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Abstract

Circulating levels of small molecules or metabolites are highly heritable, but the impact of genetic 

differences in metabolism on human health is not well understood. In this cross-platform, genome-

wide meta-analysis of 174 metabolite levels across six cohorts including up to 86,507 participants 

(70% unpublished data), we identify 499 (362 novel) genome-wide significant associations 

(p<4.9×10-10) at 144 (94 novel) genomic regions. We show that inheritance of blood metabolite 

levels in the general population is characterized by pleiotropy, allelic heterogeneity, rare and 

common variants with large effects, non-linear associations, and enrichment for nonsynonymous 

variation in transporter and enzyme encoding genes. The majority of identified genes are known to 

be involved in biochemical processes regulating metabolite levels and to cause monogenic inborn 

errors of metabolism linked to specific metabolites, such as ASNS (rs17345286, MAF=0.27) 

and asparagine levels. We illustrate the influence of metabolite-associated variants on human 
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health including a shared signal at GLP2R (p.Asp470Asn) associated with higher citrulline levels, 

body mass index, fasting glucose-dependent insulinotropic peptide and type 2 diabetes risk, 

and demonstrate beta-arrestin signalling as the underlying mechanism in cellular models. We 

link genetically-higher serine levels to a 95% reduction in the likelihood of developing macular 

telangiectasia type 2 [odds ratio (95% confidence interval) per standard deviation higher levels 

0.05 (0.03-0.08; p=9.5×10-30)]. We further demonstrate the predictive value of genetic variants 

identified for serine or glycine levels for this rare and difficult to diagnose degenerative retinal 

disease [area under the receiver operating characteristic curve: 0.73 (95% confidence interval: 

0.70-0.75)], for which low serine availability, through generation of deoxysphingolipids, has 

recently been shown to be causally relevant. These results show that integration of human genomic 

variation with circulating small molecule data obtained across different measurement platforms 

enables efficient discovery of genetic regulators of human metabolism and translation into clinical 

insights.

Introduction

Metabolites are small molecules that reflect biological processes and are widely measured in 

clinical medicine as diagnostic, prognostic or treatment response biomarkers1. Blood levels 

of metabolites are highly heritable with twin studies reporting a median explained variance 

in plasma levels of 6.9% and maximum of 50% depending on the metabolite2,3. Several 

earlier studies have started to characterise the genetic architecture of metabolite variation in 

the general population2–10, but been limited in size and scope by focussing on metabolites 

assessed using a single method. Integration of genetic association results for metabolites 

measured on different platforms can help maximise the power for a given metabolite and 

provide a more refined understanding of genetic influences on blood metabolite levels and 

human physiology.

To identify genomic regions regulating metabolite levels and systematically study their 

relevance for disease, we designed and conducted a cross-platform meta-analysis of genetic 

effects on levels of 174 blood metabolites measured in large-scale population-based studies. 

We included metabolites covered by the targeted Biocrates AbsoluteIDQ™ p180 platform 

and measured in the Fenland Study. We integrated unpublished data for any of these 

metabolites that were covered by the Nightingale (1H-NMR, Interval Study) or Metabolon 

(Discovery HD4™, EPIC-Norfolk and Interval Studies) platforms, or had previously been 

reported2,4,5. The focus on this targeted set of ‘platform-specific’ metabolites enabled us to 

clearly map metabolites across platforms and maximise the sample size for each of the 174 

metabolites for this proof of concept cross-platform GWAS study. To facilitate rapid sharing 

of our results, we developed a webserver (https://omicscience.org/apps/crossplatform/) that 

allows flexible interrogation of our results.

Results

Associations with blood metabolites at 144 genomic regions

Genome-wide meta-analyses were conducted for 174 metabolites from 7 biochemical 

classes (i.e. amino acids, biogenic amines, acylcarnitines, lyso-phosphatidylcholines, 
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phosphatidylcholines, sphingomyelins and hexose) commonly measured using the Biocrates 

p180 kit in up to 86,507 individuals, contributing over 3.7 million individual-metabolite data 

points (70% from unpublished studies; Fig. 1). For each of the 174 metabolites, this was 

the largest genome-wide association analyses (GWAS) to date, with at least a doubling of 

sample size (Fig. 1A). Sample sizes ranged from 8,569 to 86,507 individuals for metabolites 

depending on the platform used in each contributing study. Using GWAS analyses we 

estimated the association of up to 10.2 million single nucleotide variants with a minor allele 

frequency (MAF) >0.5%, including 6.1 million with MAF ≥ 5%.

We identified 499 variant-metabolite associations (362 novel) from 144 loci (94 novel) at 

a metabolome-adjusted genome-wide significance threshold of p<4.9×10-10 (correcting the 

usual GWAS-threshold, p<5x10-8, for 102 principal components explaining 95% of the 

variance in metabolite levels using principal component analysis; Fig. 1). The vast majority 

of these associations were consistent across studies and measurement platforms [median 

I2: 26.8 (interquartile range: 0 – 70.1) for 465 associations with at least two contributing 

studies] (Supplementary Tab. S1-2). To identify possible sources of heterogeneity, we 

investigated the influence of differences by cohort, measurement platform, metabolite 

class, and association strength in a joint meta-regression model (Supplementary Tab. S3). 

This showed that heterogeneity was mainly due to the overall strength of the signal, i.e. 

associations with higher z-scores showed greater heterogeneity (p<1.05x10-9). However, 

the majority of these statistically heterogeneous associations were directionally consistent 

and nominally significant across and within each stratum for 146 of 170 associations 

with a z-score > 10, demonstrating the feasibility of pooling association estimates 

across metabolomics platforms for the purpose of genetic discovery. Genetic variants at 

the NLRP12 locus, e.g. rs4632248, were a notable exception with large estimates of 

heterogeneity (I2>90%). The NLRP12 locus is known to affect the monocyte count11 and 

has been shown to have pleiotropic effects on the plasma proteome in the INTERVAL 

study12. Monocytes, or at least a subpopulation subsumed under this cell count measure, 

release a wide variety of biomolecules upon activation or may die during the sample 

handling process and hence releasing intracellular biomolecules, such as taurine13, into the 

plasma. In brief, one specific source of heterogeneity in mGWAS associations might relate 

to sample handling differences across studies.

This highlights the utility of our genetic cross-platform approach to maximise power for 

a given metabolite, substantially extending previous efforts for any given metabolite14. 

Previously reported associations from platform-specific studies were also found to 

generally be consistent in our cross-platform meta-analysis (Supplementary Tab. S2; https://

omicscience.org/apps/crossplatform/).

Insights in the genetic architecture of metabolite levels

We identified a median of 2 (range: 1-67, Fig. 2A) associated metabolites for each locus 

and a median of 3 (range: 1-20, Fig. 2B) locus associations for each metabolite, reflecting 

pleiotropy and the extensive contribution of genetic loci to circulating metabolite levels. The 

number of associations was proportional to the estimated heritability and the sample size of 

the meta-analysis for a given trait (Fig. 2C).
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We applied a multi-trait statistical colocalisation method15 and identified between 1-30 

(median: 2) metabolites that did not meet the discovery p-value threshold, but showed 

high posterior probability (>75%) of a shared genetic signal for 49 out of the 144 loci 

(Supplemental Fig. S1). Two distinct variants (rs2414577 and rs261334) nearby LIPC 
showed the largest gain in additionally associated metabolites, in line with previous reports 

of extensive pleiotropy and allelic heterogeneity at this locus9. We note that a low posterior 

probability for the alignment of multiple metabolites at other loci might be explained by the 

presence of multiple causal variants shared across multiple metabolites.

To systematically classify pleiotropic variants taking into account the correlation structure 

among metabolites we derived a data-driven metabolic network and performed community 

detection (see Methods and Supplemental Fig. S2). A total of 129 (60.5%) of 214 variants 

(associated with at least two metabolites at p<5x10-8) were associated with metabolites from 

at least two of the 14 communities (range: 2 – 11; Supplemental Fig. S2), i.e. showed 

evidence for ‘horizontal’ or broad pleiotropy. The most extreme variants included those near 

FADS1 (e.g. rs17455) associated with 61 metabolites across 11 communities at p<5x10-8. In 

contrast, rs2638315 (likely tagging a missense variant rs2657879 at GLS2) was associated 

with nine metabolites within a single community and would therefore be considered as 

‘horizontal pleiotropic’ for a well-defined group of correlated metabolites (Supplemental 

Fig. S2).

Similar to what is routinely observed in GWAS literature, effect size estimates increased 

with decreasing minor allele frequency (MAF) (Fig. 3A). However, there were 26 

associations (Tab. 1) for common lead variants with per-allele differences in metabolites 

levels greater than 0.25 standard deviations (SD), a per-allele effect size that is >3-fold 

larger than the strongest common variants associated with SDs of body mass index at the 

FTO locus.

Variants identified in this study explained up to 23% of the variance (median: 1.4%; 

interquartile range: 0.5% - 2.8%) and up to 99.8% of the chip-based heritability (median 

9.2%; interquartile range: 4.7% - 17.1%) for the 141 metabolites with at least one genetic 

association (Fig. 2D). The 26 common variants with large effect sizes (>0.25 SD per allele) 

were identified for metabolites with higher heritability (Fig. 2D) and accounted for up to 

74% of the heritability explained in those metabolites.

GWAS analyses generally assume a linear relationship between genotypes and phenotypes, 

i.e. an additive dose-response model. The identification of several metabolite-associated 

variants with large effect sizes and availability of individual-level data in the Fenland cohort 

allowed us to test whether the metabolite-associated variants showed evidence of deviation 

from a linear model. Of 499 associations tested, 9 showed evidence of departure from a 

linear association (Fig. 2E-M). Modelling actual genotypes rather than assuming ‘additive’ 

linear associations in these instances explained a median of 7.4% more (range: 1.4-15.2%) 

of the heritability in metabolite levels (Fig. 2N).

Associations better described by an autosomal recessive or dominant model of inheritance 

might be the most likely explanation for this. Variant rs3916, for example, which showed 
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a more than additive positive effect on butyrylcarnitine, is in perfect LD with a missense 

variant within ACADS (rs1799958, MAF=26%), which encodes for short-chain acyl-CoA 

dehydrogenase (SCAD). SCAD deficiency is an autosomal recessive disease diagnosed 

by elevated butyrylcarnitine concentrations in blood and homozygeous carrier status for 

established pathogenic variants16.

In 61 of the 499 associations the lead association signal was a nonsynonymous variant, a 

40-fold enrichment compared to what would be expected by chance given the annotation of 

ascertained genetic variants (two-tailed binomial test, p=5×10-30, Fig. 3D). For a further 59 

associations, the lead variant was in high LD with a nonsynonymous variant (r2>0.8). Lead 

variants that were nonsynonymous, or variants in high LD with a nonsynonymous variant, 

generally had lower MAF, larger effect sizes, and smaller 99%-credible sets (Supplemental 

Tab. S4) than variants that were not in these categories (Fig 3B-D).

We identified 22 loci harbouring two (n=21) or three (n=1) independent signals, i.e. different 

plasma metabolites were associated with distinct genetic variants within the same genomic 

region (Supplementary Tab. S2). For six regions, our two different annotations approaches 

assigned only one causal gene (see below and Methods), including ACADM, GLDC, 
ARG1, MARCH8, SLC7A2, and LIPC (Supplementary Tab. S2). We found evidence 

that allelic heterogeneity, i.e. conditionally independent variants at a locus for a specific 

metabolite, explains the association pattern at 3 of those loci (ACADM, ARG1, and LIPC; 
Supplementary Tab. S5). We identified another 16 loci harbouring at least one (range: 2–6) 

additional conditionally independent variant(s) in exact conditional analyses (see Methods, 

Supplementary Tab. S5).

Effector genes, tissues, pathways

We used two complementary strategies to prioritize likely causal genes for the observed 

associations: (1) a hypothesis-free genetic approach based on physical distance, genomic 

annotation and integration of expression quantitative trait loci (eQTLs) to prioritize genes 

in a systematic and standardised way (see Methods), and (2) a biological knowledge-based 

approach integrating existing knowledge about specific metabolites or related pathways 

to identify biologically plausible candidate genes from the 20 genes closest to the lead 

variant (Fig. 4A). Using the hypothesis-free genetic approach, we identified 249 unique 

likely causal genes for the 499 associations, with at least one gene per association and 

some genes prioritized as likely causal for multiple metabolite associations. The knowledge-

based approach identified 130 biologically plausible genes for 349 out of 499 associations. 

We asked whether the hypothesis-free genetic approach identified biologically plausible 

genes (prioritized by strategy 2) more often than expected by chance. Amongst 9,980 

possible gene-metabolite pairs (20 genes x 499 associations), 420 (4.2%) were biologically 

plausible, condensed to 350 gene(s)-metabolite assignments after accounting for overlapping 

annotations. Of the latter, 126 pairs (36%) were identical to genetically-prioritized gene-

metabolite pairs, representing a significant enrichment of biologically plausible genes 

among those prioritised by the hypothesis-free algorithm (~8-fold more than expected by 

chance; two-tailed binomial test, p=2.3×10-80; Fig. 4B). Among the consistently assigned 

genes between both approaches, assignment of the nearest gene (124 times out of 126, 
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Χ2-test, p<2.5x10-45) was the strongest shared factor, as might be expected, followed 

by being (or in LD with) a missense variant (R2>0.8, 30 times out of 126, Χ2-test, 

p<1.3x10-07) and only a minor contribution of eQTL data (20 times out of 126, Χ2-test, 

p<0.001). Over 70% of genetically prioritized genes were enzymes or transporters (Fig. 

4C). Inconsistencies between the approaches might be explained by non-consideration of 

information on biological pathways in the hypothesis-free genetic approach, as well as 

variants acting more distal to the biological determinants of plasma metabolite levels not 

being considered in the knowledge-based approach. The missense variant rs1260326 within 

GCKR, for example, colocalised with 49 metabolites across diverse biochemical classes 

(Supplemental Fig. S1) and likely confers it effects on glucose metabolism through impaired 

inhibition of glucokinase by glucokinase regulatory protein and might hence be considered 

as putative causal candidate by the knowledge-driven approach for plasma glucose only. 

However, impairments in glucose metabolism result in numerous downstream consequences 

including more distal metabolic branches such as amino acid and lipid metabolism.

In addition to being enriched in genes previously implicated in the biology of these 

metabolites, the genetically prioritized genes were also enriched in genes known for 

mutations to cause rare inborn errors of metabolism (IEMs), i.e. monogenic defects in the 

metabolism of small molecules with very specific metabolite changes (Fig. 4B).

Integrating GWAS statistics across cohorts and platforms allowed us to identify three 

genes that have never been associated with any metabolite level so far. At the CERS6 
locus, rs4143279 associates with levels of sphingomyelin (d18:1/16:0) (p = 4.2x10-10). 

CERS6 encodes a ceramide synthase facilitating formation of ceramide, a precursor of 

sphingomyelins17. At the ASNS locus, rs17345286 associates with levels of asparagine 

(p = 4.7x10-20). The lead variant is in high LD (R2=1) with a missense mutation in 

ASNS (rs1049674, p.Val210Glu). ASNS encodes an asparagine synthase18. Finally, at 

the SLC43A1 locus, rs2649667 associates with levels of phenylalanine (p = 3.6x10-13). 

SLC43A1 encodes a liver-enriched transporter of large neutral amino acids, including 

phenylalanine19.

Insights into the causes of common and rare diseases from metabolite-associated loci

The phenotypic consequences of metabolite-associated variants are currently not well 

characterized. Below, we investigate the contribution of individual loci and polygenic 

predisposition associated with differences in metabolite levels to the risk of common and 

rare diseases.

A citrulline-raising functional variant in GLP2R increases type 2 diabetes risk

Because several of the metabolites captured in this GWAS have been associated with 

incident type 2 diabetes (T2D), we sought to investigate whether the association 

between metabolite-associated loci and diabetes could provide insights into underlying 

pathophysiologic mechanisms. Using estimates of effect for association with T2D based 

on a meta-analysis of 80,983 cases and 842,909 controls (see Methods), we observed 

a significant enrichment for associations with type 2 diabetes (p-value=2.8x10-7) of 

metabolite-associated variants compared to a matched control set of variants (Fig. 5A).
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Amongst the diabetes- and metabolite-associated loci was a missense p.Asp470Asn 

(rs17681684) variant in the GLP2R gene encoding the receptor for glucagon-like peptide 

2, a 33 amino acid peptide hormone encoded by the proglucagon gene (GCG) that stimulates 

the growth of intestinal tissue. Common variants at GLP2R are associated with an increased 

risk of T2D20. The previously reported lead variant for T2D (rs78761021) is in high 

LD (r2>0.87) with our lead citrulline association signal at GLP2R (rs17681684), which 

was associated with a 4% higher type 2 diabetes risk (per-allele odds ratio, 1.04; 95% 

confidence interval, 1.02, 1.05; p=1.1×10-08), comparable to previous reports20. Considering 

eleven phenotypes related to glucose homeostasis and metabolic health21–23, the A-allele 

of rs17681684 was significantly associated with insulin disposition index (beta=-0.067, 

p<0.002)22, corrected insulin response (beta=-0.061, p<0.004)22, glycated haemoglobin 

1c (HbA1c) (beta=0.006, p<0.0003)21, and body mass index (beta=0.010, p<5.3x10-9), 

in addition to the previously reported positive association with fasting glucose-dependent 

insulinotropic peptide (GIP) and the suggestive inverse association with post-glucose load 

GLP-1 (beta=-0.035, p<4.6x10-4)24. While sample sizes and hence significance levels for 

insulin traits were not sufficient to support formal colocalisation analysis, we still obtained a 

high posterior probability (PP>75%) for a shared genetic signal across plasma citrulline, 

T2D risk, body mass index, and fasting levels of GIP (Fig. 5B). We noted, that the 

GLP2R p.Asp470Asn variant was the only of 6 independent genome-wide significant 

citrulline-raising loci that was associated with a higher risk of T2D, which indicates that 

the association does not reflect a general effect of blood citrulline levels on T2D risk but 

rather a locus-specific association at GLP2R (Fig. 5C). Plasma citrulline levels have been 

shown to reflect the volume of intestinal cells and are a marker of GLP2R target engagement 

in the treatment of short-bowel syndrome with glucagon-like peptide 2 analogues25. Taken 

together, this suggests that genetically higher GLP2R signalling, indicated by the higher 

citrulline levels among GLP2R 470Asn carriers, may lead to chronically elevated GIP 

(though increased enteroendocrine mass and number of GIP-secreting K-cells), which has 

been shown to downregulate GIP receptors on pancreatic beta cells26, thereby contributing 

to the observed reduction in the insulin secretory response and increase in T2D risk.

G-protein coupled receptors like GLP2R may signal via G-protein-dependent cyclic 

adenosine monophosphate (cAMP) production or via G-protein-independent beta-arrestin 

mediated signalling27. To investigate if the GLP2R p.Asp470Asn variant affects signalling 

via either of these pathways, we expressed the GLP2R p.Asp470Asn variant in different in 
vitro models (see Methods). We show that the variant allele is significantly associated with 

reduced recruitment of beta-arrestin to GLP2R upon glucagon-like peptide 2 stimulation, 

but not with cAMP signalling, which suggests a potential role for impaired beta-arrestin 

recruitment to GLP2R in the pathophysiology of type 2 diabetes (Fig. 5E-G).

Serine and glycine levels play a critical role in the aetiology of a rare eye disease

A recent GWAS of macular telangiectasia type 2 (MacTel), a rare neurovascular 

degenerative retinal disease, identified three genome-wide susceptibility loci (PHGDH, 
CPS1, and TMEM161B–LINC00461) of which the same variants at PHGDH and CPS1 
were associated with levels of the amino acids serine and glycine in this GWAS28. More 

recently, it was shown that low serine availability is linked to both MacTel as well as 
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hereditary sensory and autonomic neuropathy type 1 through elevated levels of atypical 

deoxyshingolipids29. Whether genetic predisposition to low serine and glycine levels affects 

MacTel more generally or has predictive utility has not been investigated. To test this and 

to explore the specificity of associations between genetic influences on metabolite levels 

and the risk of MacTel, we generated genetic scores (GS) using the sentinel variants for 

each of the 141 metabolites with at least one significantly associated locus identified in this 

GWAS and tested their associations with the risk of MacTel. GS’s for serine and glycine 

were the only scores associated with risk for MacTel after removal of the known highly 

pleiotropic GCKR variant (Fig. 6A). Each standard deviation higher serine levels via the 

serine GS was associated with a 95% lower risk of MacTel (odds ratio (95% confidence 

interval), 0.05 (0.03-0.08); p=9.5×10-30; Fig. 6A). Each of five serine associated variants 

was individually associated with lower MacTel risk, with a clear dose-response relationship 

and no evidence of heterogeneity (Fig. 6B). The association was unchanged when removing 

the GCKR locus. To disentangle the effect of these two highly correlated metabolites on 

MacTel risk, we used multivariable Mendelian randomization analysis, which allowed us to 

test for a causal effect of both measures simultaneously. In this analysis, the effect of serine 

remained strong, while the effect of glycine was attenuated (Tab. 2). Glycine and serine can 

be interconverted and these results provide genetic evidence that the link between glycine 

and MacTel is via serine levels through glycine conversion. This hypothesis is supported by 

the evidence of a log-linear relationship between associations with serine and risk of MacTel 

among glycine-associated variants (Fig. 6B). These findings provide strong evidence that 

pathways indexed by genetically higher serine levels are strongly and causally associated 

with protection against MacTel.

Given the large observed effect size, we estimated whether using serine and glycine-

associated loci might improve the prediction of this rare disease. Adding genetically 

predicted glycine and serine levels, based on newly discovered metabolite instruments from 

the present study and previous MacTel variants linked to glycine and serine metabolism, 

substantially improved prediction of MacTel based on an area under the receiver operating 

characteristic curve from 0.65 (CI 95%: 0.626-0.682) to 0.73 (0.702-0.753) (Fig. 6).

Common variation at inborn error of metabolism (IEM) associated genes influences the 
risk of common manifestations of diseases related to the phenotypic presentation of those 
IEMs

In his seminal 1902 work on alkaptonuria30, also known as dark or black urine disease, 

Archibald Garrod was the first to hypothesise that inborn errors of metabolism are “extreme 

examples of variations of chemical behaviour which are probably everywhere present in 

minor degrees”. Previous studies have shown enrichment of metabolite quantitative trait 

loci in genes known to cause IEMs31. Whether or not common variants at IEM causing 

loci translate into clinically manifest disease remains unknown. The identification of 

several metabolite-associated variants at IEM-linked genes in this GWAS meta-analysis 

allows an investigation of the health consequences of genetically determined differences in 

metabolism for more frequently occurring variants, representing potentially milder forms 

of the metabolic and other clinical symptoms of IEMs, and providing new candidate genes 

for rare extreme metabolic disorders that currently lack a genetic basis (Fig. 7A). In this 
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study, there were 153 locus-metabolite associations for which 53 unique IEM-associated 

genes were prioritized as likely causal using either the hypothesis-free genetic approach or 

the knowledge-based approach on the basis of the Orphanet database32. In 89% of these 

associations (136 of 153) the metabolite associated with a given GWAS locus perfectly 

matched, or was closely related to, the metabolite affected in patients with the corresponding 

IEM (Fig. 7B).

To test whether IEM-mirroring lead variants from our metabolite GWAS may increase the 

risk of common manifestations of diseases known to exist in patients with the corresponding 

IEM (Fig. 7A) we obtained a list of electronic health record diagnosis codes (International 

Statistical Classification of Diseases and Related Health Problems 10th Revision [ICD-10]) 

and mapped those based on symptoms seen in both, IEM patients and patients with 

common, complex disease manifestations (see Methods). We identified 93 ICD-10 codes 

with at least 500 cases within the UK Biobank study that aligned with the symptoms 

or presentations seen in patients with IEMs caused by mutations in genes specifically 

associated with metabolites observed in the present study. We obtained the association 

statistics of 85 unique metabolite-associated lead variants at the 136 locus-metabolite 

associations with these 93 clinical diagnoses and observed 36 associations that met 

statistical significance (false discovery rate < 5%, Supplemental Table S6 and Fig. 7B). For 

15 out of those we obtained strong evidence of a shared genetic metabolite-phenotype signal 

using colocalisation analyses (posterior probability of a shared signal >80%; Fig. 7D and 

Supplemental Fig. S3). These instances linked common genetic variants in or near APOE, 
PCSK9, LPL, and LDLR associated with sphingomyelins (SM 16:0, SM 18:0, and SM-

OH 24:1) with atherosclerotic heart disease diagnosis codes (I21, I25), mirroring what is 

observed in rare familial forms of dyslipidaemia in which these sphingomyelins are elevated 

and the risk of ischemic heart disease is greatly increased33,34. These results provide 

further evidence that common variation at IEM genes can lead to clinical phenotypes and 

diseases that correspond to those that patients with rare mutations in those same genes 

are severely affected by. Further studies with detailed follow-up for specific outcomes may 

provide greater power and help clarify the medical consequences of genetic differences in 

metabolism caused by metabolite altering variants in the general population.

Discussion

This large-scale genome-wide meta-analysis has integrated genetic associations for 174 

metabolites across different measurement platforms, an approach that has resulted in a 

three-fold increase in our knowledge of genetic loci regulating levels of these metabolites. 

We assign likely causal genes for many of the identified associations using a dual approach 

that combined automated database mining with manual curation.

Previous platform-specific genetic studies of blood metabolites have been substantially 

smaller in size due to being restricted to a single platform and/ or study2–10. We build 

on these earlier studies to identify and demonstrate enrichment of rare and low-frequency 

coding variants in enzyme and transporter genes with large effects and reveal the importance 

of non-linear associations at several loci.
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Our results not only provide detailed insight into the genetic determinants of human 

metabolism but consider their relevance for disease aetiology and prediction. We explore 

both locus-specific and polygenic score effects and provide tangible examples with clear 

translational potential. We discovered a strong link between GLP2R, citrulline metabolism 

and T2D, and demonstrate that the p.Asp470Asn variant underlying the citrulline and T2D 

associations leads to significantly reduced recruitment of beta-arrestin to GLP2R in various 

cellular models, providing an explanation for a possible pathological mechanism of a variant 

previously predicted to be benign24.

The finding that a standard deviation increase in serine levels via a genetic score is 

associated with 95% lower risk of MacTel shows that genetic differences resulting in very 

specific metabolic consequences can have profound effects on health. Our results suggest 

that inclusion of genetic scores for metabolite levels can improve identification of high risk 

individuals. Serine and glycine supplementation and/ or pharmacologic modulation of serine 

metabolism may help to reduce development or alter the prognosis of this rare, severe eye 

disease, specifically if targeted to people genetically with a genetic susceptibility to low 

serine levels. It is important to note, that randomized control trials are needed testing this 

hypothesis before any recommendations on supplementations could be made.

We finally show specific examples where common genetic variation in IEM-related genes is 

associated with phenotypes that are also caused by rare highly penetrant mutations. These 

results suggest that rare variants in metabolite regulating genes newly identified in our 

study may be valuable candidate genes in patients without a genetic diagnosis but severe 

alterations in the corresponding or related metabolites. Hence these results provide a new 

starting point for further investigations into the relationships between human metabolism 

and common and rare disorders.

Methods

Study design and participating cohorts

We performed genome-wide meta-analyses of the levels of 174 metabolites from 7 

biochemical categories (amino acids, biogenic amines, acylcarnitines, phosphatidylcholines, 

lysophosphatidylcholines, sphingomyelins, and sum of hexoses) captured by the Biocrates 

p180 kit measured using mass spectrometry (MS). As described in more detail below, a 

total of 174 metabolites were successfully measured in up to 9,363 plasma samples from 

genotyped participants of the Fenland study35.

To maximise sample size and power, we meta-analysed genome-wide association (GWAS) 

results from the Fenland cohort with those run in the EPIC-Norfolk 36 and INTERVAL 37 

studies, in which metabolites were profiled using MS (Metabolon Discovery HD4 platform) 

or protein nuclear magnetic resonance (1H-NMR) spectrometry 3839 (Supplementary Tab. 

1). Ten of the 174 Biocrates metabolites were covered across all platforms, while 38 were 

available on the Biocrates and Metabolon platforms and 126 were unique to Biocrates (Fig. 

1). We integrated publicly available summary statistics from genome-wide meta-analyses 

of the same metabolites measured using MS (with Biocrates or Metabolon platforms) or 
1H-NMR spectrometry (Supplementary Tab. 1). Metabolites were matched across platforms 
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by comparing metabolite names and biochemical formulas. Mapping across different 

Metabolon platforms was done based on retention time/index (RI), mass to charge ratio 

(m/z), and chromatographic data (including MS/MS spectral data). Scientists at Metabolon 

Inc. independently reviewed and confirmed metabolite matches.

A summary of the characteristics of participating cohorts is given in Supplemental Table 

S1. The Fenland study is a population-based cohort study of 12,435 participants without 

diabetes born between 1950 and 1975 35. Participants were recruited from general practice 

surgeries in Cambridge, Ely and Wisbech (United Kingdom) and underwent detailed 

metabolic phenotyping and genome-wide genotyping. Ethical approval for the Fenland 

study was given by the Cambridge Local Ethics committee (ref. 04/Q0108/19) and all 

participants gave their written consent prior to entering the study. The European Prospective 

Investigation of Cancer (EPIC)-Norfolk study is a prospective cohort of 25,639 individuals 

aged between 40 and 79 and living in the county of Norfolk in the United Kingdom at 

recruitment 36. The study was approved by the Norfolk Research Ethics Committee (REC 

ref. 98CN01) and all participants gave their written consent before entering the study. 

INTERVAL is a randomised trial of approximately 50,000 whole blood donors enrolled from 

all 25 static centres of NHS Blood and Transplant, aiming to determine whether donation 

intervals can be safely and acceptably decreased to optimise blood supply whilst maintaining 

the health of donors37. All participants of the study gave written informed consent and the 

study was approved by NRES Committee East of England - Cambridge East (ref. 11/EE/

0538).

Metabolomics measurements

The levels of 174 metabolites were measured in the Fenland study by the AbsoluteIDQ® 

Biocrates p180 Kit (Biocrates Life Sciences AG, Innsbruck, Austria) as reported elsewhere 

in detail39,40. We used a Waters Acquity ultra-performance liquid chromatography (UPLC; 

Waters ltd, Manchester, UK) system coupled to an ABSciex 5500 Qtrap mass spectrometer 

(Sciex ltd, Warrington, UK). Samples were derivatised and extracted using a Hamilton 

STAR liquid handling station (Hamilton Robotics Ltd, Birmingham, UK). Flow injection 

analysis coupled with tandem mass spectrometry (FIA-MS/MS) using multiple reaction 

monitoring (MRM) in positive mode ionisation was performed to measure the relative 

levels of acylcarnitines, phosphatidylcholines, lysophosphatidylcholines and sphingolipids. 

The level of hexose was measured in negative ionisation mode. Ultra-performance liquid 

chromatography coupled with tandem mass spectrometry using MRM was performed 

to measure the concentration of amino acids and biogenic amines. The chromatography 

consisted of a 5-minute gradient starting at 100% aqueous (0.2% Formic acid) increasing to 

95% acetonitrile (0.2% Formic acid) over a Waters Acquity UPLC BEH C18 column (2.1 x 

50 mm, 1.7 μm, with guard column). Isotopically labelled internal standards are integrated 

within the Biocrates p180 Kit for quantification. Data was processed in the Biocrates 

MetIDQ software. Raw metabolite readings underwent extensive quality control procedures. 

Firstly, we excluded from any further analysis metabolites for which the number of 

measurements below the limit of quantification (LOQ) exceeded 5% of measured samples. 

Excluded metabolites were carnosine, dopamine, putrescine, asymmetric dimethyl arginine, 

dihydroxyphenylalanine, nitrotyrosine, spermine, sphingomyelines SM(22:3), SM(26:0), 
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SM(26:1), SM(24:1-OH), phosphatidylcholine acyl-alky 44:4, and phosphatidylcholine 

diacyl C30:2. Secondly, in samples with detectable but not quantifiable peaks, we assigned 

random values between 0 and the run-specific LOQ of a given metabolite. Finally, we 

corrected for batch-effects with a “location-scale” approach, i.e. with normalization for 

mean and standard deviation of batches.

The levels of up to 38 metabolites were measured in EPIC-Norfolk and INTERVAL using 

the Metabolon HD4 Discovery platform. Measurements were carried out using MS/MS 

instruments. For these measurements, instrument variability, determined by calculating 

the median relative standard deviation, was of 6%. Data Extraction and Compound 

Identification: raw data was extracted, peak-identified and quality control-processed using 

Metabolon’s hardware and software. Compounds were identified by comparison to library 

entries of purified standards or recurrent unknown entities. Metabolon maintains a library, 

based upon authenticated standards, that contains the retention time/index (RI), mass to 

charge ratio (m/z), and chromatographic data (including MS/MS spectral data) of all 

molecules present in the library. Identifications were based on three criteria: retention index, 

accurate mass match to the library +/- 10 ppm, and the MS/MS forward and reverse scores 

between the experimental data and authentic standards. Metabolite Quantification and Data 

Normalization: Peaks were quantified using area-under-the-curve. A data normalization step 

was performed to correct variation resulting from instrument inter-day tuning differences. 

Essentially, each compound was corrected in run-day blocks by registering the medians 

to equal one (1.00) and normalizing each data point proportionately (termed the “block 

correction”).

The serum levels of 230 metabolites were measured in the INTERVAL study using 1H-NMR 

spectroscopy38,41. Among those, 10 metabolites (creatinine, alanine, glutamine, glycine, 

histidine, isoleucine, leucine, valine, phenylalanine, and tyrosine) overlapped with what is 

captured by the Biocrates p180 Kit and were used in the present study. Further details of 

the 1H-NMR spectroscopy, quantification data analysis and identification of the metabolites 

have been described previously38,42. Participants with >30% of metabolite measures missing 

and duplicated individuals were removed. Metabolite data more than 10 SD from the mean 

was also removed.

GWAS and meta-analysis

In Fenland and EPIC-Norfolk, metabolite levels were natural log-transformed, winsorised 

to five standard deviations and then standardised to a mean of 0 and a standard deviation 

of 1. Genotypes were measured using Affymetrix Axiom or Affymetrix SNP5.0 genotyping 

arrays. In brief, genotyping in Fenland was done in two waves including 1,500 (Affymetrix 

SNP5.0) and 9,369 (Affymetrix Axiom) participants and imputation was done using 

IMPUTE2 to 1000 Genomes Phase 1v3 (Affymetrix SNP5.0) or phase 3 (Affymetrix 

Axiom) reference panels (Supplemental Tab. S1). Plasma metabolite and genotype data 

was available for 8,714 (Affymetrix Axiom) and 1,022 (Affymetrix SNP5.0) unrelated 

individuals. In EPIC-Norfolk, 21,044 samples were forwarded to imputation using 1000 

Genomes Phase 3 (Oct. 2014) reference panels (Supplemental Tab. S1). Imputed SNPs with 

imputation quality score less than 0.3 or minor allele account less than 2 were removed 
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from the imputed dataset. Genome-wide association analyses were carried out using BOLT-

LMM v2.2 adjusting for age, sex, and study-specific covariates in mixed linear models. 

Alternatively (when the BOLT-LMM algorithm failed due to heritability estimates close to 

zero or one) analyses were performed using SNPTEST v2.4.1 in linear regression models, 

additionally adjusting for the top 4 genetic ancestry principal components and excluding 

related individuals (defined by proportion identity-by-descent calculated in Plink43 > 0.1875 

as recommended44). GWAS analyses in Fenland were performed within genotyping chip, 

and associations meta-analysed.

In INTERVAL, genotyping was conducted using the Affymetrix Axiom genotyping array. 

Standard quality control procedures were conducted prior to imputation. The data were 

phased and imputed to a joint 1000 Genomes Phase 3 (May 2013)-UK10K reference 

imputation panel. After QC, a total of 40,905 participant remained with data obtained by 
1H-NMR spectroscopy. For variants with a MAF of >1% and imputed variants with an info 

score of >0.4 a univariate GWAS for each of the ten metabolic measures was conducted, 

after adjustment for technical and seasonal effects, including age, sex, and the first 

10 principal components, and rank-based inverse normal transformation. The association 

analyses were performed using BOLT-LMM v2.2 and R. Data based on the Metabolon HD4 

platform was available for 8,455 participants. Prior to the Metabolon HD4 genetic analysis, 

genetic data were filtered to include only variants with a MAF of >0.01% and imputed 

variants with an info score of >0.3. Phenotype residuals corrected for age, gender, metabolon 

batch, INTERVAL centre, plate number, appointment month, the lag time between the blood 

donation appointment and sample processing, and the first 5 ancestry principal components 

were calculated for each metabolite and the residuals were standardised prior to the genetic 

analyses in SNPTEST v2.5.1.

For all GWAS analysis within Fenland, EPIC-Norfolk and INTERVAL, variants with Hardy-

Weinberg equilibrium p<1×10-6 and associations with absolute value of effect size >5 or 

standard error (SE) >10 or <0 were excluded; insertions and deletions were excluded.

For each metabolite, we performed a meta-analysis of z-scores (betas divided by standard 

errors) as a measure of association, signals and loci (see below), using METAL software. 

Heterogeneity between studies for each association was estimated by Cochran’s Q-test. For 

each metabolite, we also performed a meta-analysis of beta and standard errors for the 

subset of studies (Fenland and, when available, EPIC-Norfolk and/or INTERVAL) where 

we had access to individual level data and standardised phenotype preparation to estimate 

effect sizes. Quality filters implemented after meta-analysis included exclusion of SNPs not 

captured by at least 50% of the participating studies and 50% of the maximum sample size 

for that metabolite and variants with a minor allele frequency below 0.5%. As a result, 

meta-analyses assessed the associations of up to 13.1 million common or low-frequency 

autosomal SNPs. Chromosome and base pair positions are determined referring to GRCh37 

annotation. To define associations between genetic variants and metabolites, we corrected 

the conventional threshold of genome wide significance for 102 tests (i.e. p<4.9x10-10), 

corresponding to the number of principal components explaining 95% of the variance of the 

174 metabolites in the Fenland cohort, as previously described45.
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Signal selection

For each metabolite, we ranked associated SNPs (p <4.9x10-10) by z-score to select 

trait-sentinel SNPs and defined an “association” region as the region extending 1 Mb to 

each side of the trait-sentinel SNP. During forward selection of trait-sentinel SNPs and 

loci for each trait, adjacent and partially overlapping association regions were merged by 

extending region boundaries to a further 1 Mb. After defining trait-sentinel SNPs and 

association regions we defined overall lead-sentinel SNP and loci for any metabolite using 

a similar approach. Trait-sentinel SNPs were sorted by z-score for the forward selection 

of lead-sentinel SNPs and a “locus” was defined as the region extending 1 Mb each side 

of the lead-sentinel SNP. Regions larger than 2 Mb defined in the trait-sentinel association 

region definition were carried over in the definition of lead-sentinel SNP loci. As a result, 

all lead-sentinel SNPs were >1Mb apart from each other and had very low or no linkage 

disequilibrium (R2 < 0.05).

For a given locus, independent signals across metabolites were determined based on linkage 

disequilibrium (LD)-clumping of SNPs that reached the Bonferroni corrected p-value. SNPs 

with the smallest p-values and an R2 less than 0.05 were identified as independent signals. 

LD patterns were estimated with SNP genotype data imputed using the haplotype reference 

consortium (HRC) reference panel, with additional variants from the combined UK10K 

plus 1000 Genomes Phase 3 reference panel in the EPIC-Norfolk study (n = 19,254 after 

removing ancestry outliers and related individuals).

Throughout the manuscript, the term “locus” indicates a genomic region (≥1 Mb each side) 

of a lead-sentinel SNP harbouring one or more trait-sentinel SNPs; “signal” indicates a 

group of trait-sentinel SNPs in LD with each other but not with other trait-sentinel SNPs in 

the locus (R2 < 0.05); “association” indicates trait-sentinel SNP to metabolite associations 

defined by a trait-lead SNP and its surrounding region (≥1 Mb each side).

We tested at each locus for conditional independent variants using exact stepwise 

conditional analysis in the largest Fenland sample (n = 8,714) using SNPTEST v2.5 with 

the same baseline adjustment as in the discovery approach. To refine signals at those loci 

we used a more recent imputation for this analysis based on the HRC v1 reference panel 

and additional SNPs imputed using UK10K and 1000G phase 3. We defined secondary 

signals as those with a conditional p-value < 5x10-8. To avoid problems with collinearity 

we tested after each round if inclusion of a new variant changed associations of all previous 

variants with the outcome using a joint model. If this model indicated that one or more of the 

previously selected variants dropped below the applied significance threshold we stopped the 

procedure, otherwise we repeated this procedure until no further variant met the significance 

threshold in conditional models. We considered only locus–metabolite associations meeting 

the GWAS-threshold for significance in the Fenland analysis (n=228).

Investigation of heterogeneity

We used a meta-regression model to identify factors associated with larger I2 values across 

all 499 identified SNP-metabolite associations. To this end, a vector of heterogeneity 

estimates, I2, from the meta-analysis was obtained as outcome and the following explanatory 
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variables were considered: strength of effect (absolute Z-score of the SNP – metabolite 

association), biochemical class, dummy variables indicating the study of origin (related to 

the measurement platform), and the number of contributing studies as an estimate of sample 

size. A significant effect of any of those terms in a linear regression model was taken to 

indicate a source of heterogeneity across SNP-metabolite associations and hence identified 

systematic factors contributing to any observed cross-platform heterogeneity.

Statistical fine-mapping

We used statistical fine mapping to determine 99%-credible intervals for all independently 

associated SNPs using the R package ‘corrcoverage’. Briefly, regional summary statistics 

(betas and standard errors) were converted to approximate Bayes factors as described 

in Wakefield et al.46 to calculate the posterior probability (PP) for each variant driving 

the association. Credible sets are subsequently defined as the ranked list of variants 

cumulatively covering 99% of the PP to cover the true causal signal. For loci with 

evidence of independent secondary signals we used GCTA COJO-cond algorithm to 

generate conditional association statistics conditioning on all other independent signals in 

the locus. Since the calculation of approximate Bayes factors requires betas and standard 

errors we used meta-analysis results across studies for which we had access to individual 

data (Fenland, EPIC-Norfolk, and INTERVAL). However, out of 546 detected signals 473 

reached genome-wide significance (p<5x10-8) in this smaller subset and we restricted fine-

mapping to those associations.

Muli-trait colocalisation across metabolites

We used hypothesis prioritisation in multi-trait colocalisation (HyPrColoc)15 at each of the 

identified 144 loci 1) to identify metabolites sharing a common causal variant over and 

above what could be identified in the meta-analysis to increase statistical power, and 2) to 

identify loci with evidence of multiple causal variants with distinct associated metabolite 

clusters. Briefly, HyPrColoc aims to test the global hypothesis that multiple traits share a 

common genetic signal at a genomic location and further uses a clustering algorithm to 

partition possible clusters of traits with distinct causal variants within the same genomic 

region. HyPrColoc provides for each cluster three different types of output: 1) a posterior 

probability (PP) that all traits in the cluster share a common genetic signal, 2) a regional 

association probability, i.e. that all the metabolites share an association with one or more 

variants in the region, and 3) the proportion of the PP explained by the candidate variant. We 

considered a highly likely alignment of a genetic signal across various traits if the PP > 75% 

or the regional association probability > 80% and the PP > 50%. The second criterion takes 

into account that metabolites may share multiple causal variants at the same locus. We used 

the same set of summary statistics as described for statistical fine-mapping, i.e. based on 

betas and standard errors across studies for which we had access to individual level data. We 

further filtered metabolites with no evidence of a likely genetic signal (p>10-5) in a region 

before performing HyPrColoc, which improved clustering across traits by minimizing noise. 

We used the same workflow to test for the alignment of a genetic signal at the GLPR2 locus 

using summary statistics from T2D (see below), a meta-analysis for body mass index across 

GIANT and UK Biobank, plasma GIP, and plasma citrulline.
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Testing for non-linear effects

We tested each of the 499 identified SNP (j) – metabolite (i) pairs for the deviation from an 

additive linear model by introducing a dummy variable encoding heterozygous carriers (D), 

i.e. D = 1 if heterozygous and 0 otherwise, in the following regression model:

Metabolitei ∼ β1 + β2 ∗ SNPj + β3 ∗ D + ⋯Confounder… + ϵ

A significant estimate β3indicates departure from linearity. In a more formal framework this 

test allows to test for either a dominant negative or positive model of inheritance depending 

on the coding of the effect allele. We implemented this test in STATA version 13 using 

individual level data from the Fenland cohort.

Metabolic network and community detection

We used Gaussian graphical modelling (GGMs) to construct a metabolic network across all 

174 metabolites in a data-driven manner2. Briefly, GGMs are based on partial correlation 

minimizing confounding and have been shown to recover tight biochemical dependencies 

from single spot blood measurements. The final network comprised 167 metabolites and 554 

significant (p<3.3x10-6) edges. We next preformed community detection using the Girvan-

Newman algorithm, which successively removes edges with high edge betweenness creating 

a dendrogram of splits of the network into communities, as implemented in the R package 

igraph. We obtained 14 distinct communities including those covering metabolites of distinct 

biochemical species as well as subdividing larger metabolite classes (Supplemental Fig. S2).

Hypothesis-free (genetic) assignment of causal genes

To assign likely causal genes to lead SNPs at each locus we generated a scoring 

system. We identified the nearest gene for each variant by querying HaploReg47. Next 

we integrated expression quantitative trait loci (eQTL) studies (GTEx v6p) to identify 

genes whose expression levels are associated with metabolite levels using TWAS/FUSION 

(Transcriptome-wide association study / Functional summary-based imputation)48. In doing 

so, we assigned to each variant-metabolite association one or more associated genes using 

the variant as common anchor. We further assigned higher impact for a causal gene if 

either the metabolite variant itself or a proxy in high linkage disequilibrium (R2>0.8) was 

a missense variant for a known gene again using the HaploReg database to obtain relevant 

information. Based on those three criteria we ranked all possible candidate genes and kept 

those with the highest score as putative causal gene.

Knowledge-based (biological) assignment of causal genes

Metabolite traits are unique among genetically evaluated phenotypes in that the functional 

characterization of the relevant genes has often already been carried out using classic 

biochemical techniques. The objective for the knowledge-based assignment strategy was 

to find the experimental evidence that has previously linked one of the genes proximal 

to the GWAS lead variant to the relevant metabolite. For many loci and metabolites this 

‘retrospective’ analysis has already been carried out 3149.For these cases, previous causal 

gene assignments were generally adopted. For novel loci, we employed a dual strategy that 
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combined automated database mining with manual curation. In the automated phase, seven 

approaches were employed to identify potential causal genes among the 20 protein-coding 

genes closest to each lead variant, as described in detail below, using the shortest distance 

determined from the lead SNP to each gene’s transcription start site (TSS) or transcription 

end site (TES), with a distance value of 0 assigned if the SNP fell between the TSS and TES.

These 7 approaches were as follows:

1) HMDB metabolite names50 were compared to each entrez gene name;

2) Metabolite names were compared to the name and synonyms of the protein 

encoded by each gene51

3) HMDB metabolite names and their parent terms (class) were compared to the 

names for the protein encoded by each gene (UniProt).

4) Metabolite names were compared to rare diseases linked to each gene in 

OMIM32 after removing the following non-specific substrings from disease 

names: uria, emia, deficiency, disease, transient, neonatal, hyper, hypo, defect, 

syndrome, familial, autosomal, dominant, recessive, benign, infantile, hereditary, 

congenital, early-onset, idiopathic;

5) HMDB metabolite names and their parent terms were compared to all GO 

biological processes associated with each gene after removing the following 

non-specific substrings from the name of the biological process: metabolic 

process, metabolism, catabolic process, response to, positive regulation of, 

negative regulation of, regulation of. For this analysis only gene sets containing 

fewer than 500 gene annotations were retained.

6) KEGG maps52 containing the metabolite as defined in HMDB were compared 

to KEGG maps containing each gene, as defined in KEGG. For this analysis the 

large “metabolic process” map was omitted.

7) Each proximal gene was compared to the list of known interacting genes as 

defined in HMDB.

For each text-matching based approach, a fuzzy text similarity metric (pair coefficient) as 

encoded in the ruby gem “fuzzy_match” was used with a score greater than 0.5 considered 

as a match.

In the next step, all automated hits at each locus were manually reviewed for plausibility. 

In addition, other genes at each locus were reviewed if the Entrez gene or UniProt 

description of the gene suggested it could potentially be related to the metabolite. If 

existing experimental evidence could be found linking one of the 20 closest genes to the 

metabolite, that gene was selected as the biologically most likely causal gene. If no clear 

experimental evidence existed for any of the 20 closest protein coding genes, no causal gene 

was manually selected. In a few cases multiple genes at a locus had existing experimental 

evidence. This frequently occurs in the case of paralogs with similar molecule functions. In 

these cases, all such genes were flagged as likely causal genes.
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For each manually selected causal gene, the earliest experimental evidence linking the gene 

(preferably the human gene) to the metabolite was identified. The median publication year 

for the identified experimental evidence was 2000.

Enrichment of type 2 diabetes associations among metabolite associated lead variants

We examined whether the set of independent lead metabolite associated variants (N=168) 

were enriched for associations with type 2 diabetes. We plotted observed versus expected 

-log10(p values) for the 168 lead variants in a QQ-plot, using association statistics from 

a type 2 diabetes meta-analysis including 80,983 cases and 842,909 non-cases from the 

DIAMANTE study 53 (55,005 T2D cases, 400,308 non-cases), UK Biobank54 (24,758 

T2D cases, 424575 non-cases, application number 44448) and the EPIC-Norfolk study 

(additional T2D cases not included in DIAMANTE study: 1,220 T2D cases and 18,026 

non-cases). This QQ-plot was compared to those for 1000 sets of variants, where variants 

in each set were matched to the index metabolite variants in terms of MAF, the number of 

variants in LD (R2>0.5), gene density and distance to nearest gene (for all parameters +/- 

50% of the index variant value), but otherwise randomly sampled from across the autosome 

excluding the HLA region. MAF and LD parameters for individual variants were determined 

from the EPIC-Norfolk study (using the combined HRC, UK10K and 1000G imputation as 

previously described) and gene information was derived from GENCODE v19 annotation55. 

A one-tailed Wilcoxon rank sum test was used to compare the distribution of association 

–log10 p-values for the metabolite associated variants with that for the randomly sampled, 

matched, variants.

Functional characterisation of D470N mutant GLP2R

To investigate the functional differences between wild-type (WT) GLP2R and the D470N 

mutant GLP2R we generated D470N GLP2R mutant constructs using site-directed 

mutagenesis and characterised canonical GLP2R signalling pathways via cAMP as well 

as alternative signalling pathways via β-arrestin and P-ERK.

Generation of D470N GLP2R mutant expressing constructs—Human GLP2R 

cDNA within the pcDNA3.1+ vector was purchased, and Gibson cloning was completed to 

insert an internal ribosome entry site (IRES) and venus gene downstream of the GLP2R 

sequence. Following this, QuikChange Lightning site directed mutagenesis was used to 

perform a single base change from GAC (encoding aspartic acid) to AAC (encoding 

asparagine) at amino acid position 470 (Supplemental Fig. 4A-B). Successful mutagenesis 

was confirmed by DNA Sanger sequencing (Supplemental Fig. 4C), and the successful 

products were scaled up for use in functional assays. The WT and mutant GLP2R constructs 

within the pcDNA3.1+ vector were used to assess signalling by cAMP and P-ERK. To 

determine β-arrestin recruitment using NanoBiT® technology, an alternative vector was 

required for lower expression of GLP2R, and fusion of GLP2R to the Large BiT subunit 

of NanoBiT®. For this, GLP2R was cloned into the pBiT1.1_C[TK/LgBiT] vector using 

restriction cloning and ligation. DNA Sanger sequencing was then used for confirmation of 

successful cloning.
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Comparison of WT and D470N GLP2R signalling via cAMP—After generation 

of WT and D470N GLP2R containing constructs, these were used to assess differences 

in WT and mutant GLP2R signalling. The initial signalling pathway to be assessed was 

Gαs signalling via cAMP. CHO K1 cells were transiently transfected with WT or mutant 

GLP2R constructs, then after 16-24 hours were treated with a dose response of GLP-2. 

cAMP levels were measured following 30 minutes of GLP-2 treatment, in an end-point 

lysis HitHunter® cAMP assay. The presence of IRES-Venus within the GLP2R expressing 

vectors allowed transfection efficiency to be determined for each construct. Transfection 

efficiency was approximately 60-70%, with no differences between the WT and mutant 

constructs. Comparison of the GLP-2 dose-response in WT and mutant GLP2R expressing 

cells revealed no significant differences in signalling, with an almost overlapping dose 

response curve (Fig. 5E).

Comparison of β-arrestin recruitment to the WT and D470N GLP2R—Both β-

arrestin 1 and β-arrestin 2 recruitment were assessed using a Nano-Glo® live cell assay in 

transiently transfected HEK293 cells. Briefly, the recruitment of β-arrestin to GLP2R brings 

the large and small BiT subunit of NanoBiT® together, resulting in increased luciferase 

activity. The top concentrations from the GLP-2 dose response in the cAMP assay (1–100 

nmol/l GLP-2) were chosen for stimulation of the GLP2R and observation of β-arrestin 

recruitment. Both β-arrestin 1 and β-arrestin 2 were recruited to the WT GLP2R upon 

GLP-2 stimulation, in a dose-dependent manner (Supplemental Fig. 5a, c). The maximal 

luciferase activity for both β-arrestin 1 and β-arrestin 2 recruitment to the mutant GLP2R 

was significantly decreased when compared to the WT GLP2R, indicating the extent of 

β-arrestin recruitment was markedly decreased (Supplemental Fig. 5b, d). The example 

traces indicate that neither β-arrestin 1 or β-arrestin 2 were recruited to the mutant GLP2R 

upon stimulation with 1 nmol/l GLP-2, however the same concentration of GLP-2 induced 

β-arrestin recruitment to the WT GLP2R. Overall there was a significant decrease in β-

arrestin 1 and β-arrestin 2 recruitment to the D470N GLP2R mutant (Figure 5F-G).

Genetic score and Mendelian randomization analysis for macular telangiectasia type 2

For each metabolite a genetic score (GS) was calculated using all variants meeting genome-

wide significance and their beta-estimates as weights obtained from the meta-analysis of 

studies for which individual level data was available. We used fixed-effect meta-analysis to 

test for the effect of the GS on MacTel risk using the summary statistics from the most 

recent GWAS. A conservative Bonferroni-correction for the number of tested GS’s was 

used to declare significance (p<3.5x10-4). Sensitivity analyses were performed where the 

pleiotropic GCKR variant was removed.

To test for causality between circulating levels of glycine and serine for MacTel we 

performed two types of Mendelian randomization (MR) analysis. In a two-sample 

univariable MR56 we tested for an individual effect of serine (n=4 SNPs) or glycine (n=15 

SNPs) on the risk of MacTel using independent non-pleiotropic (i.e. the variant in GCKR) 

genome-wide SNPs as instruments. To this end, we used the inverse variance weighted 

method to pool SNP ratio estimates using random effects as implemented in the R package 

MendelianRandomization. SNP effects on the risk for MacTel were obtained from28. To 
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disentangle the individual effect of those two highly correlated metabolites at the same time 

we used a multivariable MR model57 including all SNPs related to serine or glycine (n=15 

SNPs). Beta estimates and standard errors for both metabolites and all SNPs were obtained 

from the summary statistics and mutually used as exposure variables in multivariable MR. 

Effect estimates were again pooled using a random effect model as implemented in the R 

package MendelianRandomization. This procedure allowed us to obtain causal estimates for 

both metabolites while accounting for the effect on each other. Estimates can be interpreted 

as increase in risk for MacTel per 1 SD increase in metabolite levels while holding the other 

metabolite constant.

To estimate a potential clinical usefulness of the identified variants we constructed two 

GRS’s for MacTel using a) sex, the first genetic principal component, and the SNPs 

rs73171800 and rs9820286 which were identified by the MacTel GWAS study28 but not 

found to be related to either glycine or serine in our study and b) all the previous but 

additionally including genetically predicted serine and glycine at individual levels, via GS, 

to the model. An interaction between serine and sex at birth was included to reflect the 

interaction between SNP rs715 and sex as previously identified 28. To assess the predictive 

ability of both models, receiver operating characteristic curves were computed based on 

prediction values in 1,733 controls and 476 MacTel cases.

Identification of genes related to inborn errors of metabolism

Biologically or genetically assigned candidate genes were annotated for IEM association 

using the Orphanet database32. Using a binomial two-tailed test, enrichment of metabolic 

loci was assessed by comparing the annotated list with the full list of 784 IEM genes 

in Orphanet against a backdrop of 19,817 protein-coding genes58. IEM-annotated loci for 

which the associated metabolite matched or was closely biochemically related to the IEM 

corresponding metabolite(s) based on IEMBase59 were considered further for analysis.

We hypothesised that IEM-annotated loci with metabolite-specific consequences could 

also have phenotypic consequences similar to the IEM. To test this, we first obtained 

terms describing each IEM and translated them into IEM-related ICD-10 codes using 

the Human Phenotype Ontology and previously-generated mappings60,61. We obtained 

association statistics from the 85 IEM SNPs for phenotypic associations with corresponding 

ICD-codes among UK Biobank restricting to diseases with at least 500 cases (N=93, Fig. 

7B, http://www.nealelab.is/uk-biobank). We tested locus-disease pairs meeting statistical 

significance (controlling the false discovery rate at 5% to account for multiple testing) for a 

common genetic signal with the corresponding locus-metabolite association using statistical 

colocalisation. Because of the hypothesis-driven nature of the approach, i.e. prior knowledge 

of the causal gene and metabolite effect for a given IEM, we adopted an FDR-based 

strategy to account for multiple testing. We further highlight only those examples with 

strong evidence for a shared genetic signal (see below).

Colocalisation analyses

We used statistical colocalisation62 to test for a shared genetic signal between a metabolite 

and a disease of interest. We obtained posterior probabilities (PP) of: H0 – no signal; H1 
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– signal unique to the metabolite; H2 – signal unique to the trait; H3 – two distinct causal 

variants in the same locus and H4 – presence of a shared causal variant between a metabolite 

and a given trait. PPs above 80% were considered highly likely. We used p-values and MAFs 

obtained from the summary statistics with default priors to perform colocalisation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Code Availability

Each use of software programs has been clearly indicated and information on the options 

that were used is provided in the Methods section. Source code to call programs is available 
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Figure 1. 
A Sample size by contributing study and technique for each of the 174 metabolites 

included. B A three-dimensional Manhattan plot displaying chromosomal position (x-axis) 

of significant associations (p <4.9×10-10, z-axis) across all metabolites (y-axis). Colours 

indicate metabolite groups. C A top view of the 3D-Manhattan plot. Dots indicate 

significantly associated loci. Colours indicate novelty of metabolite – locus associations. 

Loci with indication for pleiotropy have been annotated.

Lotta et al. Page 26

Nat Genet. Author manuscript; available in PMC 2022 June 30.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 2. 
A Distribution of pleiotropy, i.e. number of associated metabolites, among loci identified in 

the present study. B Distribution of polygenicity of metabolites, i.e. number of identified loci 

for each metabolite under investigation. C Scatterplot comparing the estimated heritability 

of each metabolite against the number of associated loci. Size of the dots indicates samples 

sizes. D Heritability estimates for single metabolites. Colours indicate the proportion of 

heritability attributed to single nucleotide polymorphisms (SNPs) with large effect sizes 

(β>0.25 per allele). E – M SNP – metabolite association with indication of non-additive 

effects. Beta is an estimate from the departure of linearity. N Barplot showing the increase 

in heritability and explained variance for each SNP – metabolite pair when including non-

additive effects.
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Figure 3. 
A Scatterplot comparing the minor allele frequencies (MAF) of associated variants with 

effect estimates from linear regression models (N loci=499). Colours indicate possible 

functional consequences of each variant: maroon – nonsynonymous variant; blue – in strong 

LD (r2>0.8) with a nonsynonymous variant and grey otherwise. B-D Distribution of effect 

sizes (B), allele frequencies (C), and width of credible sets (D) based on the type of 

single nucleotide polymorphism (SNP) (0 – non-coding or synonymous, 1 – in strong LD 

with nonsynonymous, 2 - nonsynonymous). E Distribution of functional annotations of 

metabolite associated variants (red), trait-associated variants (blue – continuous, purple – 

diseases) obtained from the GWAS catalogue, and all SNPs included in the present genome-

wide association studies. The inlet for exonic variants distinguishes between synonymous 

(syn) and nonsynonymous variants (nsyn).

Lotta et al. Page 28

Nat Genet. Author manuscript; available in PMC 2022 June 30.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 4. 
A Comparison between the hypothesis-free genetically prioritized versus biologically 

plausible approaches used in the present study to assign candidate genes to metabolite 

associated single nucleotide polymorphisms. The Venn-diagram displays the overlap 

between both approaches. B Enrichment of genetically prioritized genes among biologically 

plausible or genes linked to inborn errors of metabolism (IEM). C Proportion of genetically 

prioritized genes encoding for either enzymes or transporters.
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Figure 5. 
A Enrichment of associations with type 2 diabetes (T2D: 80,983 cases, 842,909 controls) 

among metabolite-associated SNPs. Blue dots indicate metabolite-SNPs and grey dots 

indicate a random selection of matched control SNPs. B Regional association plots for 

plasma citrulline, type 2 diabetes, body mass index, and fasting levels of glucose-dependent 

insulinotropic peptide (GIP) focussing on the GLPR2 gene. Variants are coloured based on 

linkage disequilibrium with the lead variant (rs17681684) for plasma citrulline. *Summary 

statistics for GIP were obtained from the more densely genotyped study included in 

Almgren et al.24 (to increase coverage of genetic variants for multi-trait colocalisation). 
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C Individual association summary statistics for all citrulline associated SNPs (coded by 

the citrulline increasing allele) for T2D and an inverse-variance weighted (IVW) estimate 

pooling all effects. D Schematic sketch for the location of the missense variant induces 

amino acid substitution in the glucagon-like peptide-2 receptor (GLP2R). E GLP-2 dose 

response curves in cAMP assay for GLP2R wild-type and mutant receptors. The dose 

response curves of cAMP stimulation by GLP-2 in CHO K1 cells transiently transfected 

with either GLP2R wild-type or mutant constructs. Data were normalised to the wild-type 

maximal and minimal response, with 100% being GLP-2 maximal stimulation of the wild-

type GLP2R, and 0% being wild-type GLP2R cells with buffer only. Mean ± standard 

errors are presented (n=4).F-G Summary of wild-type and mutant GLP2R beta-arrestin 1 

and beta-arrestin 2 responses. Area under the curve (AUC) summary data (n=3-4) displayed 

for beta-arrestin 1 recruitment (E) and beta-arrestin 2 recruitment (F). AUCs were calculated 

using the 5 minutes prior to ligand addition as the baseline value. Mean ± standard errors are 

presented. Normal distribution of log10 transformed data was determined by the D'Agostino 

& Pearson normality test. Following this statistical significance was assessed by one-way 

ANOVA with post hoc Bonferroni test. ***p<0.001, *p<0.05.
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Figure 6. 
A Results from genetic scores for each metabolite on risk for macular telangiectasia type 

2 (MacTel). The dotted line indicates the level of significance after correction for multiple 

testing. The inlet shows the same results but after dropping the pleiotropic variants in 

GCKR and FADS1-2. B Effect estimates of serine-associated genetic variants on the risk for 

MacTel. C Comparison of effect sizes for lead variants associated with plasma serine levels 

and the risk for MacTel. D Receiver operating characteristic curves (ROC) comparing the 

discriminative performance for MacTel using a) sex, the first genetic principal component, 

and two MacTel variants (rs73171800 and rs9820286) not associated with metabolite levels, 
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and b) additionally including genetically predicted serine and glycine at individual levels as 

described in the methods. The area under the curve (AUC) is given in the legend.
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Figure 7. 
A Scheme of the workflow to link common variation in genes causing inborn errors of 

metabolism (IEM) to complex diseases. 7B Flowchart for the systematic identification of 

metabolite-associated variants to genes and diseases related to inborn errors of metabolism 

(IEM). C P-values from phenome-wide association studies among UK Biobank using 

variants mapping to genes knowing to cause IEMs and binary outcomes classified with 

the ICD-10 code. Colours indicate disease classes. The dotted line indicates the significance 

threshold controlling the false discovery rate at 5%. D Posterior probabilities (PPs) from 
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statistical colocalisation analysis for each significant triplet consisting of a metabolite, a 

variant, and a ICD-10 code among UK Biobank. The dotted line indicates high likelihood 

(>80%) for one of the four hypothesis tested: H0 – no signal; H1 – signal unique to the 

metabolite; H2 – signal unique to the trait; H3 – two distinct causal variants in the same 

locus and H4 – presence of a shared causal variant between a metabolite and a given trait.
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Table 1
Genomic loci with effect sizes larger than 0.25 units in standard deviation of metabolite 
levels per allele.

rsID Position* Metabolite EA/
OA EAF N MA p-value

Beta 
(se)**

Candidate 
genes

Expl. 
var. 
(%)

rs13538 2:73868328 Acetylornithine A/G 0.78 30692 1.99E-1984 0.85 
(0.01) NAT8, ACTG2 18.4

rs3916 12:121177272 Butyrylcarnitine C/G 0.26 30694 1.67E-2010 0.81 
(0.01) ACADS, 16.9

rs12587599 14:104575130 Asparagine T/C 0.14 23606 8.98E-294 0.49 
(0.013) ASPG, ADSSL1 8.2

rs3970551 22:18906839 Proline G/A 0.11 23618 1.10E-224 0.48 
(0.015) PRODH 5.0

rs174547 11:61570783 lysoPC a C20:4 T/C 0.67 16829 4.42E-398 0.47 
(0.015)

FADS1, 
DAGLA 9.9

rs174545 11:61569306 PC aa C38:4 C/G 0.67 16828 1.37E-361 0.45 
(0.015) FADS1, 9.2

rs715 2:211543055 Glycine C/T 0.31 80000 3.00E-1632 0.44 
(0.006) CPS1, IDH1 12.9

rs174564 11:61588305 PC ae C42:3 A/G 0.66 9363 5.72E-183 0.44 
(0.015)

FADS1, 
DAGLA 8.9

rs174547 11:61570783 PC aa C36:4 T/C 0.67 16830 3.25e-313 0.43 
(0.015)

FADS1, 
DAGLA 8.6

rs1171617 10:61467182 Carnitine T/G 0.77 31001 2.06E-444 0.43 
(0.011) SLC16A9, 7.0

rs102275 11:61557803 PC ae C40:5 T/C 0.67 16839 8.23E-202 0.43 
(0.015)

C11orf10, 
DAGLA 8.7

rs7157785 14:64235556 PC aa C28:1 T/G 0.16 16833 4.60E-136 0.35 
(0.019) SGPP1,SYNE2 3.3

rs174547 11:61570783 PC ae C36:5 T/C 0.67 16828 2.48E-185 0.33 
(0.015)

FADS1, 
DAGLA 5.1

rs102275 11:61557803 PC aa C38:5 T/C 0.67 16836 8.31E-198 0.33 
(0.015)

C11orf10, 
DAGLA 5.0

rs174564 11:61588305 PC ae C42:2 A/G 0.66 9363 7.04E-99 0.32 
(0.015)

FADS1, 
DAGLA 4.8

rs174564 11:61588305 lysoPC a C26:1 A/G 0.66 9363 1.38E-91 0.32 
(0.016)

FADS1, 
DAGLA 4.6

rs7157785 14:64235556 SM (OH) C14:1 T/G 0.16 16833 1.65E-96 0.29 
(0.019) SGPP1 2.2

rs174546 11:61569830 PC aa C24:0 C/T 0.67 13184 4.16E-89 0.29 
(0.016)

FADS1, 
DAGLA 3.6

rs174546 11:61569830 PC ae C38:5 C/T 0.67 16839 8.98E-146 0.29 
(0.015)

FADS1, 
DAGLA 3.9

rs7552404 1:76135946 Octanoylcarnitine A/G 0.69 31969 2.30E-260 0.28 
(0.01) ACADM 2.8

rs1171615 10:61469090 Propionylcarnitine T/C 0.77 32590 7.09E-185 0.27 
(0.011) SLC16A9 3.1

rs1171617 10:61467182 Acetylcarnitine T/G 0.77 31008 1.92E-156 0.27 
(0.011) SLC16A9 3.3

rs2286963 2:211060050 Nonaylcarnitine G/T 0.36 13925 5.46E-159 0.26 
(0.016) ACADL 3.2
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rsID Position* Metabolite EA/
OA EAF N MA p-value

Beta 
(se)**

Candidate 
genes

Expl. 
var. 
(%)

rs12210538 6:110760008 Octadecandienylcarnitine A/G 0.77 30227 1.69E-144 0.26 
(0.011) SLC22A16 1.0

rs102275 11:61557803 PC aa C36:5 T/C 0.66 16835 2.09E-120 0.25 
(0.015)

C11orf10, 
DAGLA 3.0

rs174550 11:61571478 PC ae C36:3 C/T 0.33 16830 2.05E-105 0.25 
(0.015)

FADS1, 
DAGLA 2.7

EA = effect allele; OA = other allele; MA = meta-analysis; se = standard error

*Chromosome:Position based on Genome Reference Consortium Human Build 37

**based on meta-analysis across cohorts for which individual-level data was available (more information is provided in Supplementary Tab. S).
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Table 2
Results from Mendelian randomisation (MR) analysis between metabolite levels and risk 
of macular telangiectasia type 2.

Metabolite Univariable MR Multivariable MR

Serine (4 SNPs)

      Odds ratio per SD increase 0.06 (0.03; 0.13) 0.10 (0.05; 0.21)

      p-value 9.45x10-12 2.95x10-9

Glycine (15 SNPs)

      Odds ratio per SD increase 0.17 (0.08; 0.37) 0.50 (0.29; 0.87)

      p-value 9.99x10-6 1.35x10-2

MR estimates are based on the inverse variance-weighted method using random effects to pool estimates. All single nucleotide polymorphisms 
(SNPs) significantly associated with either serine or glycine have been included in multivariable MR analysis. SD = standard deviation
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