nevertheless, the workflow was successfully tested for 
bi-ventricular models [42] as well as 4-chamber models. Here, we used one homogeneous material for the ventricles and 
default values from the literature for the atria, e.g., [7], and applied patient-specific pressures in the different chambers for 
the forward solve in Algorithms 1 and 2. We did not present these simulations as an empirical estimation for the EDPVR 
was only available for the LV given as the Klotz law. To the best of our knowledge, no comparable approximation of EDPVR 
exists for the right ventricle or the atria.

Finally, we cannot provide a rigorous proof that the resulting unloaded configuration and material parameter sets are 
unique. However, we could show that the method was robust with respect to initial values leading to the same result for 
all simulations, see Section 4.4. Further, as we are fitting a strictly convex function (8), we can assume that the Levenberg–
Marquardt algorithm results in a unique parameter set [13]. Since the MFF method requires that the estimated parameters 
are close to this solution, see Equation (14), we can expect that the MFF method is robust with regard to material parame-
ters.

5. Conclusion

We report on a novel MFF approach combining the fitting passive mechanical parameters of the myocardium to the 
shape of the EDPVR and the simultaneous estimation of the unloaded reference configuration. The algorithm only requires 
image or mesh data from one time instance during diastolic filling and a single measured PV data point of the EDPVR as 
inputs. The MFF is efficient, robust, and versatile and can be applied to reproduce clinically-relevant PV relationships for 
patient-specific LV anatomical models within clinically easily feasible time frames in a fully automated fashion. Thus, the 
method constitutes a further step forward towards a realistic representation of LV passive mechanical function. As such, the 
MFF is a pivotal building block in workflows for building computational digital twin models of human cardiac EM function 
at scale, to facilitate the generation of virtual cohorts in translational applications.
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Appendix A. Established algorithms to find the unloaded reference configuration

Unloading algorithms as proposed by Sellier [75] in Algorithm 3 and by Rausch et al. [68] in Algorithm 4.

Algorithm 3 Sellier’s Inverse Method [75].

1: initialize X0 = xdat; k = 0
2: do
3: solve forward problem, xk = φ

(
Xk

)
4: calculate nodal error vector, Rk = xk − xdat

5: update reference vector, Xk+1 = Xk − Rk

6: compute maximal nodal error, r‖x‖∞ = max
i∈[1,Nnodes]

∥∥∥xk
i − xdat

i

∥∥∥
2

7: update counter, k = k + 1
8: while r‖x‖∞ ≥ ε
9: unloaded reference configuration, X∗ = Xk

Algorithm 4 Augmented Sellier’s Inverse Method [68].

1: initialize X0 = xdat; k = 0; β = 1.0
2: do
3: solve forward problem, xk = φ

(
Xk

)
4: calculate nodal error vector, Rk = xk − xdat

5: if k > 0 then

6: update augmentation parameter, β = −β
Rk−1 : [Rk − Rk−1

]
[

Rk − Rk−1
] : [Rk − Rk−1

]
7: end if
8: update reference vector, Xk+1 = Xk − β Rk

9: compute maximal nodal error, r‖x‖∞ = max
i∈[1,Nnodes]

∥∥∥xk
i − xdat

i

∥∥∥
2

10: update counter, k = k + 1
11: while r‖x‖∞ ≥ ε
12: unloaded reference configuration, X∗ = Xk

Table A.10
Comparison of unloading algorithms: Iteration numbers and computational times in (HH:MM:SS) format for 
all 19 cases. Error “–” indicates that the unloading algorithm didn’t converge within 50 iterations.

Algorithm 3, [75] Algorithm 4, [68] Algorithm 1

r‖x‖∞ < 1.0 r‖x‖∞ < 0.1 r‖x‖∞ < 1.0 r‖x‖∞ < 0.1 r‖x‖∞ < 1.0 r‖x‖∞ < 0.1

01-CoA 6 (0:13:39) 10 (0:23:24 5 (0:11:07) 6 (0:13:40) 5 (0:12:36) 6 (0:13:07)
02-CoA 7 (0:16:17) 16 (0:37:31 5 (0:10:38) 9 (0:20:21) 6 (0:13:39) 10 (0:21:59)
03-CoA – – 6 (0:05:11) 9 (0:06:32) 5 (0:03:34) 7 (0:05:03)
04-CoA 5 (0:07:16) 9 (0:15:10) 5 (0:07:12) 6 (0:09:10) 4 (0:05:59) 6 (0:08:55)
05-CoA 5 (0:08:52) 11 (0:20:39) 5 (0:08:17) 6 (0:09:41) 4 (0:06:26) 6 (0:09:51)
06-CoA 5 (0:12:34) 8 (0:19:51) 5 (0:13:18) 6 (0:14:21) 3 (0:07:36) 6 (0:15:23)
07-CoA 5 (0:04:55) 9 (0:08:59) 5 (0:04:50) 9 (0:09:22) 5 (0:05:02) 9 (0:09:00)
01-AS – – 6 (0:12:42) 10 (0:21:00) 6 (0:12:06) 10 (0:21:17)
02-AS – – 6 (0:21:44) 9 (0:30:02) 5 (0:18:08) 9 (0:30:17)
03-AS 50 (2:25:48) – 8 (0:32:51) – 5 (0:16:22) 14 (0:49:07)
04-AS – – 7 (0:11:23) 10 (0:21:15) 6 (0:12:18) 8 (0:17:33)
05-AS 15 (0:48:38) 29 (1:37:08) 5 (0:16:22) 7 (0:24:52) 5 (0:17:02) 7 (0:24:23)
06-AS – – 8 (0:27:13) – 6 (0:21:12) 18 (1:03:50)
07-AS – – 7 (0:11:54) 10 (0:20:02) 6 (0:12:36) 8 (0:14:45)
08-AS – – 6 (0:30:05) – 5 (0:23:31) 14 (1:08:48)
09-AS 23 (0:38:21) 35 (0:45:59) 6 (0:09:10) 9 (0:14:15) 6 (0:09:36) 8 (0:12:49)
10-AS – – 6 (0:13:54) – 6 (0:14:20) 10 (0:23:49)
11-AS 8 (0:16:48) 17 (0:32:28) 5 (0:10:40) 7 (0:14:42) 5 (0:11:01) 7 (0:15:30)
12-AS – – 6 (0:18:21) 9 (0:24:47) 5 (0:16:09) 7 (0:23:31)
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Appendix B. Klotz relation

Considering the limited availability of clinical data of the EDPVR, the computational method proposed by Klotz et al. [45]
is utilized, which enables prediction of the EDPVR by a single measured PV-pair. According to this seminal work the volume 
of the unloaded geometry V klotz

0 of the LV can be empirically determined by

V klotz
0 = V dat

ed

(
0.6 − 0.006pdat

ed

)
, (B.1)

where V dat
ed and pdat

ed is a measured PV-pair at end-diastole. Further, the EDPVR is described by the power law

p = αV β, (B.2)

where p is the cavity pressure in mmHg, V is the cavity volume in mL, and the constants α and β are defined by the 
relations

α = 30(
V klotz

30

)β
and β = log (pdat

ed /30)

log (V dat
ed /V klotz

30 )
. (B.3)

Here, V klotz
30 is the estimated cavity volume at a pressure of 30 mmHg, given by

V klotz
30 = V klotz

0 + V dat
ed − V klotz

0

(pdat
ed /An)

1/Bn
, (B.4)

where An and Bn were determined empirically as 27.78 mmHg and 2.76 respectively. Equation (B.3) requires that pdat
ed ≤

22 mmHg (2.93 kPa), which applies to all patient cases in the CARDIOPROOF cohort (see Table 3).

Appendix C. Full parameter list for the reduced Holzapfel–Ogden law

Table C.11
Fitted parameters for all N = 19 cases for the reduced Holzapfel–Ogden law; for this default material 
parameters given in Table 2 are multiplied according to Equation (10) with final scaling parameters 
given in Table 3.

Case-ID a [kPa] b af [kPa] bf an [kPa] bn afs [kPa] bfs

default 0.8090 7.4740 1.9110 22.0630 0.2270 34.8020 0.5470 5.6910

01-CoA 0.2765 4.4754 0.6532 13.2113 0.0776 20.8394 0.1870 3.4078
02-CoA 0.4673 4.2385 1.1038 12.5119 0.1311 19.7362 0.3159 3.2274
03-CoA 0.1708 3.7774 0.4034 11.1506 0.0479 17.5889 0.1155 2.8762
04-CoA 0.1058 5.1473 0.2500 15.1948 0.0297 23.9681 0.0715 3.9194
05-CoA 0.2652 4.0793 0.6264 12.0420 0.0744 18.9949 0.1793 3.1061
06-CoA 0.2084 4.6772 0.4923 13.8070 0.0585 21.7791 0.1409 3.5614
07-CoA 0.2954 4.0262 0.6977 11.8853 0.0829 18.7478 0.1997 3.0657

01-AS 0.2768 3.3603 0.6539 9.9195 0.0777 15.6470 0.1872 2.5587
02-AS 0.2389 4.2206 0.5643 12.4590 0.0670 19.6527 0.1615 3.2137
03-AS 0.2404 3.7975 0.5679 11.2102 0.0675 17.6829 0.1626 2.8916
04-AS 0.1254 5.0920 0.2962 15.0315 0.0352 23.7106 0.0848 3.8773
05-AS 0.2031 5.1331 0.4799 15.1529 0.0570 23.9020 0.1374 3.9086
06-AS 0.2384 4.1301 0.5632 12.1920 0.0669 19.2316 0.1612 3.1448
07-AS 0.1712 4.3155 0.4044 12.7392 0.0480 20.0947 0.1157 3.2860
08-AS 0.2592 5.3245 0.6123 15.7177 0.0727 24.7929 0.1753 4.0543
09-AS 0.1963 4.2819 0.4638 12.6399 0.0551 19.9381 0.1328 3.2604
10-AS 0.2672 3.7691 0.6312 11.1264 0.0750 17.5506 0.1807 2.8700
11-AS 0.1946 4.7064 0.4598 13.8931 0.0546 21.9148 0.1316 3.5836
12-AS 0.1489 4.9082 0.3516 14.4888 0.0418 22.8545 0.1006 3.7373

Appendix D. Choice and comparison of model functions

As default we chose the model function in Equation (8) for its similarity to the constitutive laws and to keep b 
= 0. 
Nevertheless, the fitting method also worked for other model functions, e.g., those listed below:

	1(x, x0) = a

2b

{
exp

[
b

(
x − x0

x0

)]
− 1

}
, (energy-Demiray)
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Fig. D.13. Fitting results of case 06-CoA (left) and 03-AS (right) using different model functions are shown. The normalized Klotz EDPVR (dashed gray) is 
visualized along with the respective fitted curves.

	2(x, x0) = a

{
exp

[
b

(
x − x0

x0

)]
− 1

}
, (exp-function)

	3(x, x0) = a

2b

{
exp

[
b

(
x − x0

x0

)2
]

− 1

}
, (exp-squared)

	4(x, x0) = a

(
x − x0

x0

)b

, (power-function)

	5(x, x0) = a

(
x − x0

x0

)
exp

[
b

(
x − x0

x0

)2
][(

x + vwall

x

)2/3

− 1

]
, (Laplace-law)

with parameters a and b. Similar to Section 2.3.2, a Levenberg–Marquardt least-squares algorithm was used (i) to fit the 
model function 	i(x, x0) to the Klotz relation, with x the volumes as predicted by the Klotz power law (B.2) and x0 the 
volume of the unloaded geometry volume V klotz

0 (B.1); and (ii) to fit the model function 	i(x, x0) to the re-loading curve in 
the current step k of the unloading algorithm, with x the volumes at the different loading points and x0 the cavitary volume 
of the current reference configuration Xk . All model functions are designed such that 	(x0, x0) = 0 to ensure loading curves 
that have zero pressure at the unloaded reference configuration with volume V 0. The first model function (energy-Demiray), 
the same as in Equation (8), was inspired by the constitutive law of Demiray (3); the second (exp-function) is a standard 
exponential fitting function; the third (exp-squared) was inspired by the anisotropic contributions in the HO models (6); the 
fourth (power-function) is related to the Klotz power law (B.2); and the fifth (Laplace-law) was inspired by an extension of 
the Laplace law [53] to take the volume of the LV wall, vwall , into account:

σ = p( x+vwall
x

)2/3 − 1
,

where the stress tensor σ at pressure p is computed from the constitutive law (exp-squared) above

σ = ∂	3(x, x0)

∂λ
, λ :=

(
x − x0

x0

)
.

Here, x is a substitute for the volume of the cavity at pressure p for the Klotz law and the reloading, respectively; x0 a 
substitute for the reference volume; and λ a strain-like value.

Results The unloading and parameter estimation was performed as in Section 3.1 for cases 06-CoA and 03-AS. Normal-
ized fitting results for all different model functions and both cases are shown in Fig. D.13 and Table D.12. We see that 
all model functions work well for case 03-AS with only minor differences in the goodness of fit and the fitted parame-
ters. For case 06-CoA the fitting with the (exp-squared) model did not converge and the fitting with the power-function 
showed a considerably slower convergence compared to the other model functions. Differences between (energy-Demiray) 
and (exp-function) are very small, both show fast convergence and excellent fitting results, rendering these model functions 
a favorable choice for the fitting. We noticed for all cases, also visible in Fig. D.13, that the fitting with the (Laplace-law) 
model function gives results that are closest to the Klotz curve in the lower pressure range but further afar in the higher 
pressure range, overall resulting in the largest values of the area error r An,rel. However, the (Laplace-law) fitting always had 
the lowest deflection error defined as
22
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Table D.12
Fitting results for case 06-CoA and 03-AS using different model functions are shown in terms of fitted scaling 
parameters and measures of goodness of fit.

Case 06-CoA Case 03-AS

Fitted Parameters Goodness of Fit Fitted Parameters Goodness of Fit

Model Function ascale bscale rV 0,rel r An ,rel ascale bscale rV 0,rel r An ,rel

[%V dat
ed ] [%Aklotz] [%V dat

ed ] [%Aklotz]

energy-Demiray 0.2576 0.6257 0.13 7.39 0.2971 0.5076 0.19 14.77
exp-function 0.2558 0.6267 0.11 7.36 0.2968 0.5078 0.19 14.77
exp-squared - - - - 0.3120 0.4956 0.16 14.64
power-function 0.2878 0.6076 0.59 7.14 0.3260 0.4721 0.19 14.59
Laplace-law 0.2358 0.6587 0.28 8.40 0.2605 0.5391 0.25 15.55

rshape = max
p∈[0,ped]

∣∣∣V klotz(p) − V sim(p)

∣∣∣ . (D.1)

Hence, for certain cases it can be a good alternative to the (energy-Demiray) function.
Model functions �i given above are only a small subset of functions that we tried for our fitting to the Klotz curve. All 

of them showed satisfying results and convergence rates but other functions might work as well for the procedure. Since 
the Klotz curve resembles an exponential function, it is not surprising that the (energy-Demiray) and (exp-function) worked 
best. However, as our method would work for all kinds of target EDPVR other than the Klotz law, the choice of the model 
function is specific to the problem.
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