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Abstract

Purpose of Review—Resilience is a key concept to deal with an uncertain future in forestry. 

In recent years, it has received increasing attention from both research and practice. However, a 

common understanding of what resilience means in a forestry context and how to operationalise 

it is lacking. Here, we conducted a systematic review of the recent forest science literature on 

resilience in the forestry context, synthesizing how resilience is defined and assessed.

Recent Findings—Based on a detailed review of 255 studies, we analysed how the concepts 

of engineering resilience, ecological resilience and social-ecological resilience are used in forest 

sciences. A clear majority of the studies applied the concept of engineering resilience, quantifying 

resilience as the recovery time after a disturbance. The two most used indicators for engineering 

resilience were basal area increment and vegetation cover, whereas ecological resilience studies 
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frequently focus on vegetation cover and tree density. In contrast, important social-ecological 

resilience indicators used in the literature are socioeconomic diversity and stock of natural 

resources. In the context of global change, we expected an increase in studies adopting the more 

holistic social-ecological resilience concept, but this was not the observed trend.

Summary—Our analysis points to the nestedness of these three resilience concepts, suggesting 

that they are complementary rather than contradictory. It also means that the variety of 

resilience approaches does not need to be an obstacle for operationalisation of the concept. We 

provide guidance for choosing the most suitable resilience concept and indicators based on the 

management, disturbance and application context.

Keywords

Forest management; Engineering resilience; Ecological resilience; Social-ecological resilience; 
Disturbance; Indicators

Introduction

Global change causes shifts in forest disturbance regimes [1, 2] that can potentially reduce 

the capacity of forests to provide ecosystem services [3]. The change may furthermore 

alter the distribution of species [4, 5] including forest-dependent species that, if not able 

to migrate as their habitat shifts, can face extinction [6]. Interacting disturbances can alter 

forest development pathways [7], and an increased disturbance frequency can erode the 

capacity of forests to recover [8, 9]. In addition to environmental changes, societies and 

societal demands towards forests are changing, and therefore, forest-related policies must 

change as well to meet these demands, e.g. in relation to climate change mitigation [10] 

or the development of a wood-based bioeconomy [11]. It has been suggested that neither 

the traditional command-and-control forest management nor classical risk management in 

forestry is able to respond adequately to this multitude of changes and challenges [12, 13].

Resilience is one of the current buzzwords in science and policy, and fostering resilience 

has been proposed as a solution to deal with the uncertainty caused by global change [14–

16]. However, resilience is a difficult concept to define, as demonstrated by the numerous 

definitions and approaches available in the literature [17, 18••]. This ambiguity is partly 

due to the widespread use of the term in different disciplines and systems. As a result, 

the scientific literature diverges on whether resilience should be considered as a system 

property, process or outcome of management [18••]. In the literature on social-ecological 

systems, three broad conceptualisations of the term resilience have emerged: engineering, 

ecological and social- ecological resilience [19]. Engineering resilience is often cited as first 

defined by Pimm [20]. Following a disturbance in a given system, it is characterised as the 

time that it takes for variables to return to their pre-disturbance equilibrium. This definition 

assumes the existence of a single equilibrium state. Ecological resilience, defined by Holling 

[21], is “a measure of the persistence of systems and of their ability to absorb change and 

disturbance and still maintain the same relationships between populations or state variables”. 

Holling’s theory includes the proposition that systems can be in multiple equilibria (i.e. 

have multiple basins of attraction). A basin of attraction is a concept from systems science 

describing a portion of the phase space in which every point will eventually gravitate back 
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to the attractor [22]. A disturbance can move the system from one basin to another and cross 

a threshold during the process. Finally, the concept of social-ecological resilience considers 

natural and social systems to be strongly coupled social-ecological systems [23]. Social-

ecological resilience considers the maintenance of the current regime and the adaptive 

capacity of a coupled human-natural system [24•]. Several variants of social-ecological 

resilience exist, but all focus on the adaptive capacity of the social-ecological system as a 

whole [25]. Among them, the Resilience Alliance, the school of thought in the footsteps 

of Holling, defined resilience as “the capacity of a social-ecological system to absorb or 

withstand perturbations and other stressors such that the system remains within the same 

regime, essentially maintaining its structure and functions. It describes the degree to which 

the system is capable of self-organisation, learning, and adaptation” [26, 27].

While resilience is widely considered in forest ecology, the resilience concept has not 

been implemented widely in the daily practice of forest management [28]. However, 

elements of resilience thinking, e.g. the necessity to learn and adapt, are a necessity for 

forest managers who are confronted with the frequent challenge of unexpected disturbance 

patterns interfering with well-planned management procedures. A primary limitation to 

implementing resilience in forest management is that, despite the growing body of research, 

forest resilience continues to be a vague concept for decision makers. Reviews of existing 

resilience concepts and their relevance to natural resource management in general [29, 30] 

and forest management in particular [31] have been conducted previously, yet there is no 

common agreement to date on how resilience in the context of forestry should be defined 

or applied. Different resilience concepts are used in seemingly similar situations without 

much effort paid to the justification of the selected concept. Guidance for developing and 

implementing measurement, monitoring, and evaluation schemes of resilience is widely 

lacking [18••, 32]. These challenges in operationalizing resilience prevent a widespread 

implementation of resilience thinking in forest management. In order to answer a core 

question of forest managers today, namely, how to manage forests to increase their resilience 

to global change, a clearer understanding of the use of the resilience concepts in forest 

science is needed to provide a way forward for both researchers and forest managers.

This paper aims at facilitating the application of resilience in the context of forestry by 

clarifying its meaning and purpose through performance of a systematic review of the 

resilience concepts and their assessment approaches used in forest science. We had three 

objectives:

1. To evaluate the adoption of the three mentioned concepts in resilience research 

in forest sciences. We were particularly interested in the current use and 

geographical spread of the concepts, the trend in their use, as well as the methods 

and indicators applied to assess resilience.

2. To analyse similarities and differences between the applied resilience concepts 

and to examine how conflicting they are with each other.

3. To develop guidance for the use of the resilience concepts in forest management 

and policy.

We hypothesised that:

Nikinmaa et al. Page 3

Curr For Rep. Author manuscript; available in PMC 2022 June 22.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



• In the context of facing global change, the use of more holistic resilience 

concepts, such as social-ecological resilience, is increasing.

• Forest resilience is a widely adopted concept in forest science, but its large 

variety of approaches prevents its mainstreaming into forestry practice.

Materials and Methods

We reviewed how forest resilience is currently assessed in the scientific literature. We 

searched the literature using the Scopus database (Relx Group, 2018) using the search 

string TITLE-ABS-KEY (“resilience” AND “forest”) ALL (“measur*” OR “manag*”) 

PUBYEAR > 1999. Applying the search string in the Scopus database guaranteed that 

results were published in scientific journals. As resilience related research started to 

increase dramatically after 1999 [24•], the focal time period was 2000–2018. The cut-off 

date for including new publications was August 19th, 2018. We screened all identified 

abstracts. All abstracts that (1) were published in a peer-reviewed scientific journal in 

English, (2) had the word “resilience” in relation to an active verb (e.g. manage, calculate, 

enhance, improve, assess) and (3) focused on forest-related systems (e.g. tree species or 

forest-dependent communities), natural resource management or landscape management 

were further screened. We also accepted studies that proposed a way to assess resilience for 

non-specified ecosystems as these could also apply to forests. Further screening of the full 

papers checked if they (4) have definition of resilience and (5) propose a method to assess 

resilience either in qualitative or quantitative terms. Only the studies that fulfilled all five 

criteria were selected for further analysis.

To examine how widely the three different resilience concepts were adopted in the 

literature, the studies were classified into three groups based on their concept of resilience: 

engineering, ecological and social-ecological resilience. The classification was done by 

recording the resilience concept used and comparing them with the foundational studies 

for the respective concept, see higher. If studies mentioned several concepts, we focused 

on the method used to evaluate resilience and derived the adopted concept from there. 

We also evaluated the trend in the number of studies published per year and in the share 

of the three concepts among studies. In addition, we assessed the biome where the study 

was conducted. For biome delineation, we used the definitions of Olson et al. [33]. The 

distribution across biomes was calculated in relation to the number of studies in the three 

resilience concept classes separately. Biomes that represented less than 5% of the studies in 

any of the resilience concept categories were grouped in “Other”.

To explore if the three resilience concepts conflicted with each other and in what situations 

they were applied, we assessed the response system/variable (resilience of what?) and the 

disturbance of concern (resilience to what?) of each study. The categories for the response 

system/variable were as follows: tree populations, non-tree vegetation, forest animal and 

fungal communities, soil, forest ecosystem, not specified ecosystem, forest-related social-

ecological system, forest industry and other. The categories for the disturbance of concern 

were as follows: drought; fire; wind; climate change; other abiotic disturbances; biotic 

disturbance; forest management operation; land use; global change; societal, economic 
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and policy shocks; multiple disturbances; and other. In addition, we assessed whether the 

proposed evaluation method in the studies was qualitative or quantitative. Furthermore, we 

recorded the main method used to assess resilience. The distinguished categories for the 

method used were as follows: treelevel sampling, vegetation sampling, animal population 

sampling, soil sampling, multiple agent (animal population, vegetation and soil) sampling, 

forest site inventory, conceptual modelling, empirical modelling, process-based modelling, 

geographical information system/remote sensing approach, historical records, meta-analysis, 

surveys and multi-tool (when there was no single prevalent method).

We examined the indicators used to assess resilience (see Online Resource 3). As most of 

the studies assessed more than one indicator, we recorded the total number of indicators 

used to assess resilience in each study. For example, if a study assessed resilience with 

regard to species richness, species composition, functional diversity, number of seedlings 

and drought index, we counted five indicators in total. We documented the ten most widely 

used indicators for each resilience concept by calculating the relative number of studies 

using them. In the case of the tenth most used indicator, we recorded all the indicators 

that were used with the same frequency. In addition, we classified the indicators according 

the Organisation for Economic Co-operation and Development’s (OECD) Pressure-State-

Response (PSR) framework [34]. We further organised the indicators into larger groups (see 

Online Resource 4). Grouping the individual indicators together gives a better overview of 

which compartments of a system are used to study resilience and how the compartments 

vary according to the resilience concept used. A compartment here describes the part of 

the system under study, e.g. forest structure, soil properties and socio-economic structure. 

The indicator groups were as follows: climate indicators, soil properties, disturbance 

effects, forest structure, forest regeneration, tree and ecosystem production and transpiration, 

biodiversity, land use, ecosystem management objective, socio-economic capacity, socio-

economic diversity, finance and technological infrastructure, governance, time and other. In 

the previously described example of the study reporting five resilience indicators, we would 

have counted three indicators describing biodiversity, one for forest regeneration and one 

for climate. We analysed the trend of the average number of indicators used to evaluate 

resilience over time by fitting a linear regression to the time series of the average number 

of indicators in R [35]. To buffer extreme values, we used a 3-year moving average of the 

indicators used. In addition, we performed a non-metric multidimensional scaling (NMDS) 

to describe how studies were ordered based on the recorded indicator groups, and how this 

was related to the resilience concept they used. We used the metaMDS function with Gower 

distance and seed 123 from the package “vegan” [36] in R [35]. Figures were created with 

the package “ggplot2” [37].

Results

The initial search resulted in 2629 peer-reviewed studies that were all screened (see Online 

Resource 1). The abstracts that fulfilled the first three selection criteria were chosen for 

further analysis, narrowing the set down to 625 studies (see Online Resource 2). Of these a 

final set of 255 studies also fulfilled the selection criteria 4 and 5 [7–9, 13, 16, 31, 38–286]. 

One of the reviewed studies was in press during the review process and was published in 

2019 but we included it in the studies published in 2018.
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Trends in Forest Resilience Research

The 255 studies identified as relevant for our review were classified according to the 

resilience concept they used. The majority of the studies employed the engineering 

resilience concept (54%), while ecological and socio-ecological resilience concepts were 

applied in 31% and 15% of studies respectively.

The publication rate of studies assessing resilience had steadily increased over the 

investigated period (Fig. 1). The use of the engineering resilience concept appeared to 

have increased strongly after 2012. The use of ecological resilience had also increased but 

at a slower rate than engineering resilience. Social-ecological resilience was the least used 

concept and its application appeared to have increased only moderately.

Geographical Spread of Resilience Concept Applications

Our review contained studies from 11 different biomes (Fig. 2). Engineering resilience was 

mostly used in studies of temperate broadleaved and mixed forests and in Mediterranean 

forests, woodlands and scrubs (24% and 19% of the studies using engineering resilience 

concept, respectively). Ecological resilience was often used in studies that concerned either 

several biomes (20%) or temperate conifer forests (18%). Social-ecological resilience was 

used the most in tropical broadleaved forests (23%) as well as in temperate conifer forests 

(21%).

Resilience of What and to What

Forest ecosystems were the most studied system (34% of all studies). Engineering resilience 

was most used for studying either tree populations or forest ecosystems (35% of studies 

using the engineering resilience concept), whereas ecological resilience was the most used 

in forest ecosystems and non-specified ecosystem studies (49% and 24% of studies using 

the ecological resilience concept, respectively). Social-ecological resilience was used in 

forest-related social-ecological systems and studies on the forest industry (73% and 20% of 

the studies using the social-ecological resilience concept, respectively) (Table 1).

Drought was the most studied disturbance (22% of all the studies), and 32% of the studies 

applying the concept of engineering resilience focused on drought. Fire was the second most 

studied disturbance (13% of all the studies), and 17% of the studies of engineering resilience 

focused on fire. Ecological resilience was used equally for studying the effects of drought, 

climate change or other disturbances (15% of the studies using the ecological resilience 

concept, each). Finally, social-ecological resilience was most used in studies concerned with 

global change and more specifically climate change (28% and 21% of the studies using the 

social-ecological resilience concept, respectively).

For studies using an engineering resilience concept, the most common method was to 

either collect tree-level samples (26%) or other vegetation samples (24%). Studies assessing 

ecological resilience mostly relied on conceptual modelling (28%) or vegetation samples 

(19%). Studies using a social-ecological resilience concept also made use of conceptual 

modelling (45%) or socio-economic surveys (25%). The majority of the studies assessing 

engineering and ecological resilience were quantitative (78% and 65% respectively), 
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whereas the majority of the studies focusing on the social-ecological resilience concept 

were qualitative (83%).

Indicators Used to Assess Resilience

The most used indicators for each resilience concept are shown in Table 2. Engineering 

and ecological resilience shared six of their respective top 10 indicators, whereas the top 

indicators used to assess social-ecological resilience were completely different from the 

other two concepts. The ecological indicators used in the social-ecological resilience concept 

were less specific, compared to the ones used in the engineering and ecological resilience 

concept. The state-type indicators dominated the most used indicators list (52.5%), whereas 

response- and pressure-type indicators were less common (32.5% and 15.0% respectively).

The most used indicator groups for engineering and ecological resilience were related 

to forest structure (20% and 24% respectively) and forest biodiversity (19% and 15% 

respectively). For studies focusing on social-ecological resilience, the most used indicators 

were related to the socio-economic capacities (41%) and the second most used indicator 

group was related to finances and technical infrastructure (14%). The NMDS analysis of 

studies based on the indicator groups used showed a clear separation between engineering/ 

ecological resilience and social-ecological resilience (Fig. 3). Based on the similarity with 

regard to the indicator groups used, engineering and ecological resilience concepts have 

a strong overlap. In contrast, studies that used social-ecological resilience employed very 

different groups of indicators.

The average number of indicators used per study did increase over time (p value 0.01). 

However, the number of indicators used did not increase for all of the resilience concepts. 

For ecological resilience and social-ecological resilience, the average amount of indicators 

per study significantly increased (p values < 0.001 and 0.004, respectively), whereas it 

did not increase for engineering resilience (p value 0.5) (Fig. 4). Assessments of social-

ecological resilience use on average more indicators than assessments of ecological or 

engineering resilience (7 indicators vs. 4 and 3, respectively).

Discussion

Adoption of the Three Resilience Concepts in the Forest Literature

Our results for the first objective show that forest resilience is globally studied and that each 

of the alternative resilience concepts is widely applied in the scientific literature. Of the three 

concepts, engineering resilience is clearly the most frequently used in forest science, with 

ecological resilience the second most frequently applied and social-ecological resilience 

being the least used concept.

The frequent and increasing use of engineering resilience in forest resilience literature was 

surprising, as we hypothesised that the more holistic concept of social-ecological resilience 

would get more commonly used in response to the serious problems caused by global 

change [287]. Other studies proposed several reasons for the widespread use of engineering 

resilience. First, the concept is very versatile and can be adapted to different systems, as 

recovery can be measured based on a variety of indicators [288]. Engineering resilience was 

Nikinmaa et al. Page 7

Curr For Rep. Author manuscript; available in PMC 2022 June 22.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



the only concept where the average number of indicators used per study has not increased 

significantly during the last 18 years. One explanation might be that the key indicators 

for engineering resilience have been identified in previous research already and that there 

is no need to broaden the indicator set. For example, 31 out of the 136 reviewed studies 

using the engineering resilience concept adopted the approach presented by Lloret et al. 

[8] to examine the resilience of trees to drought by measuring the basal area increment 

before, during and after the drought. Second, the concept is clearly defined and intuitive to 

understand. This is in contrast to ecological and social-ecological resilience which are both 

debated concepts in terms of their exact definitions [17].

However, our search terms could also have caused a bias towards engineering resilience. 

It is conceivable that studies applying the social-ecological resilience concept would focus 

less on measuring or quantifying resilience, thus lacking an active verb connected with 

resilience. As such studies come from more diverse scientific backgrounds, perhaps they 

place less emphasis on how resilience is quantified or assessed. The strong presence of the 

reviewed articles belonging to the ecological literature, in which resilience is studied as a 

system property and the focus is on the capacity of systems to resist change and recover 

from a disturbance [18••], supports this interpretation. Furthermore, resilience receives 

considerable criticism from the social sciences [289–291] and it is therefore conceivable 

that some social science studies on resilience related research questions may not actually 

use the term, as they reject its conceptual approach [292]. Therefore, the scarcity of 

studies adopting the concept of social-ecological resilience in our review might be due 

to the recommendation to use social- ecological resilience as an analytical approach for 

social-ecological systems, rather than a descriptive concept of a system property [17]. Such 

an analytical approach does not necessarily aim to quantify resilience but rather to deal with 

uncertainty. Nevertheless, our results show that social-ecological resilience can be assessed 

in both qualitative [160, 166] and quantitative [173] ways.

The use of engineering resilience also has clear limitations. As the concept assumes the 

existence of only one stable state [20] and measures performance against the pre-disturbance 

state, it is thus mainly applied in studies over a short timeframe and for situations where 

the environmental conditions are variable but where a regime shift is unlikely. Yet, such a 

situation can rarely be assumed under global change [293]. In such a setting of continuous 

change, maintaining high engineering resilience might require a high level of anthropogenic 

inputs, e.g. fertilisers or intensive re-planting of selected tree species, which in turn would 

lead to so-called coerced resilience that mimics the response of a resilient ecosystem but is 

only possible with continuous human intervention and risks being highly maladaptive [294]. 

Furthermore, assessing resilience in a deterministic (as opposed to considering stochasticity) 

and short-term manner could lead to missing important system pathways and long-term 

trajectories. These shortcomings of the concept for the analysis of forest systems increase 

with the impact of global change, and the concept should hence be used only with a clear 

acknowledgement of its limitations.
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The Differences and Complementarity Among the Resilience Concepts

As to the second objective, there is an apparent difference in the use of engineering and 

ecological resilience on the one hand and social-ecological resilience on the other hand 

with regard to the systems and disturbances studied and the indicators used (Fig. 3). 

Previous literature reviewing the concept of resilience has identified several disparities in 

the conceptualisation of the resilience definitions and the underlying assumptions, which 

are in line with our findings. Resilience has been perceived differently depending on the 

disciplinary background [18••]. Ecological literature, where engineering and ecological 

resilience are commonly used, regards resilience as a system property whereas the study 

of social-ecological systems looks at resilience as a strategy for managing complexity and 

uncertainty [18••]. Furthermore, the ecological literature focuses on the capacity of a system 

to resist change and recover from it, whereas the social-ecological systems literature has 

a strong focus on transformation and self-evolvement of the system as a crucial part of 

management [18••, 295].

On a conceptual level, the difference between the concepts lies in how they view the 

existence and shape of basins of attractions. For engineering resilience, resilience is 

measured by the steepness of the slope of the basin, indicating how quickly the system 

can return to the bottom after a disturbance [296]. For ecological resilience, the existence of 

multiple basins of attraction is assumed, and resilience is a measure for how much pressure 

is required for the system to move from one basin to another [296]. Social-ecological 

resilience assumes the existence of multiple basins of attractions as well [295], but the 

focus of this concept is on shaping the basin of attraction to keep the system contained in 

its current attractor via changing the social part of the system. This disciplinary disparity 

can explain why engineering and ecological resilience concepts use a very similar set 

of indicators, whereas social-ecological resilience uses distinctively different types of 

indicators (see Table 2 and Fig. 3).

Our results reflect this conceptual background. For example, drought resilience of trees was 

the most commonly studied topic and engineering resilience was the most adopted concept 

for that topic. While much of this popularity can be attributed to a key paper published by 

Lloret et al. [8], tree growth is also a system that is unlikely to have multiple stable states, 

making the use of ecological or social-ecological resilience concepts unnecessary. Similarly, 

the prominent use of engineering resilience to assess forest ecosystems in our results could 

be explained by the authors’ perception of the existence of multiple basins of attractions for 

the studied system. While many scientists support the notion of forest ecosystems having 

multiple basins of attraction [297–299], some scientists see the evidence as limited [31] and 

therefore prefer to use the engineering resilience instead of the two other concepts. The 

aim and scope of the research clearly determined the researchers’ choice of the resilience 

concept in the reviewed studies. For this reason, some authors adopt a different concept of 

resilience in different studies [9, 143, 197•], underlining the importance of precisely defining 

the term in each instance of its use [300], as well as reflections on the applicability of 

the chosen definition. Attention should furthermore be paid to whether or not resilience is 

used as a descriptive or normative concept as striving for enhanced resilience might lead to 

debates on the trade-offs of achieving a resilient system [18••].
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The definitions of the three concepts further illustrate a difference in complexity: 

engineering resilience is purely defined as recovery of the system, ecological resilience 

includes aspects of both resistance and recovery of the system, whereas social-ecological 

resilience includes resistance, recovery, adaptive capacity and the ability to transform [295]. 

It should be noted that studies using engineering resilience do not necessarily ignore the 

resistance or adaptive capacity of the system, but they consider them as independent 

concepts besides resilience, rather than as integral parts of resilience [39, 94, 207]. 

Some scientists argue for separating resistance, resilience and adaptive capacity into their 

own concepts for conceptual clarity and better operationalisation of resilience [94, 288]. 

However, others argue that reducing resilience to such a simple dimension is focusing on 

maintaining the status quo of the system and this could actually lead to losing the resilience 

of social-ecological system [295].

We argue that instead of striving towards one single resilience definition, resilience could 

be understood as an overarching concept of nested hierarchies as described also by the 

theory of basins of attraction [26]. According to this hierarchy, engineering resilience is 

nested inside ecological resilience, which in turn is nested inside social-ecological resilience 

(Fig. 5). Moving from one concept to another either adds or removes different dimensions 

from the system under study and changes the system boundaries. The interest in a certain 

property together with the disturbance of concern therefore indicates the resilience concept 

that is most applicable for the respective question or system to be analysed. The increasing 

complexity with increasing hierarchical levels of resilience also suggests that a broader suite 

of indicators is required to assess higher levels of resilience, which was supported by the 

results of our review.

Guidance on Navigating the World of Resilience

Regarding our third objective on how to implement resilience in forestry practice, our 

review underlines that forest resilience is a flexible concept and can be adapted to many 

situations and questions. That is one reason for the popularity of the concept [17], as 

well as the widespread use in various biomes and research designs. For example, the 

engineering resilience concept was mainly used for studying pulse-type disturbances, 

such as drought and fire in the temperate and Mediterranean forest, ecological and social-

ecological resilience were also used for press-type of disturbances, such as climate and 

global change, with more geographical spread.

Regardless of the resilience concept the authors use, variable study scopes, combined 

with either simplification tendency (engineering resilience) or complexity (social-ecological 

analysis) of the concepts may hinder the wider implementation of resilience thinking 

in forest management practice. The results of the review support our first hypothesis 

on how forest resilience lacks the consistent operational use that would be needed for 

implementation in practice. The lack of clarity in applying the concepts is a clear 

shortcoming. Some of the studies reviewed provide guidance and pathways for managing 

forests for resilience [31, 88•, 94, 197•], proving that the concept can be operationalised with 

sufficient effort invested. Nevertheless, the resilience concepts lack established indicator 

frameworks that could be adopted by forest managers. The classification of the indicators 
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according the OECD’s PSR framework showed that a majority of the indicators currently 

used in the forest resilience literature are state-type indicators. For a holistic indicator-based 

assessment, more focus should be placed on developing further indicators to assess both 

pressures and system responses to disturbances [301]. Guidance is needed to help forest 

managers to both choose which resilience concept could be the most suitable for their 

situation and identify proper indicators for assessing the selected concept. In the next 

sections, we will address how managing for resilience is different from the risk management 

in forestry and how to choose a suitable resilience concept.

Some might consider resilience thinking to be redundant with current forest management 

practices. Dealing with uncertainty via risk assessments is a well-established practice in 

forestry [302]. Risk is by definition the effect of uncertainty on objectives [303], frequently 

expressed quantitatively in probabilistic terms [304] and risk-based management strategies 

are most effective when hazard probabilities are known [305]. However, the impacts of 

changes in disturbance regimes as well as of shocks caused by political and societal changes 

are currently unknown [306], which can cause risk management approaches to fail [305]. 

In contrast, resilience prepares for minimizing the damage caused by unknown, novel risks 

[305], making it a suitable management approach also for situations where the character and 

the magnitude of the risks are hard to identify.

Based on our review of the literature on forest resilience, we provide some suggestions to 

guide practitioners and scientists in choosing the most suitable concept for them and which 

possible ways exist to assess these concepts.

Identify the Managed System—To choose the appropriate resilience concept, it is 

important to define the managed system [300]. Is the main interest to assess the resilience of 

one important tree species, ecosystem services provided or a regional supply chain of forest 

enterprise? Does this system have alternative basins of attractions? Are the environmental 

and social changes likely to push the system to another stable state? Engineering resilience 

is a powerful concept for relatively simple systems (e.g. tree species growth, plant or 

animal population) that are not likely to change in the near future. Therefore, it could 

be appropriately used in assessing short-term resilience [288]. If alternative states for the 

system are known, e.g. forests transforming into savannah [299], or the system is rather 

complex (e.g. forest ecosystem), ecological resilience should be used instead of engineering 

resilience. If the system also includes social parts, as for example in a community forest 

and forest enterprise, social-ecological resilience should be used to capture the interactions 

between social and ecological systems.

Identify the Stressors or Disturbances Affecting the System—In addition to 

defining the system, the disturbances affecting the system should be identified [300]. Is the 

scope to assess the resilience to one single disturbance event, e.g. storm, an interaction of 

several disturbances, e.g. drought, storm and bark beetles, or an ongoing change, e.g. climate 

or societal change? As engineering resilience measures the recovery to a pre-disturbance 

state, it should be used only in cases where the pre-disturbance state is still achievable, 

meaning the system is not strongly affected by press type disturbance as, for example, 

climate change. Ecological resilience is suitable for both pulse and press type disturbances 
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as well as changes in disturbance frequency, if the system of interest is an ecological system. 

Finally, managers and researchers facing changes in forest policies, market demands or 

social use of the forest should use the concept of social-ecological resilience. While this 

concept is perhaps the most difficult to adopt, it emphasises the need to reflect on the 

resilience of the social system as an interdependent counterpart of the natural system [295].

Identify the Temporal Scale of Interest—Engineering resilience can be appropriately 

used for assessing resilience on a short temporal scale [288]. However, many scientists 

caution against using engineering resilience over longer time scales as social and 

environmental conditions change and focusing on short term recovery might lead to ignoring 

the slow variables ensuring resilience [288, 307, 308]. For longer management time scales, 

we recommend using either ecological or social-ecological resilience.

Consider the Trade-Off Between Accuracy and Cost-Efficiency in Indicator 
Selection—Our study revealed increasing requirements for indicator measurement, 

evaluation and/or assessment in going from engineering to ecological and social-ecological 

resilience approaches. While the selection of indicators depends on the studied system, the 

presented indicators (Table 2) show a selection of the most used ones that have been applied 

in different systems and variable disturbance assessments. However, the use of indicators 

should always be carefully considered as one indicator might declare a system resilient 

and another one vulnerable. Therefore, using a holistic set of indicators that describe both 

structures as well as functions of the system is recommended [288]. This might require 

considerably more work from the researchers and managers, but it reduces the risk of falsely 

assessing resilience.

Several other ways of defining and assessing resilience exist outside the social-ecological 

systems literature [18••, 309, 310]. However, the concepts of engineering, ecological and 

social-ecological resilience are very prominent in the forest science literature and we believe 

that our review contributes to clarifying the use of these concepts. More focus should be 

paid on how resilience concepts are implemented in practice. One further research direction 

should therefore look at how resilience is operationalised in forest management practice, 

e.g. by reviewing forest management plans and conducting social- empirical research with 

forest managers about how they deal with resilience related forest management decisions in 

practice. This work could result in recommendations on how scientific findings and concepts 

related to forest resilience can support forest management practice, such as a sophisticated 

decision support framework for the selection of the applicable resilience concept and 

indicators. More work will also be needed on how to interpret specific indicators and how to 

balance impacts on diverse management objectives across the proposed indicators.

Conclusions

In our rapidly changing world, resilience has gained wide popularity in forest management, 

but operationalizing the concept still lags behind. We show how three major resilience 

concepts for studying social-ecological systems are used in the forest science literature 

and how their assessment methods and interpretations differ. The variety of used resilience 
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indicators is broad, with several popular ones emerging, such as basal area increment and the 

extent of vegetation cover.

Our first hypothesis was that in a context of global change, the use of broader resilience 

concepts, such as social-ecological resilience, would be increasing over time in comparison 

to more specific concepts, such as ecological and engineering resilience. This was not 

supported by the data, as the use of engineering resilience has clearly increased in 

comparison to ecological and social-ecological resilience. The context of the investigated 

studies appeared to be the main driver behind their choice for a resilience concept. 

However, we showed here that these resilience concepts are not exclusive but rather 

form a hierarchy with engineering resilience being an aspect of ecological resilience and 

ecological resilience being part of the overarching social-ecological resilience. In this 

context, we provide guidance to forest managers and policy makers on how to consider 

context-specific information on management type, disturbance regime, temporal scale of 

interest and indicator needs that will help in making forest resilience operational.

Our second hypothesis was that forest resilience is a widely adopted concept in forest 

sciences, but it shows a large variety of assessment approaches, which may prevent 

its mainstreaming into forestry practice. The ordination of the studies based on the 

indicators they used confirms the large variety of approaches forest scientists use to assess 

resilience. However, we also showed that these approaches can be clearly attributed to 

one of three nested resilience concepts, which may be a useful basis for further improved 

operationalisation. Consequently, we reject this hypothesis and give guidance for a context 

specific selection of a suitable resilience concept and a related set of indicators, as a first step 

to future operationalisation.
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Fig. 1. 
The development of the use of the three resilience concepts in forest resilience studies 

from 2000 to 2018. The figure shows the number of studies using engineering, ecological 

or social-ecological resilience concepts and the total number of forest resilience studies 

published per year. The cut-off date for the review was in mid-August 2018, and therefore, 

not all studies published in 2018 were included in the review

Nikinmaa et al. Page 29

Curr For Rep. Author manuscript; available in PMC 2022 June 22.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Fig. 2. 
The use of the resilience concepts by forest biome. The figure shows the share of the biomes 

studied for each of the three resilience concepts. N/A means that no biome was mentioned in 

a study
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Fig. 3. 
The indicator groups used to assess resilience, ordinated in two dimensions based on the 

NMDS analysis. The NMDS gives a representation of the relationship between objects 

(studies) and descriptors (indicator groups) in a reduced number of dimensions. The x- and 

y-axes are the first two axes with the highest explicative values in ordination space. The 

locations of different indicator groups are shown in letters. The indicator groups are forest 

structure (F1), biodiversity (F2), climate indicators (CI), forest regeneration (F3), tree and 

ecosystem production and transpiration (F4), disturbance effects (DE), soil properties (S), 

land use (LU), ecosystem management objective (EMO), socio-economic capacities (SEC), 

socio-economic diversity (SED), finances and technological infrastructure (FTI), governance 

(G), time, and other
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Fig. 4. 
The moving average of number of indicators per study. The averages are calculated for 

3-year periods except for 2000 and 2018, which were calculated for 2-year periods
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Fig. 5. 
The hierarchy of resilience concepts and assumptions behind each concept. The circles on 

the right show how resilience concepts are related to one another. The boxes on the left 

indicate increasing complexity in the systems that are studied by the respective resilience 

concepts. Variable environmental conditions mean conditions where the conditions vary but 

remain in the historical range of variation. Changing environmental conditions mean that the 

conditions are no longer within the range of historical variation of the environment
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Table 1
The percentages of the studied systems (“resilience of what”) in relation to the three 
resilience concepts and all of the reviewed studies

System of interest Engineering resilience 
(%)

Ecological resilience 
(%)

Social-ecological 
resilience (%)

All studies (%)

Trees (individual or populations) 35 15 0 23

Forest animal population 6 5 0 5

Forest ecosystem 35 49 0 34

Non-tree vegetation 12 4 0 7

General ecosystem 5 24 0 10

Soils 5 1 0 3

Forest industry 0 0 20 3

Forest related social-ecological system 0 1 73 12

Other 3 0 8 3
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Table 2

The most frequently used indicators for each resilience concept. Numbers in parentheses indicate the 

percentage of studies applying a given resilience concept using the indicator. The emphases of the entries 

express the type of indicator according to the classification of OECD’s environmental indicators [34]. 

Italicized entries are pressure-type indicators, bold entries are state-type indicators and bold-italics entries 

are response-type indicators

Indicator 
rank of 
occurrence

Engineering resilience Ecological resilience Social-ecological resilience All reviewed studies

1 Basal area increment 
(27.5%)

Vegetation cover 
(13.9%)

Socio-economic diversity 
(30.0%) 

Basal area increment 
(17.6%)

2 Vegetation cover (15.4%) Density or number of 
trees (13.9%)

Biodiversity (22.5%) Vegetation cover (12.5%)

3 Species richness (10.3%) Basal area increment 
(11.4%)

Stock of natural resources 
(20.0%)

Species composition (9.0%)

4 Species composition 
(10.3%)

Biomass (11.4%) Networks (20.0%) Species richness (8.2%)

5 Precipitation (10.3%) Species composition 
(11.4%)

Knowledge (17.5%) Biomass (7.5%)

6 Standardised Precipitation 
Evapotranspiration Index 
(9.6%)

Species diversity 
(10.1%)

Income (17.5%) Regeneration (7.1%)

7 Density or number of 
surviving trees (9.6%)

Basal area (10.1%) Access to resources (15.0%) Precipitation (7.1%)

8 Regeneration (8.1%) Regeneration (8.1%) Participation in community 
organisations (15.0%) 

Standardised Precipitation 
Evapotranspiration Index 
(6.3%)

9 Biomass (7.4%) Species richness 
(8.9%)

Education (12.5%) Density/number of 
surviving trees (5.1%)

10 Density or number of 
seedlings (7.4%)

Mortality (8.9%)
Disturbance severity
(8.9%)

Agricultural practices (10.0%)
Human Population density
(10.0%)
Ecosystem services (10.0%)
Employment (10.0%)
Housing (10.0%)
Health services (10.0%)
Individual health (10.0%)
Water and sanitation (10.0%) 
Transport (10.0%)
Skills (10.0%)

Socio-economic diversity 
(4.7%) 
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