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Abstract

Various physics- and data-driven sequence-dependent protein coarse-grained models have been 

developed to study biomolecular phase separation and elucidate the dominant physicochemical 

driving forces. Here, we present Mpipi, a multiscale coarse-grained model that describes almost 

quantitatively the change in protein critical temperatures as a function of amino-acid sequence. 

The model is parameterised from both atomistic simulations and bioinformatics data and accounts 

for the dominant role of π–π and hybrid cation-π/π–π interactions and the much stronger 

attractive contacts established by arginines than lysines. We provide a comprehensive set of 

benchmarks for Mpipi and seven other residue-level coarse-grained models against experimental 

radii of gyration and quantitative in-vitro phase diagrams; Mpipi predictions agree well with 

experiment on both fronts. Moreover, it can account for protein–RNA interactions, correctly 

predicts the multiphase behaviour of a charge-matched poly-arginine/poly-lysine/RNA system, 

and recapitulates experimental LLPS trends for sequence mutations on FUS, DDX4 and LAF-1 

proteins.

Introduction

Under certain conditions, macromolecules within cells demix into membraneless 

organelles. These organelles, often termed biomolecular condensates, are sustained by 

the physicochemical process of liquid-liquid phase separation (LLPS) [1, 2] The ensuing 

condensates play important roles in cellular function as well as dysfunction [3]; therefore, 

delineating the mechanisms of intracellular LLPS is now an active area of research. 
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Intracellular LLPS is principally driven by biomolecular multivalency, i.e. the ability of 

multidomain proteins, intrinsically disordered proteins/regions (IDPs/IDRs), ribonucleic 

acids (RNA) and chromatin to engage multiple interaction partners simultaneously. 

This multivalency is, in turn, predominantly encoded in the chemical makeup of the 

macromolecules in question. It is well-established that both hydrophobic and electrostatic 

interactions are important drivers of biomolecular LLPS, including charge–charge, π–π, 

cation–π, dipole–dipole and non-polar interactions. Additionally, there is strong evidence 

that certain chemical building blocks have a bigger stake in biomolecular LLPS than others 

[4–7]. Biophysical models for studying LLPS must therefore be able to capture the correct 

balance between these myriad driving forces. In this paper, we aim to achieve precisely this.

Together, the stickers-and-spacers framework of Pappu and colleagues [8, 9] and the 

quantitative experimental phase diagrams of Mittag and colleagues position aromatic 

residues as being chief drivers of biomolecular phase separation [4, 10]. Moreover, it is 

evident that even within the subset of aromatic residues, tyrosine, for example, is a stronger 

contributor than phenylalanine to LLPS stability [7, 10–12], perhaps because it has more 

side-chain binding modes than phenylalanine: in addition to forming aromatic π–π contacts, 

tyrosine can form strong hydrogen bonds via its phenol group.

The dominant role of π–π interactions in LLPS was also suggested by Vernon et al. [13], 

who, via a comprehensive survey of the protein data bank (PDB), identified an abundance of 

planar π–π contacts involving not only aromatic but also non-aromatic residues in protein 

structures. Additionally, in recent work, π–π interactions emerged as a major driver of 

LLPS at both low and high salt concentration [7]. Specifically, our atomistic simulations 

revealed that, for proteins, the strongest pairwise interactions arise when the two amino 

acids in question both possess π electrons in their side chains, including both aromatic or 

non-aromatic residues with sp2-hybridised groups [7].

The role of hydrophobic π–π contacts in LLPS is even more obvious when we consider 

differences in the strengths of cation–π interactions. Notably, cationic residues, namely 

arginine and lysine, have been shown to act as unequal contributors to LLPS [6, 7, 14–16]: 

arginine establishes appreciably stronger cation–π and charge–charge interactions due to the 

presence of the guanidinium group [6, 7, 13, 16–18]. Furthermore, Pappu and colleagues 

have recently demonstrated that the free energy of hydration of arginine is considerably 

less favourable than that of lysine; thus, although they both carry the same charge, arginine 

is significantly more hydrophobic than lysine [16]. Since π–based contacts play such a 

dominant role in biomolecular LLPS, achieving the correct balance of these interactions is 

essential for making quantitative predictions.

Complementing experimental and theoretical work, computer simulations have provided a 

unique lens for probing biomolecular LLPS. Because LLPS is a collective phenomenon, 

coarse-graining is essential to reduce the system dimensionality while retaining essential 

physicochemical information and allowing sufficient sampling of phase space in 

computationally tractable time scales. There are numerous possible approaches for 

parameterising biomolecular coarse-grained models [21], from ‘bottom-up’ strategies that 

rely on higher-resolution models [9, 10, 22–24], to ‘knowledge-driven’ approaches that 
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aim to reproduce experimental properties using a data-based parameterisation [25–27], to 

‘top-down’ strategies that account for emergent behaviour by approximating fundamental 

physical forces [28, 29], to combinations of these [30, 31]. Coarsegrained models can 

also be broadly classed as ‘system-specific’, bottom-up parameterisations focussing on 

finding an optimum representation for a particular system using fine-grained simulations 

as a reference, often derived in a systematic way using for instance iterative Boltzmann 

inversion [32, 33] or force matching [34, 35], and ‘transferable’, either bottom-up or top-

down parameterisations, aiming to achieve a generally applicable potential.

Developing a coarse-grained model involves invoking multiple approximations and making 

design decisions (e.g. type of model, resolution, bead characteristics, types of interaction) 

that are more or less appropriate depending on the question being investigated. As 

discussed by Choi et al. [9], there is no unequivocal reason that makes one scheme 

intrinsically superior to others: each approach has its advantages and drawbacks. For 

instance, systematic multiscale coarse-graining from higher-resolution models [23, 36] 

by construction results in an excellent description of the system under investigation and 

allows us to work out precisely what underlying building blocks have been coarse-grained. 

However, system-specific coarse-graining does not generally result in a unique solution 

[37] and requires sufficiently long simulations of the entire system of interest to be 

run with an expensive high-resolution potential. Indeed, bulk phase behaviour can be 

significantly different between a machine-learned potential and the underlying quantum-

mechanical potential-energy surface even for systems much simpler than biomolecules [38], 

illustrating the significant challenge of this approach. Similarly, transferable data-driven 

or machine-learning-based approaches can give excellent agreement with the data they 

were parameterised from, but, since in such high-dimensional problems, many solutions 

are similarly good, careful curation is required to obtain statistically meaningful results 

for a specific system, and even these may still not be transferable to similar molecules 

[39]. On the other hand, a transferable ‘physics-based’ approach to interaction parameters 

provides us with a simple way of rationalising complex behaviour based on relatively simple 

interactions. However, it risks introducing our biases of which interactions are important into 

the predictions of the model, and the predictions and rationalisations of observed behaviours 

with such models can therefore be to some extent self-fulfilling.

Various coarse-graining strategies have now been applied to gain insights into the problem 

of biomolecular LLPS. For example, the mean-field stickers-and-spacers model can be 

parameterised to reach quantitative agreement with experimental phase diagrams of specific 

proteins, providing a tool to dissect the driving forces behind the observations [4, 8–10]. A 

different approach, pioneered by Mittal, Best and colleagues [28], combines residue-level 

coarse-grained models with direct-coexistence simulations [20], offering a transferable 

method to predict protein phase diagrams and augmenting our ability to link molecular 

sequences to their experimental phase behaviour.

Inspired by previous computational work and guided by the accumulated knowledge of 

the LLPS interaction landscape, we set out to design a chemically accurate coarse-grained 

model for predicting biomolecular LLPS. Specifically, the model aims to achieve optimal 

strengths of protein–protein and protein–RNA interactions. We demonstrate that our model 
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can accurately predict biomolecular phase separation while achieving quantitative agreement 

with experiment, recapitulating post-translational modification effects, and even capturing 

more complex features such as sequence-dependent multiphasic compartmentalisation. 

Simulations using our model are particularly simple to set up since all its components are 

already implemented in open-source software.

In what follows, we first describe the design of our multiscale π–π model (termed ‘Mpipi’) 

for probing phase separation of biomolecules. We outline the use of atomistic potential-of-

mean-force (PMF) calculations coupled with bioinformatics data for yielding a chemically 

accurate interaction scale for coarse-grained simulations [Fig. 1]. We then assess the balance 

of key interactions in the Mpipi model alongside other commonly used residue-based 

coarse-grained models. Finally, we present benchmarks for several LLPS systems and 

directly compare our predictions with other models and against quantitative experimental 

phase diagrams and other experiments.

Results

Designing coarse-grained models for biomolecular LLPS

We have designed a residue-level coarse-grained model for predicting biomolecular phase 

behaviour (Fig. 1a–c) that captures the fundamental Van der Waals and electrostatic 

interactions of a ‘top-down’ approach and the interaction strengths obtained from ‘bottom-

up’ atomistic simulations and bioinformatics data. In the Mpipi model, each amino (or 

nucleic) acid is mapped onto a unique bead (Fig. 1b) based on simulation and experimental 

data. Following Dignon et al. [28], the potential energy of molecules is computed as the 

sum of a harmonic bond energy, Debye–Hückel and short-ranged energy terms (Methods), 

which account for π–π, cation–π and other non-ionic interactions. The main differences 

between the Mpipi model and other sequence-based coarse-grained models for LLPS are 

(1) the functional form of short-ranged terms, (2) the parameterisation of short-ranged 

interactions, and (3) the relative contribution of long-ranged electrostatics and short-ranged 

terms to the total energy. Specifically, for short-range interactions, we use the recently 

developed Wang–Frenkel [19] pair potential (Fig. 1b; see Methods), which accounts for 

key physical interactions, namely a short-ranged excluded-volume repulsion and a longer-

ranged attraction which gradually decays to zero. The Wang–Frenkel potential has several 

advantages [19] over Lennard-Jones-like potentials that are commonly adopted in molecular 

simulations. We outline these and how our model is fitted within the Wang–Frenkel 

framework in the Methods section.

When deciding on the energy scale for short-ranged interactions, our main objective is to 

achieve the correct balance of π–π and non-π-based contacts. To this end, we combine 

bioinformatics data and atomistic short-ranged free energy estimates (Fig. 2a–d). In the 

Methods section, we explain our parameterisation of short-ranged pairwise contacts and 

long-ranged charge–charge interactions (Fig. 2e).
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Cation–π, π–π and non-π interactions in residue-level models

To validate our model parameters, we first compare the Mpipi model with seven other 

residue-level coarse-grained models for LLPS, namely the KH (Kim–Hummer) [28], HPS-

KR (hydrophobicity scale) [28], FB-HPS [26] and HPS-Urry [29] models, as well as the 

HPS model with augmented cation–π interactions [schemes (i) and (ii)] [40]. We also 

include analyses for TSCL-M2, the M2 parameter set of Tesei et al. [27] proposed while our 

work was under review. Das et al. [40] recently provided a thorough comparison of the KH, 

HPS-KR, HPS+cation–π(i) and HPS+cation–π(ii) models. Below, we briefly discuss the 

key features of all models and then evaluate them in terms of the balance of π–π, cation–π 
and non-π-based interactions.

A key difference between Mpipi and other residue-level models is the parameterisation of 

short-ranged interactions. In the KH model [28, 41], short-ranged interactions (εij) are based 

on residue contact statistics of folded proteins. The energy scale of the KH model was 

tuned to reproduce approximately the radii of gyration of selected unfolded proteins/IDPs 

[28]; here, we utilise parameter set D [28] for interactions involving disordered proteins. 

The KH model has been successfully used to predict LLPS propensities for variants of 

the N-terminal domain (NTD) of the DEAD-Box Helicase 4 (DDX4) protein [40] and to 

describe qualitatively the phase behaviour of the proteins Fused in Sarcoma (FUS) and 

Lethal-And-Feminizing-1 (LAF-1) [28].

The next model, HPS-KR [28] is perhaps the most widely used sequence-based continuum 

model for studying biomolecular LLPS. In this model, short-ranged interactions are based 

on the hydrophobicity scale of Kapcha and Rossky [42], and each amino acid is assigned 

a λi value which accounts for its ‘hydrophobicity’, and residue–residue contacts (λij) are 

determined by the arithmetic mean of the λi values of each residue [43]. Additionally, 

the absolute energy scale of the model was optimised to reproduce experimental radii of 

gyration (Rg) of an IDP subset. However, as previously noted [40], the HPS-KR model 

is inconsistent with experimental data when accounting for the balance between Arg and 

Lys interactions. An improved version of the HPS model, HPS-Urry [29], was recently 

parameterised, which employs instead the hydrophobicity scale of Urry et al. [44] to 

determine λij. Moreover, two free parameters (μ and Δ) are introduced to scale and shift the 

λij values; these are optimised to reproduce experimental Rg [29]. Recently, Dannenhoffer-

Lafage and Best [26] also reparameterised the short-ranged interactions in the HPS-KR 

model by employing machine-learning techniques. Their model, FB-HPS, was optimised 

against experimental Rg of unfolded, phase-separating and intrinsically disordered proteins.

Prior to these studies, Das et al. [40] augmented the HPS-KR model so as better to 

account for cation–π interactions. They presented two schemes: scheme (i), where Arg/

Lys–π interactions are scaled uniformly, and scheme (ii), where they vary. Notably, the 

authors comment that despite these changes, the augmented models fail to capture fully the 

experimental LLPS propensities of their test set of proteins [40]. In another study, it was 

demonstrated that the HPS+cation–π(i) model can reasonably reproduce experimental trends 

of selected RNA binding proteins [45]. Here, we have considered these augmented models 

to achieve a more complete view of how cation–π interactions contribute to biomolecular 

LLPS.
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Recently, Tesei and coworkers [27] used experimental data to reparameterise the 

hydrophobicity scale of HPS-KR via a Bayesian parameter-learning procedure. The M2 

parameter set predicted well both single-molecule and collective behaviours of the tested 

IDPs; we have therefore included benchmarks for this parameter set in our work.

Fig. 3 summarises the relative contributions of selected π–π and non-π-based interactions 

for the residue-level coarse-grained models assessed in this work (see SI Fig. S5 and SI 

Fig. S6 for the HPS+cation–π(i) and TSCL-M2 models). The relative interaction strengths 

are obtained by computing the integral of the curves of the short-ranged potential (with 

consistent limits of σ–3σ). In the Mpipi, KH, FB-HPS and TSCL-M2 models, aromatic 

residue pairs (magenta bars in Fig. 3a,b,e and SI Fig. S6a) are generally considerably 

stronger than residue pairs not involving π contacts (dark yellow bars in Fig. 3a,b,e and 

SI Fig. S6a). Hence, consistently with the stickers-and-spacers framework, YY and FF are 

expected to act as stickers, while AA, SS and PP should behave as spacers in these models. 

Interestingly, in the FB-HPS model, glycine (see Figure 4 of Dannenhoffer-Lafage and Best 

[26]), which is normally classified as a spacer, has an interaction strength that is stronger 

than even the aromatic residues. While this result is attributed to glycine forming strong 

backbone π–π contacts [26], mutational studies have consistently found that replacing 

sticker-like residues with Gly significantly suppresses biomolecular LLPS [10, 11]. The 

stronger contacts for Gly arising from the machine-learning algorithm optimisation [26] may 

be a result of how commonly occurring glycine is in many proteins, particularly those for 

which experimental radii of gyration are available.

With regards to Tyr versus Phe, a survey of the PDB [13], our atomistic PMF calculations 

(Fig. 2d) and experiments [10–12] all suggest that Phe–Phe contacts are weaker than 

Tyr–Tyr ones. By contrast, the KH, HPS-KR, FB-HPS, HPS+cation–π(i) and HPS+cation–

π(ii) models all predict stronger Phe–Phe contacts than Tyr–Tyr interactions (Fig. 3). The 

trend for the KH model is particularly striking, with the weighted interaction energy of 

FF predicted to be about twice that of YY (Fig. 3b). Taken together, we do not expect 

these models to reproduce LLPS propensities faithfully as far as Tyr vs Phe mutations are 

concerned.

We also examine the relative strengths of cation–π interactions in the coarse-grained 

models, again focussing on the contributions of cation–π contacts versus aromatic π–π 
contacts and Arg–π contacts compared to Lys–π ones. The HPS+cation–π(ii) (Fig. 3d) 

and the TSCL-M2 (SI Fig. S6a) models are most similar to the Mpipi model in terms of 

the relative contributions of Arg–π and Lys–π contacts. While in the KH model, Arg–π 
interactions are also stronger than Lys–π ones, the overall strength of these is low, which 

makes Arg–π interactions closer in strength to spacer-type interactions (Fig. 3b); thus, the 

dominant role of these interactions may not be properly accounted for in the KH model. 

The HPS-Urry model also captures the overall trend for Arg –vs Lys–π contacts (Fig. 3f); 

in addition, the weights of these interactions are more similar than those encoded in Mpipi, 

HPS+cation–π(ii) and TSCL-M2. The opposite trend is found in both the HPS-KR and 

the FB-HPS models, where Lys–π interactions are now stronger than Arg–π interactions. 

Moreover, in the HPS-KR model, non–π-based interactions are comparable to (or even 

stronger than) cation–π interactions (Fig. 3c). We therefore speculate that the HPS-KR 
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model might represent an upper bound in terms of predicting LLPS propensities of proteins. 

Strikingly, in the HPS+cation–π(i) model, cation–π interactions convincingly dominate all 

other types of interaction (SI Fig. S5). LLPS systems driven by cation–π interactions are 

thus likely to be over-stabilised with this model [40].

Estimating single-molecule radii of gyration

Certain single-molecule properties of proteins, such as Rg in the context of coil-to-globule 

transitions, are often governed by similar driving forces as bulk LLPS [46–48], and coiling 

transitions are sometimes used as a proxy for the upper critical solution temperature (Tc) 

[24]. Importantly, the strong correlation between single-molecule dimensions and Tc has 

been used as a target for optimising coarse-grained LLPS models. It is often assumed that 

models that correctly reproduce experimental Rg of single proteins (at infinite dilution) 

should accurately predict homotypic LLPS propensities.

Accordingly, we tested the ability of Mpipi to recapitulate experimental Rg of IDPs (Fig. 

4a; see also SI Sec. S2.1 and SI Table III). The set of IDPs has a good distribution of net 

charge: from –44e for ProTα to +16e for Ashl, where e is the elementary charge. These 

proteins therefore provide an indirect measure of how well electrostatic and short-ranged 

pairwise interactions are balanced in the coarse-grained models. Most of the proteins in our 

test set largely comprise neutral residues that lack π electrons in their side-chains. Proteins 

amenable to single-molecule experiments are likely to have a high content of these neutral 

residues that lack π electrons, since these residues form weaker contacts and so the resulting 

proteins are less prone to aggregation and self-assembly. Notwithstanding the dominance of 

this class, the test set of proteins does exhibit appreciable variation in protein composition.

Fig. 4b–g compares simulated Rg with experiment Rg for each coarse-grained model we 

have considered. Each protein is coloured according to its dominant residue class, using 

the same colouring code as Fig. 4a but ignoring the neutral class. The Mpipi, FB-HPS 

(Fig. 4f), HPS-Urry (Fig. 4g) and TSCL-M2 (SI Fig. S6b) models achieve the closest 

match with experiment. This result is not unexpected for the last three models, since they 

were all optimised to reproduce experimental Rg values, and several proteins in the current 

study were used either to train or to validate the respective model parameters. Importantly, 

compared to HPS-KR, HPS-Urry and TSCL-M2 both perform better at predicting single-

molecule radii of gyration. Thus, in this regard, these models fulfil their goal of offering an 

improvement over their common predecessor.

Notably, Mpipi (Fig. 4b), whose parameters were not optimised on Rg data but rather 

on physicochemical information, is able to predict the Rg values to within a root mean 

squared deviation of 0.3 nm for the tested IDPs. Fits to the bioinformatics data and atomistic 

PMFs therefore appear to be physically sound, at least with respect to capturing sequence-

dependent single-molecule chain dimensions.

While the HPS+cation–π(ii) (Fig. 4e), HPS-KR (Fig. 4d) and HPS+cation–π(i) (SI Fig. 

S5) models yield reasonable agreement with experiment, all generally predict more compact 

proteins than experiments. Interestingly, the KH model (Fig. 4c) gives the poorest agreement 

with experiment, perhaps because short-ranged pairwise interactions in the KH model were 
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obtained from residue-residue contacts in folded proteins and may thus overestimate the 

relative strengths of such interactions.

Recapitulating the phase behaviour of A1-LCD variants

To ascertain the extent to which the Mpipi potential is able to capture the bulk properties of 

protein solutions, we compute the critical solution temperatures for a series of variants of 

the LCD of the heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1), referred to here as 

A1-LCD, whose experimental phase diagrams were recently determined [10].

We estimate the experimental critical temperatures [Fig. 5a] of a range of A1-LCD variants, 

using the fitting procedure described in SI Sec. S2.2. The variants’ sequences are given in 

SI Sec. S2.2, following the nomenclature of Bremer and co-workers [10]. For each model, 

we show the computed phase diagrams in Fig. 5b–g, and the correlation between simulation 

and experimental values in Fig. 5h–m. The corresponding data for the HPS+cation-π(i) and 

TSCL-M2 models are provided in SI Fig. S5d,e and SI Fig. S6d,e, respectively.

Although the fitted linear regression has a positive gradient for the eight models considered, 

indicating that, broadly speaking, all the models capture some of the underlying physics, 

the Pearson correlation coefficient varies significantly across the models. Mpipi achieves 

a Pearson correlation coefficient (r) of 0.97 (Fig. 5h), indicating that the parameterisation 

works well not only for single-molecule properties (Fig. 4), but also accounts for bulk 

behaviour. The HPS-Urry (Fig. 5m; r = 0.91), TSCL-M2 (SI Fig. S6e; r = 0.80) and 

HPS+cation–π(ii) (Fig. 5k; r = 0.79) models also achieve high correlation with experiment. 

By contrast, the FB-HPS model, which was parameterised principally on Rg data, performs 

quite well when predicting the radius of gyration, but the improvement of its predictions of 

the phase behaviour of the A1-LCD variants relative to the underlying HPS-KR potential 

((Fig. 5j; r = 0.35) is only marginal ((Fig. 5l; r = 0.37). Although Rg properties do correlate 

with phase behaviour in experiment, there are evidently several parameterisations of coarse-

grained models which are able to capture one property but not the other.

Coarse-graining necessarily entails integrating out some degrees of freedom and so 

interaction ‘energies’ are therefore approximate free energies. It is thus not likely that such 

models could capture faithfully the behaviour of protein systems far from the temperature 

range in which they were parameterised. Nevertheless, given that all the models were 

parameterised to reproduce protein behaviour close to room temperature, we may also 

consider the agreement between the experimental and simulation temperature scales. To this 

end, we can compare the deviation of the experimental and simulation critical temperatures. 

For the A1-LCD wild type, this can be visualised by comparing the solid horizontal black 

lines in Fig. 5b–g, representing the experimental critical solution temperature of the A1-

LCD wild type, to the maximum temperature of the binodals in black, the simulation results 

for the same system. In addition, a quantification of the deviation between the experimental 

and simulation results is given by the difference in slope between the black linear fits shown 

in Fig. 5h–m and the y = x lines shown in red, as well as by the root mean squared deviation 

between the experimental and simulation critical temperatures (D).
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These comparisons demonstrate that, at least within the range of experimental data 

available, Mpipi (D=9 K), HPS+cation-π(ii) (D=18 K) and TSCL-M2 (D=19 K) give good 

quantitative predictions for A1-LCD (i.e. high Pearson coefficients and small D values). 

Lastly, although HPS-Urry achieves good agreement with experiment when considering 

the Pearson coefficients, its range of predicted critical temperatures is smaller than in 

experiment, which results in a relatively large root mean squared deviation.

LLPS of other proteins and multiphasic compartmentalisation

To probe the model’s transferability, we test its performance for other well-studied IDRs of 

RNA-binding proteins. Specifically, we compute phase diagrams for the prion-like domain 

(PLD) of FUS protein, three variants of the arginine/glycinerich (RGG) domain of LAF-1 

(Fig. 6a), and four variants of the DDX4 NTD (Fig. 6b). We also compute phase diagrams 

for five variants of the full-length FUS protein (SI Sec. S2; Fig. 6c). For all these systems, 

Mpipi achieves good qualitative agreement with experiment and in some cases achieves 

quantitative accuracy as well. We provide a full account of these results in SI Sec. S7.

Finally, beyond predicting critical temperatures, achieving the correct balance of interactions 

is essential to recapitulate more complex condensate behaviours. Inside cells, condensates 

are multicomponent systems and can have complex molecular architectures that are 

meaningful to their functions (e.g. the nucleolus), and the variance in the chemical 

makeup of biological phase-separating systems can give rise to multilayered architectures 

[49]. For example, Fisher and Elbaum-Garfinkle [6] recently demonstrated that charge-

matched mixtures of polyarginine (polyR), poly-lysine (polyK) and polynucleotides formed 

multiphasic droplets in which arginine is positioned towards the centre of the condensates 

and lysine is concentrated at the interface.

To investigate this behaviour in simulations, we extend Mpipi to include parameters for 

RNA (Methods and SI Fig. S4) and study the phase-separation behaviour of a mixture of 

polyK, polyR and polyU RNA. Consistent with experiments, our simulations recapitulate 

multiphase droplet architectures (Fig. 6d). Interestingly, we find that the density of the 

Argrich region at the droplet core is significantly higher than the Lys-rich phase density 

towards the interface; these results also agree well with experiment [6]. For comparison, we 

also simulate this mixture using the extended HPS-KR model which includes parameters for 

RNA [50]; however, using this model, multiphase droplets are not stabilised (SI Fig. S8a). 

This result is not especially surprising since, as noted above, the balance between Arg and 

Lys interactions in HPS-KR is incorrect [29, 40].

More broadly, we speculate that it is generally difficult to account for multiphasic behaviour 

if the standard arithmetic mixing rules for interaction strengths are utilised. Collectively, our 

work suggests that it is not sufficient to obtain the correct trends for short-ranged pairwise 

terms: one must also achieve the right balance of these interaction parameters to yield 

quantitative accuracy.
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Discussion

While the balance of interactions in our current model is in agreement with several 

experimental and computational studies, there is conflicting evidence on the exact ordering 

of certain key interactions. For example, Bremer and colleagues [10] report weaker Arg–π 
contacts than the corresponding π–π ones, while our work and the work of Wang et al. 

[11] appear to favour the view that Arg–aromatic interactions are stronger than analogous 

aromatic–aromatic ones. Furthermore, the data suggest that, in some cases, the precise 

ordering of these interactions within coarse-grained models is fundamental to recapitulate 

the observed behaviours, while in other cases an approximate ordering could suffice. For 

example, in FUS protein we find that the LLPS propensities of the full-length protein 

versus its PLD domain are highly sensitive to the relative ordering of these interactions [7], 

whilst our current benchmarks reveal that for the A1-LCD variants, all models that favour 

Arg–π and π–π contacts over the non-π-based contacts achieve a high Pearson correlation, 

regardless of the precise ordering of Arg–π and π–π contacts. Hence, we postulate that 

the ordering of these and other interaction strengths is likely to be context specific, and a 

system-specific coarse-graining strategy may be necessary to achieve good agreement with 

experiment in some cases. Consequently, one set of measurements, be it experiments or 

simulations, will be unlikely to yield the complete picture.

A key assumption in our work is that differences in LLPS propensities of biomolecules can 

be captured via pairwise amino-acid interactions. This approximation allows us to construct 

a transferable coarse-grained model that can capture several qualitative and quantitative 

trends for phase-separating systems, especially for those characterised in vitro. However, 

in crowded intracellular environments, three- and higher-body energy terms may become 

important; accordingly, co-operative interactions can reshape the phase boundaries of LLPS 

systems [5, 51]. It is therefore important to consider carefully the contribution of such 

co-operative interactions in intracellular LLPS systems.

As we discussed above, interaction energies in coarse-grained potentials are in fact effective 

free energies, and they should in principle depend on temperature. In particular, since 

we have not considered explicit protein–solvent interactions, the solubility of all proteins 

studied increases with increasing temperature, even when other effects, such as hydrogen 

bonding, could result in significantly different phase behaviour as the temperature is 

lowered. This can even result in complete mixing at low temperatures, leading to a lower 

critical solution temperature or re-entrant phase behaviour, especially in multi-component 

systems [52–54].

Capturing such effects within computational models can further extend our ability to 

elucidate the driving forces for intracellular LLPS and to probe the ensuing material 

properties. The current parameterisation of the Mpipi potential is not able to account 

for such phase behaviour; as an extension of the current work, an approach similar 

to that of Dignon and co-workers [55] for the HPS-KR model, involving an explicit 

temperature dependence of the interaction strengths, could be undertaken to enable 

successful simulations of a broader range of proteins to be performed.
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This work highlights the promise that multiscale coarsegrained models can prove robust 

in delineating the link between chemical changes in biomolecules and their emergent 

collective behaviour. In particular, the ability of Mpipi to predict quantitatively both single-

molecule radii of gyration (which are computationally inexpensive to determine) and the 

collective behaviour of proteins and RNA in solution (which is computationally more 

expensive) makes it a prime candidate for efficiently assisting the design of experiments 

and for gaining physical insight into LLPS at the microscopic scale. Our approach 

therefore augments the set of rigorous tools that are narrowing down the gap towards 

achieving a predictive quantitative description of the influence of amino-acid sequence in 

biological phase behaviour. Alongside experimental advances, theoretical work, and other 

computational approaches, the Mpipi model has the potential to help discover the molecular 

mechanisms underpinning phase separation and to provide biophysical understanding of 

how biomolecular condensates are formed, sustained and regulated.

Methods

Atomistic PMF calculations

To quantify the relative contributions of different types of interactions at physiological salt, 

we perform atomistic potential-of-mean-force (PMF) computations for a subset of residue 

pairs, namely WW, YY, FF, RY, RF, KY, KF, AA, SS, PP, RE, RD, KE, KD. All residue 

pairs from our previous work [7] were recomputed at 150 mM salt concentration, and we 

have included additional pairs. We also perform PMF calculations for four RNA dimer pairs 

(SI Sec. S4).

Preparation of structures—Amino acids and nucleic acids are modelled using the 

AMBER ff03ws force field [56]. This force field is well-suited for probing protein-protein 

interactions. For modelling the solvent (water) and ions, we use the JC-SPC/E-ion/TIP4P/

2005 force field [57], as in our previous work [7]. The N- and C-terminal ends of each 

amino acid are capped with acetyl and N-methyl capping groups, respectively. Pairs of 

amino acids are orientated with their side-chains facing each other, based on the most 

common arrangements observed in protein structures. In cases where the interaction 

preference is uncertain, multiple arrangements are tested to determine the strongest 

interaction mode.

Each dimer is then immersed in a cubic box containing TIP4P/2005 water molecules (ca. 

960–11,020 molecules) with a minimum distance of 1 nm between the dimer and the edge 

of the box. Na+ and Cl– ions are added to achieve a salt concentration of ~ 150 mM, as 

well as to produce charge-neutral systems. The resulting systems are then minimised (force 

tolerance = 500 J mol–1 pm–1), with positional restraints of 200 J mol–1 pm–2 applied in 

each dimension to all heavy atoms.

Umbrella sampling—The interaction between each dimer is probed with umbrella 

sampling. For production runs, positional restraints of 1 J mol–1 pm–2 in directions 

perpendicular to the pulling direction are used to constrain heavy atoms. The centre-of-mass 

(COM) distance between interacting pairs is restrained with a harmonic umbrella potential 

(pulling force constant 6 J mol–1 pm–2). All bonds with hydrogens are constrained using the 
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LINCS algorithm, permitting an integration time step of 2 fs. Periodic boundary conditions 

were used during molecular dynamics (MD) simulations. Electrostatics are computed using 

particle-mesh Ewald summations with a Coulomb cutoff of 0.9 nm. For each umbrella 

sampling run, approximately 40 windows, spaced at 50 pm from 0.1 nm to 2nm, are 

used per pair. Each window is simulated for 10 ns. Three independent simulations are 

conducted for each umbrella sampling window (i.e. an aggregate simulation time of 30 ns 

per window). Umbrella sampling data is analysed using the weighted histogram analysis 

method (WHAM)The first 1 ns of simulations is used for equilibration and is not included in 

the WHAM analysis. Error analysis is performed using the Bayesian bootstrap method. All 

atomistic simulations and analyses are carried out using the GROMACS simulation package.

Although we focus on COM distances for fixed molecular orientations in PMF calculations, 

we ultimately map these to Cα–Cα distances of the coarse-grained potential. The effective 

free energy as expressed with different order parameters may not be the same and depends 

on the jacobian determinant of the transformation. However, our choice of order parameter 

cannot affect observable properties of the system, and the two distances are related by a 

simple linear relationship for a fixed molecular orientation. Provided we use the PMFs in a 

self-consistent manner, the resulting ratios of interaction strengths should not depend on this 

choice of order parameter.

Cation–π charge refitting—Cation–π interactions involve significant polarisation of π 
electron clouds of aromatic side-chains in the proximity of cationic side-chains (i.e. arginine 

and lysine), especially at physiological salt conditions. There have been many efforts to 

capture correctly cation–π interactions in atomistic force fields, both with fixed-charge and 

polarisable force fields (see discussion by Liu and co-workers [58]). Recently, Paloni et 
al. demonstrated that the fixed-charge AMBER 99SB-disp force field was able to account 

for Arg/Lys–π interactions for the DDX4 NTD [59]. In another study, Liu and colleagues 

used quantum-mechanical calculations to reparameterise the Lennard-Jones parameters in 

the CHARMM36 force field to model cation–π pairs [58]. Their modified parameters led 

to improved descriptions of the selected folded proteins [58], achieving a closer match to 

experimental crystal structures.

In this work, to model cation–π interactions atomistically, we follow our previous approach 

[7] and first refit the charges on tyrosine and phenylalanine side chains. Specifically, the 

dimers (Arg/Lys–Phe/Tyr) are first optimised using constrained geometry optimisations at 

MP2/6-31G(d) level of theory, where the backbone and capping group heavy atoms are 

frozen. The electrostatic surface potential (ESP) is then computed for respective optimised 

pairs at HF/6-31G(d) level. These calculations are carried out using the Gaussian 09 code. 

Finally, the restrained electrostatic potential method in AMBER is used to refit the side-

chain charges of Tyr and Phe to the ESPs from the quantum-mechanical calculations; charge 

symmetry of the rings is maintained during the refitting procedure. The refitted charges 

are then used when probing the pairwise interaction strengths via umbrella sampling, as 

described above.
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Mpipi model

In the Mpipi model, each amino acid or nucleic acid is represented by a single bead, with 

corresponding mass, molecular diameter (σ), charge (q), and an energy scale reflecting the 

relative planar π–π contact frequency (ε). We broadly follow the approach of Dignon et al. 

[28] to compute the potential energy of a given protein or RNA molecule as

EMpipi = Ebond + Eelec + Epair . (1)

The bond energy is computed by using a harmonic bond potential,

Ebond = ∑
bonds i

1
2k ri − ri, ref

2
, (2)

where the spring constant k is set to 8.03 J mol–1 pm–2 and ri is the bond length: reference 

bond lengths, ri, ref, of 381 pm and 500 pm are used when bond i connects two protein 

and two RNA beads, respectively. The electrostatic contribution to the potential energy is 

computed using a Coulomb term with Debye–Hückel electrostatic screening,

Eelec = ∑
i, j

qiqj
4πεrε0rij

exp −κrij , (3)

where εr = 80 is the relative dielectric constant of water, ε0 is the electric constant and K–1 

= 795 pm is the Debye screening length, corresponding to a monovalent salt concentration 

of 0.15 M to be consistent with the PMF calculations. We use a Coulomb cutoff of 3.5 nm. 

The dielectric constant and the Debye length control the range of ionic interactions and 

determine the relative importance of charges relative to all other interactions. A more careful 

treatment of electrostatics, perhaps in the spirit of Wessen and co-workers [60], would be an 

important next step to consider in the development of more accurate potentials.

Finally, the non-bonded interactions between protein/RNA beads are modelled via the 

Wang–Frenkel (WF) potential [19]. The WF potential between two beads of types i and 

j a distance r apart is given by

ϕij r = εijαij
σij
r

2μij
− 1 Rij

r
2μij

− 1
2vij

, (4)

where

αij = 2vij
Rij
σij

2μij 2vij + 1

2vij
Rij
σij

2μij
− 1

2vij + 1

, (5)
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and σij, εij and μij are parameters specified for each pair of interacting beads. We use vij = 1 

and Rij = 3σij. The total pairwise energy Epair is then taken as the sum over all pairs of beads 

evaluated within their respective interaction ranges (i.e. Rij, at which ϕij vanishes).

Most importantly, the Wang–Frenkel potential is finite-ranged, vanishing quadratically to 

zero at the user-specified cutoff distance, and so obviates the need for truncating and 

shifting the potential. This key feature makes the Wang–Frenkel potential better suited for 

numerical calculations and removes any ambiguities or inconsistencies that may arise from 

one implementation to the next. For example, Lennard-Jones-based potentials can exhibit 

significant undesirable finite-size effects as a function of the cutoff distance and subsequent 

tail corrections [61]. The computational performance of the Wang–Frenkel potential is 

comparable to the Lennard-Jones potential for the same cutoff; although we have not done 

this here, if one wished to simulate particularly large systems, the Wang–Frenkel potential’s 

more flexible functional form affords an opportunity for optimising the distance at which the 

potential vanishes, which could enable a significant computational boost without degrading 

performance. Moreover, although from its scaling properties, the Lennard-Jones potential 

appears at first glance to account for London dispersion interactions, in reality this is not 

the case in solution, where the potential accounts for many interactions in a coarse-grained 

way; a further advantage of the Wang–Frenkel potential is that it removes this misleading 

appearance of physicality.

To obtain the parameters that appear in the WF parameterisation, we first determine relative 

planar π–π contact frequencies of the amino acids from the work of Vernon etal. [13], 

determine Ashbaugh–Hatch-styleLennard-Jones interactions following Dignon et al. [28], 

and from these obtain the initial WF parameters. The steepness of the repulsive region of 

the potential and the width of the attractions can easily be modulated in this framework 

by allowing the μ parameter to take values larger than unity. We next adjust the values of 

εij by a suitable multiplicative factor so that the integrals of the well depths of the PMF 

curves of residue pairs i and j approximate their WF analogues, including any screened 

charge–charge interaction (SI Fig. S3) if relevant to ensure that the overall interaction energy 

is correctly taken into account [62]. We provide a full parameter listing in SI Table XI, 

and a LAMMPS implementation in the supporting data. Although it has been suggested [26, 

43] that simple arithmetic combination rules are often sufficient, unlike in previous models, 

the pairwise interactions for those residue pairs which dominate the phase behaviour are 

explicitly specified, giving the model greater flexibility. There is no a priori reason to 

assume that coarse-grained interactions between unlike species will be well described by an 

arithmetic mean of homotypic interactions, and, in particular, we find that the heterotypic 

interactions of arginine and lysine can be significantly different from the mixing-rule 

prediction. Parameters for the nucleic acids are determined directly by fitting the respective 

PMF well depths and widths to the WF framework (see below). Both disordered proteins/

regions and RNA are modelled as fully flexible polymers.

Validation simulations use various previously reported models. Mostly, these are based 

on the functional form introduced in the work of Dignon et al. [28]. The bonded and 

electrostatic contributions to the potential are given by the same functional form in each 

case, although with slightly different constants (SI Table X).
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Background on the parameterisation of Mpipi

To parameterise the non-bonded short-ranged terms described via the Wang–Frenkel 

potential, we first determine the relative π–π contact frequencies for amino acids from 

the work of Vernon et al. [13] (SI Table I), who predict the planar π–π contact frequencies 

from a survey of approximately 6000 high-resolution structures in the PDB. We utilise these 

contact frequencies as an initial energy scale for short-ranged interactions in our model.

We then refine this initial energy scale using atomistic PMF calculations, focussing 

on aromatic π–π (Fig. 2a), cation–π (Fig. 2b) and a subset of non-π-based (Fig. 2c) 

interactions. Pappu, Mittag and colleagues position aromatic ‘stickers’ as the chief drivers of 

biomolecular LLPS [4, 8–10]; our recent findings are also consistent with the stickers-and-

spacers model, where we predict that aromatic π–π interactions constitute dominant forces 

in LLPS even at extremely high salt concentrations [7].

In this work, we compute the PMF between YY, FF (Fig. 2a) and WW (SI Fig. S2) 

at physiological salt concentration (see Methods) and find that, in agreement with the 

bioinformatics data [13] and experiments [10–12], the relative strength of aromatic π–π 
interactions increases in the order FF<YY<WW (magenta bars in Fig. 2d and SI Fig. S2). 

Importantly, we find that aromatic π–π interactions are at least twice as strong as non-π-

based interactions (dark yellow bars in Fig. 2d). The latter interactions include non-polar, 

polar and special residues (e.g. Pro) and are commonly categorised as spacers [4, 8, 11]. 

Interestingly, Bremer et al. predict that the disparity in spacer–spacer and sticker–sticker 

residue interaction strengths can be as high as 1:8 [10]. Our fitted spacer-type interactions 

represent a compromise between the predictions of Bremer and co-workers [10] and those 

suggested by our PMF calculations [Fig. 2e].

We next concentrate on interactions between basic residues (Arg and Lys in particular) and 

aromatics. These ‘cation–π’ interactions also make significant contributions to LLPS of 

biomolecules. In an early bioinformatics survey, Gallivan and Dougherty [63] revealed that 

Trp was most likely to form cation–π interactions, followed by Tyr and then Phe. Song et 

al. [64] subsequently used experiments and simulations to demonstrate significantly higher 

binding strengths for RW interactions compared to RY/F ones, with RY slightly stronger 

than RF.

Furthermore, recent work by Wang et al. [11] suggests that Arg–Tyr interactions may be 

stronger drivers of LLPS than Tyr–Tyr contacts; our PMF calculations agree that Arg–Tyr 

interactions are stronger than Tyr–Tyr. However, whether cation–π interactions are indeed 

stronger contributors to protein LLPS than π – –π interactions remains contested: the work 

of Bremer et al. [10] and single-residue solubility measurements [65] suggest instead that 

Tyr–Tyr interactions are stronger than Arg–Tyr contacts. A potential source of error in the 

relative ordering of interactions in our work might come from the approximate nature of 

atomistic PMFs simulations and the use of a pairwise energy to describe an interaction that 

is likely affected by co-operative effects. Reassuringly, despite the differences, in all cases, 

both cation–π and π–π interactions are significant.
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A further important consideration is the balance of Arg–π and Lys–π interactions. The 

differences between Arg–π and Lys–π contacts were highlighted by Gallivan and Dougherty 

[63], who reported a higher percentage of Arg–π contacts in protein structures. We recently 

proposed that Arg–π interactions are best described as hybrid cation-π/π–π, whereas Lys–π 
contacts represent ‘purer’ cation–π interactions [7]. This distinction arises largely from the 

presence of π electrons in the Arg side-chain [6, 7, 13, 16–18], which enable Arg residues 

to interact much more strongly with n-binding partners than Lys can [6, 7, 15, 16]. The 

dominance of Arg over Lys in these interactions is also consistent with the less favourable 

hydration free energy recently reported for Arg versus Lys [16]. An earlier study by Kumar 

et al. revealed that, whereas Lys–π interactions are more favourable in the gas phase, in 

solution Arg establishes stronger interactions with aromatic rings than Lys, the latter being 

dominated by electrostatics and therefore weakened by the surrounding dielectric medium 

[66]. Collectively, our PMF calculations and previous studies all suggest a preference 

for Arg–π interactions over Lys–π contacts in biomolecular systems. Accordingly, we 

reparameterise cation–π interactions so that the relative weights in our model more closely 

match those suggested by the atomistic simulations (Fig. 2d). A summary of the relative 

interaction strengths between amino-acid pairs is provided in Fig. 2e. These interaction 

strengths correspond to the average interaction energy in the high-temperature limit relative 

to a fixed (albeit arbitrary) energy of zero obtained by numerically integrating Eq. (8). The 

integration over the energy well in this high-temperature limit enables the relative interaction 

strength to account, at least approximately, for both enthalpic and entropic contributions.

Direct-coexistence simulations

Proteins/RNA are represented via the Mpipi model (or other residue-level coarse-grained 

model) and direct-coexistence [20] simulations are used to compute their phase diagrams. 

In such simulations, the high- and low-density fluid phases are simulated in the same 

simulation box delimited by an interface.

The target number of copies of the protein are placed in an elongated box, which is initially 

simulated at high temperature and then cooled down to the desired temperature. Canonical-

ensemble simulations are then run at temperatures below the estimated critical temperatures 

for each system. A relaxation time of 5 ps is typically used for the Langevin thermostat and 

an integration time step of 10 fs is used for all coarse-grained simulations. Calculations are 

carried out using LAMMPS. We discuss the effect of finite-size effects [9, 67, 68] below.

Estimation of critical points on phase diagrams—Critical temperatures are 

estimated using the law of coexistence densities,

ρhigh T − ρlow T 3.06 = d 1 − T /Tc , (6)

and critical densities are computed by assuming that the law of rectilinear diameters holds,

ρhigh T + ρlow T = 2ρc + 2A T − Tc , (7)
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where ρhigh(T), ρlow(T) and ρc are the densities of the high-density and low-density phases 

and the critical density, respectively; Tc is the critical temperature and d and A are fitting 

parameters.

Data analysis

When comparing relative interaction strengths, we compute the average energy in the high-

temperature limit, i.e. assuming that the well depth is much smaller than kBT for each 

individual interaction. For each pair of amino-acid residues, we compute

εavg = ∫
σ

3σ
ϕ r dr + ∫

σ

3.5nm
Eelec r dr, (8)

where ϕ(r) is the Wang–Frenkel potential [Eq. (4)] and Eelec (r) is the Coulomb energy [Eq. 

(3)], if relevant. We then normalise the result by the interaction strength of the RY (Arg–Tyr) 

pair. We compute the integral in Eq. (8) in one-dimensional space, i.e. not including the 4πr2 

volume element, since we wish to compare these strengths to PMF calculations, where a 

constrained approach was used. However, including a spherical-polar volume element does 

not significantly affect the appearance of Fig. 2e.

To assess the agreement between simulation results and experiment for a given observable 

X (where X is either the critical temperature or the radius of gyration), we compute both a 

Pearson correlation coefficient (r), which is a measure of deviation from a linear fit to the 

data and is a good measure of the quality of the ordering of the predictions, and a root mean 

squared deviation D, whose square we define as

D2 = 1
n ∑

i = 1

n
Xi experiment − Xi simulation

2
, (9)

where n is the number of data points. D is a measure of the absolute deviation from 

experimental results.

Radii of gyration computation

We compute single-molecule radii of gyration (Rg) for the protein sequences presented in SI 

Sec. S2.1. Each protein was simulated in a large cubic box (ca. 60 nm × 60 nm × 60 nm). 

Canonical-ensemble simulations were then performed at 300 K for 5 μs, with a time step of 

10 fs. A Langevin thermostat was used, with a relaxation time of 50 ps. Rg measurements 

were made every 100,000 time steps (i.e. 1 ns). The first 1000 fs part of simulation was not 

used in the estimation of Rg values. Simulations were run using LAMMPS.

Estimation of the coil–globule transition temperature

We have estimated the coil–globule transition temperature Tθ with ABSINTH [69], 

a continuum solvation all-atom model of proteins. To determine this temperature, we 

simulated a single protein in a spherical cell with explicit ions, and determined the 

temperature at which there is a sudden change in the radius of gyration as a function of 

temperature [24].
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Finite-size scaling

Finite-size effects can play a significant role in direct-coexistence simulations [67]. To 

ascertain that phase-diagram calculations with direct-coexistence simulations yield robust 

results, we first confirmed that reducing the system size by approximately 30 % yields the 

same phase diagrams, within error bars, for the hnRNPA1 variants and FUS-LCD as the 

results reported above. Since there is no difference in the predicted critical temperatures, 

we hypothesised that finite-size effects are not dominant in our simulations. To test this 

hypothesis more carefully, we investigated the finite-size scaling behaviour of the FUS-LCD 

system systematically. In SI Fig. S7, we show two sets of results for this system. We first 

tested the effect of the size of the cross-sectional area of the interface, starting from a 

particularly small area of 4 nm × 4 nm, i.e. with box dimensions only just larger than 

the largest cutoff distance in the interparticle potential of 3.5 nm. SI Fig. S7a shows a 

considerable spread in individual values, but with the possible exception of the smallest 

system size, there is no significant difference in the mean density computed across the entire 

high-density portion of the density profile, which is needed for the phase diagram. In other 

words, a cross-sectional area of approximately 10 nm × 10 nm used in the majority of 

phase-diagram calculations appears to be more than sufficient to avoid significant finite-size 

effects.

Next, we tested the finite-size scaling of the bulk of the system, by keeping a constant 

cross-sectional area and increasing the length of the long box dimension at a constant 

density, i.e. by increasing the number of chains in the system. We show these results in 

SI Fig. S7b. For the very smallest system size considered here, with a z-axis dimension 

of 11 nm, the density profile is close, but not exactly consistent with that of the larger 

systems. This is not especially surprising, since the ‘long’ box dimension is only marginally 

longer than the remaining two, and the interface is considerably more fluxional as a result. 

However, from the 22 nm simulation onwards, the high-density profile has a flat region that 

changes in width, but not the mean density, suggesting that finite-size effects are negligible 

beyond this point. The system sizes used in our phase-diagram calculations are shown in SI 

Table IX. All sizes are well beyond the point where finite-size effects dominate the system’s 

behaviour.

One caveat here is that the results for FUS-LCD we show in SI Fig. S7 correspond to a 

temperature just above 80 % of the critical temperature. The interface naturally becomes less 

well defined as the critical point is approached, and data points very close to the critical 

temperature are not usually very robust. However, such data points are not necessary to 

obtain to estimate the critical temperature from a fit to Eqs (6) and (7).

Implementation of parameters for RNA

We have parameterised an initial set of RNA nucleotide parameters that is compatible with 

the Mpipi model for proteins. Here, nucleotide–nucleotide interaction strengths are derived 

by first performing atomistic PMF calculations for homo-dimer pairs (SI Fig. S4a,b). We 

use dimers instead of monomers since it is more straightforward to study homodimers than 

single nucleic acid monomers in standard protein/RNA force fields; from these simulations 

we extract the relative weights of RNA nucleotide–nucleotide interactions. Specifically, we 
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compute the base–base binding free energies, which encode the short-range pairwise terms 

in the Mpipi model.

To map the PMFs to our Mpipi model parameters, we first fitted the weighted atomistic 

interaction energies (i.e. the integral of the PMF curves at 298.15 K; Eq. (8)) to the 

corresponding Wang–Frenkel weighted interaction energies at the same temperature. This 

procedure involves performing a linear fit between known WF interaction energies in our 

model and their atomistic counterparts (i.e. for the set in SI Fig. S2a). The fit parameters 

were then used to determine the corresponding weights for the RNA nucleotides. Next, using 

an iterative procedure, we determined the WF parameters (i.e. ε and μ) for each RNA bead 

that yield the target binding strengths.

Each RNA bead is then described by a unique set of WF parameters and a charge of 

–0.75 e. Finally, we reduced the ε in the WF part of the potential for the RNA beads until 

self-assembly for PolyA/PolyG RNA (50 beads; 64 chains) [i.e. nucleotides with stronger 

base-stacking propensities] was sufficiently destabilised at 200 K. In subsequent work, we 

aim to refine our RNA parameters (including short-ranged binding strengths, bond constants 

and angular constants).
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Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

We thank Prof. Daan Frenkel for useful comments on the manuscript, Prof. Jeetain Mittal and Dr Gregory L. 
Dignon for helping us implement the HPS-KR potential in LAMMPS, and Dr Giulio Tesei and Prof. Kresten 
Landorff-Larsen for helping us debug our implementation of their potential. This project has received funding from 
the European Research Council under the European Union’s Horizon 2020 research and innovation programme 
[grant 803326; RC-G]. JAJ is a Junior Research Fellow at King’s College. RC-G is an Advanced Fellow of the 
Winton Programme for the Physics of Sustainability. JRE acknowledges funding from the Oppenheimer Fellowship 
of the University of Cambridge and the Roger Ekins Fellowship from Emmanuel College. AG is funded by 
the EPSRC [Doctoral Training Partnership, Grant EP/N509620/1] and the Winton Programme for the Physics 
of Sustainability. PYC is funded by the University of Cambridge Ernest Oppenheimer Fund and the Winton 
Programme for the Physics of Sustainability. KOR is funded by the EPSRC [Doctoral Training Partnership, Grant 
EP/N509620/1]. This work was performed using resources provided by the Cambridge Tier-2 system operated by 
the University of Cambridge Research Computing Service funded by EPSRC Tier-2 capital grant EP/P020259/1 
(RCG, JAJ, AR). The funders had no role in study design, data collection and analysis, decision to publish or 
preparation of the manuscript.

Data Availability

All relevant supporting data are available in the Figshare data repository at doi:10.6084/

m9.figshare.16772812 [70]. Source data for Figures 2–6 are available with this manuscript.

The data for this study were generated with the simulation codes aand algorithms outlined in 

SI Table XIV, using the supporting code [70], alongside standard command-line tools.

Code Availability

LAMMPS input scripts and parameter files are available in the Figshare data repository at 

doi:10.6084/m9.figshare.16772812 [70].

Joseph et al. Page 19

Nat Comput Sci. Author manuscript; available in PMC 2022 July 05.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

https://figshare.com/articles/dataset/Code_and_Data_for_Physics-driven_coarse-grained_model_for_biomolecular_phase_separation_with_near-quantitative_accuracy_/16772812
https://figshare.com/articles/dataset/Code_and_Data_for_Physics-driven_coarse-grained_model_for_biomolecular_phase_separation_with_near-quantitative_accuracy_/16772812
https://figshare.com/articles/dataset/Code_and_Data_for_Physics-driven_coarse-grained_model_for_biomolecular_phase_separation_with_near-quantitative_accuracy_/16772812


References

[1]. Hyman AA, Simons K. Beyond oil and water-phase transitions in cells. Science. 2012; 337: 
1047–1049. DOI: 10.1126/science.1223728 [PubMed: 22936764] 

[2]. Li P, et al. Phase transitions in the assembly of multivalent signalling proteins. Nature. 2012; 483: 
336–340. DOI: 10.1038/nature10879 [PubMed: 22398450] 

[3]. Alberti S, Dormann D. Liquid-liquid phase separation in disease. Annu Rev Genet. 2019; 53: 
171–194. DOI: 10.1146/annurev-genet-112618-043527 [PubMed: 31430179] 

[4]. Martin EW, et al. Valence and patterning of aromatic residues determine the phase behavior 
of prion-like domains. Science. 2020; 367: 694–699. DOI: 10.1126/science.aaw8653 [PubMed: 
32029630] 

[5]. Choi J-M, Holehouse AS, Pappu RV. Physical principles underlying the complex biology of 
intracellular phase transitions. Annu Rev Biophys. 2020; 49: 107–133. DOI: 10.1146/annurev-
biophys-121219-081629 [PubMed: 32004090] 

[6]. Fisher RS, Elbaum-Garfinkle S. Tunable multiphase dynamics of arginine and lysine liquid 
condensates. Nat Commun. 2020; 11: 4628. doi: 10.1038/s41467-020-18224-y [PubMed: 
32934220] 

[7]. Krainer G, et al. Reentrant liquid condensate phase of proteins is stabilized by hydrophobic 
and non-ionic interactions. Nat Commun. 2021; 12: 1085. doi: 10.1038/s41467-021-21181-9 
[PubMed: 33597515] 

[8]. Harmon TS, Holehouse AS, Rosen MK, Pappu RV. Intrinsically disordered linkers determine the 
interplay between phase separation and gelation in multivalent proteins. eLife. 2017; 6 e30294 
doi: 10.7554/elife.30294 [PubMed: 29091028] 

[9]. Choi JM, Dar F, Pappu RV. LASSI: A lattice model for simulating phase transitions of multivalent 
proteins. PLoS Comput Biol. 2019; 15 e1007028 doi: 10.1371/journal.pcbi.1007028 [PubMed: 
31634364] 

[10]. Bremer A, et al. Deciphering how naturally occurring sequence features impact the phase 
behaviors of disordered prion-like domains. bioRxiv. 2021; doi: 10.1101/2021.01.01.425046 

[11]. Wang J, et al. A molecular grammar governing the driving forces for phase separation of 
prion-like RNA binding proteins. Cell. 2018; 174: 688–699. e16 doi: 10.1016/j.cell.2018.06.006 
[PubMed: 29961577] 

[12]. Qamar S, et al. FUS phase separation is modulated by a molecular chaperone and methylation 
of arginine cation-π interactions. Cell. 2018; 173: 720–734. e15 doi: 10.1016/j.cell.2018.03.056 
[PubMed: 29677515] 

[13]. Vernon RM, et al. Pi–pi contacts are an overlooked protein feature relevant to phase separation. 
eLife. 2018; 7 e31486 doi: 10.7554/elife.31486 [PubMed: 29424691] 

[14]. Brady JP, et al. Structural and hydrodynamic properties of an intrinsically disordered region of 
a germ cell-specific protein on phase separation. Proc Natl Acad Sci U S A. 2017; 114: E8194–
E8203. DOI: 10.1073/pnas.1706197114 [PubMed: 28894006] 

[15]. Dubreuil B, Matalon O, Levy ED. Protein abundance biases the amino acid composition of 
disordered regions to minimize non-functional interactions. J Mol Biol. 2019; 431: 4978–4992. 
DOI: 10.1016/j.jmb.2019.08.008 [PubMed: 31442477] 

[16]. Fossat MJ, Zeng X, Pappu RV. Uncovering differences in hydration free energies and structures 
for model compound mimics of charged side chains of amino acids. J Phys Chem B. 2021; 125: 
4148–4161. DOI: 10.1021/acs.jpcb.1c01073 [PubMed: 33877835] 

[17]. Dyson HJ, Wright PE, Scheraga HA. The role of hydrophobic interactions in initiation and 
propagation of protein folding. Proc Natl Acad Sci U S A. 2006; 103: 13057–13061. DOI: 
10.1073/pnas.0605504103 [PubMed: 16916929] 

[18]. Andrew CD, et al. Stabilizing interactions between aromatic and basic side chains in α-helical 
peptides and proteins. Tyrosine effects on helix circular dichroism. J Am Chem Soc. 2002; 124: 
12706–12714. DOI: 10.1021/ja027629h [PubMed: 12392418] 

[19]. Wang X, Ramírez-Hinestrosa S, Dobnikar J, Frenkel D. The Lennard-Jones potential: when (not) 
to use it. Phys Chem Chem Phys. 2020; 22: 10624–10633. DOI: 10.1039/c9cp05445f [PubMed: 
31681941] 

Joseph et al. Page 20

Nat Comput Sci. Author manuscript; available in PMC 2022 July 05.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



[20]. Opitz A. Molecular dynamics investigation of a free surface of liquid argon. Phys Lett A. 1974; 
47: 439–440. DOI: 10.1016/0375-9601(74)90566-0 

[21]. Noid WG. Perspective: Coarse-grained models for bio-molecular systems. J Chem Phys. 2013; 
139 090901 doi: 10.1063/1.4818908 [PubMed: 24028092] 

[22]. Hills RD, Lu L, Voth GA. Multiscale coarse-graining of the protein energy landscape. PLOS 
Comput Biol. 2010; 6 e1000827 doi: 10.1371/journal.pcbi.1000827 [PubMed: 20585614] 

[23]. Ruff KM, Harmon TS, Pappu RV. CAMELOT: A machine learning approach for coarse-grained 
simulations of aggregation of block-copolymeric protein sequences. J Chem Phys. 2015; 143 
243123 doi: 10.1063/1.4935066 [PubMed: 26723608] 

[24]. Zeng X, Holehouse AS, Chilkoti A, Mittag T, Pappu RV. Connecting coil-to-globule transitions 
to full phase diagrams for intrinsically disordered proteins. Biophys J. 2020; 119: 402–418. DOI: 
10.1016/j.bpj.2020.06.014 [PubMed: 32619404] 

[25]. Latham AP, Zhang B. Consistent force field captures homologue-resolved HP1 phase separation. 
J Chem Theory Comput. 2021; 17: 3134–3144. DOI: 10.1021/acs.jctc.0c01220 [PubMed: 
33826337] 

[26]. Dannenhoffer-Lafage T, Best RB. A data-driven hydrophobicity scale for predicting liquid-
liquid phase separation of proteins. J Phys Chem B. 2021; 125: 4046–4056. DOI: 10.1021/
acs.jpcb.0c11479 [PubMed: 33876938] 

[27]. Tesei G, Schulze TK, Crehuet R, Lindorff-Larsen K. Accurate model of liquid–liquid phase 
behaviour of intrinsically-disordered proteins from optimization of single-chain properties. 
bioRxiv. 2021; doi: 10.1101/2021.06.23.449550 

[28]. Dignon GL, Zheng WW, Kim YC, Best RB, Mittal J. Sequence determinants of protein phase 
behavior from a coarse-grained model. PLOS Comput Biol. 2018; 14 e1005941 doi: 10.1371/
journal.pcbi.1005941 [PubMed: 29364893] 

[29]. Regy RM, Thompson J, Kim YC, Mittal J. Improved coarse-grained model for studying sequence 
dependent phase separation of disordered proteins. Protein Sci. 2021; doi: 10.1002/pro.4094 

[30]. Souza PCT, et al. Martini 3: a general purpose force field for coarse-grained molecular dynamics. 
Nat Methods. 2021; 18: 382–388. DOI: 10.1038/s41592-021-01098-3 [PubMed: 33782607] 

[31]. Benayad Z, von Bulow S, Stelzl LS, Hummer G. Simulation of FUS protein condensates with 
an adapted coarse-grained model. J Chem Theory Comput. 2021; 17: 525–537. DOI: 10.1021/
acs.jctc.0c01064 [PubMed: 33307683] 

[32]. Reith D, Putz M, Muller-Plathe F. Deriving effective mesoscale potentials from atomistic 
simulations. J Comput Chem. 2003; 24: 1624–1636. DOI: 10.1002/jcc.10307 [PubMed: 
12926006] 

[33]. van Hoof B, Markvoort AJ, van Santen RA, Hilbers PA. A novel method for coarse graining 
of atomistic simulations using Boltzmann inversion. Biophys J. 2011; 100: 309a. doi: 10.1016/
j.bpj.2010.12.1888 

[34]. Ercolessi F, Adams JB. Interatomic potentials from first-principles calculations: the force-
matching method. Europhys Lett. 1994; 26: 583–588. DOI: 10.1209/0295-5075/26/8/005 

[35]. Lu L, Dama JF, Voth GA. Fitting coarse-grained distribution functions through an iterative 
force-matching method. J Chem Phys. 2013; 139 121906 doi: 10.1063/1.4811667 [PubMed: 
24089718] 

[36]. Izvekov S, Voth GA. A multiscale coarse-graining method for biomolecular systems. J Phys 
Chem B. 2005; 109: 2469–2473. DOI: 10.1021/jp044629q [PubMed: 16851243] 

[37]. Johnson ME, Head-Gordon T, Louis AA. Representability problems for coarse-grained water 
potentials. J Chem Phys. 2007; 126 144509 doi: 10.1063/1.2715953 [PubMed: 17444725] 

[38]. Reinhardt A, Cheng B. Quantum-mechanical exploration of the phase diagram of water. Nat 
Commun. 2021; 12: 588. doi: 10.1038/s41467-020-20821-w [PubMed: 33500405] 

[39]. Wang J, et al. Machine learning of coarse-grained molecular dynamics force fields. ACS Cent 
Sci. 2019; doi: 10.1021/acscentsci.8b00913 

[40]. Das S, Lin Y-H, Vernon RM, Forman-Kay JD, Chan HS. Comparative roles of charge, π 
and hydrophobic interactions in sequence-dependent phase separation of intrinsically disordered 
proteins. Proc Natl Acad Sci U S A. 2020; 117: 28795–28805. DOI: 10.1073/pnas.2008122117 
[PubMed: 33139563] 

Joseph et al. Page 21

Nat Comput Sci. Author manuscript; available in PMC 2022 July 05.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



[41]. Kim YC, Hummer G. Coarse-grained models for simulations of multiprotein complexes: 
Application to ubiquitin binding. J Mol Biol. 2008; 375: 1416–1433. DOI: 10.1016/
j.jmb.2007.11.063 [PubMed: 18083189] 

[42]. Kapcha LH, Rossky PJ. A simple atomic-level hydrophobicity scale reveals protein interfacial 
structure. J Mol Biol. 2014; 426: 484–498. DOI: 10.1016/j.jmb.2013.09.039 [PubMed: 
24120937] 

[43]. Li H, Tang C, Wingreen NS. Nature of driving force for protein folding: A result from analyzing 
the statistical potential. Phys Rev Lett. 1997; 79: 765–768. DOI: 10.1103/physrevlett.79.765 

[44]. Urry DW, et al. Hydrophobicity scale for proteins based on inverse temperature transitions. 
Biopolymers. 1992; 32: 1243–1250. DOI: 10.1002/bip.360320913 [PubMed: 1420991] 

[45]. Tejedor AR, Garaizar A, Ramírez J, Espinosa JR. Dual RNA modulation of protein mobility and 
stability within phase-separated condensates. bioRxiv. 2021; doi: 10.1101/2021.03.05.434111 

[46]. Lin Y-H, Chan HS. Phase separation and single-chain compactness of charged disordered 
proteins are strongly correlated. Biophys J. 2017; 112: 2043–2046. DOI: 10.1016/
j.bpj.2017.04.021 [PubMed: 28483149] 

[47]. Riback JA, et al. Stress-triggered phase separation is an adaptive, evolutionarily tuned response. 
Cell. 2017; 168: 1028–1040. e19 doi: 10.1016/j.cell.2017.02.027 [PubMed: 28283059] 

[48]. Dignon GL, Zheng W, Best RB, Kim YC, Mittal J. Relation between single-molecule properties 
and phase behavior of intrinsically disordered proteins. Proc Natl Acad Sci U S A. 2018; 115: 
9929–9934. DOI: 10.1073/pnas.1804177115 [PubMed: 30217894] 

[49]. Fare CM, Villani A, Drake LE, Shorter J. Higher-order organization of biomolecular condensates. 
Open Biol. 2021; 11 210137 doi: 10.1098/rsob.210137 [PubMed: 34129784] 

[50]. Regy RM, Dignon GL, Zheng W, Kim YC, Mittal J. Sequence dependent phase separation 
of protein-polynucleotide mixtures elucidated using molecular simulations. Nucleic Acids Res. 
2020; 48: 12593–12603. DOI: 10.1093/nar/gkaa1099 [PubMed: 33264400] 

[51]. Choi J-M, Hyman AA, Pappu RV. Generalized models for bond percolation transitions of 
associative polymers. Phys Rev E. 2020; 102 doi: 10.1103/physreve.102.042403 

[52]. Zeng X, et al. Design of intrinsically disordered proteins that undergo phase transitions with 
lower critical solution temperatures. APL Mater. 2021; 9 021119 doi: 10.1063/5.0037438 

[53]. Banerjee PR, Milin AN, Moosa MM, Onuchic PL, Deniz AA. Reentrant phase transition drives 
dynamic substructure formation in ribonucleoprotein droplets. Angew Chem Int Ed. 2017; 56: 
11354–11359. DOI: 10.1002/anie.201703191 

[54]. Alshareedah I, et al. Interplay between short-range attraction and long-range repulsion controls 
reentrant liquid condensation of ribonucleoprotein–RNA complexes. J Am Chem Soc. 2019; 141: 
14593–14602. DOI: 10.1021/jacs.9b03689 [PubMed: 31437398] 

[55]. Dignon GL, Zheng W, Kim YC, Mittal J. Temperature-controlled liquid–liquid phase separation 
of disordered proteins. ACS Cent Sci. 2019; 5: 821–830. DOI: 10.1021/acscentsci.9b00102 
[PubMed: 31139718] 

[56]. Best RB, Zheng W, Mittal J. Balanced protein–water interactions improve properties of 
disordered proteins and non-specific protein association. J Chem Theory Comput. 2014; 10: 
5113–5124. DOI: 10.1021/ct500569b [PubMed: 25400522] 

[57]. Benavides AL, Aragones JL, Vega C. Consensus on the solubility of NaCl in water from 
computer simulations using the chemical potential route. J Chem Phys. 2016; 144 124504 doi: 
10.1063/1.4943780 [PubMed: 27036458] 

[58]. Liu H, Fu H, Shao X, Cai W, Chipot C. Accurate description of cation-π interactions in proteins 
with a nonpolarizable force field at no additional cost. J Chem Theory Comput. 2020; 16: 6397–
6407. DOI: 10.1021/acs.jctc.0c00637 [PubMed: 32852943] 

[59]. Paloni M, Bailly R, Ciandrini L, Barducci A. Unraveling molecular interactions in liquid–liquid 
phase separation of disordered proteins by atomistic simulations. J Phys Chem B. 2020; 124: 
9009–9016. DOI: 10.1021/acs.jpcb.0c06288 [PubMed: 32936641] 

[60]. Wessén J, Pal T, Das S, Lin Y-H, Chan HS. A simple explicit-solvent model of polyampholyte 
phase behaviors and its ramifications for dielectric effects in biomolecular condensates. J Phys 
Chem B. 2021; 125: 4337–4358. DOI: 10.1021/acs.jpcb.1c00954 [PubMed: 33890467] 

Joseph et al. Page 22

Nat Comput Sci. Author manuscript; available in PMC 2022 July 05.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



[61]. Holcomb CD, Clancy P, Zollweg JA. A critical study of the simulation of the 
liquid-vapour interface of a Lennard-Jones fluid. Mol Phys. 1993; 78: 437–459. DOI: 
10.1080/00268979300100321 

[62]. Reinhardt A. Phase behavior of empirical potentials of titanium dioxide. J Chem Phys. 2019; 151 
064505 doi: 10.1063/1.5115161 

[63]. Gallivan JP, Dougherty DA. Cation-π interactions in structural biology. Proc Natl Acad Sci U S 
A. 1999; 96: 9459–9464. DOI: 10.1073/pnas.96.17.9459 [PubMed: 10449714] 

[64]. Song J, Ng SC, Tompa P, Lee KAW, Chan HS. Polycation-π interactions are a driving force 
for molecular recognition by an intrinsically disordered oncoprotein family. PLOS Comput Biol. 
2013; 9 e1003239 doi: 10.1371/journal.pcbi.1003239 [PubMed: 24086122] 

[65]. Auton M, Bolen DW. Application of the transfer model to understand how naturally occurring 
osmolytes affect protein stability. Methods Enzymol. 2007; 428: 397–418. DOI: 10.1016/
s0076-6879(07)28023-1 [PubMed: 17875431] 

[66]. Kumar K, et al. Cation-π interactions in protein–ligand binding: theory and data-mining reveal 
different roles for lysine and arginine. Chem Sci. 2018; 9: 2655–2665. DOI: 10.1039/c7sc04905f 
[PubMed: 29719674] 

[67]. Chapela GA, Saville G, Thompson SM, Rowlinson JS. Computer simulation of a gas-liquid 
surface Part 1. J Chem Soc Faraday Trans. 1977; 273: 1133–1144. DOI: 10.1039/F29777301133 

[68]. Nilsson D, Irbäck A. Finite-size scaling analysis of protein droplet formation. Phys Rev E. 2020; 
101 022413 doi: 10.1103/PhysRevE.101.022413 [PubMed: 32168715] 

[69]. Vitalis A, Pappu RV. ABSINTH: A new continuum solvation model for simulations of 
polypeptides in aqueous solutions. J Comput Chem. 2009; 30: 673–699. DOI: 10.1002/jcc.21005 
[PubMed: 18506808] 

[70]. Joseph JA, et al. Code and data for 'Physics-driven coarse-grained model for biomolecular phase 
separation with near-quantitative accuracy'. 2021; doi: 10.6084/m9.figshare.16772812 

[71]. Debye P, Huckel E. Zur Theorie der Elektrolyte. I. Gefri-erpunktserniedrigung und verwandte 
Erscheinungen. Phys Z. 1923; 24: 185–206. 

[72]. Araki K, et al. A small-angle X-ray scattering study of alpha-synuclein from human red blood 
cells. Sci Rep. 2016; 6 30473 doi: 10.1038/srep30473 [PubMed: 27469540] 

[73]. Kjaergaard M, et al. Temperature-dependent structural changes in intrinsically disordered 
proteins: Formation of α-helices or loss of polyproline II? Protein Sci. 2010; 19: 1555–1564. 
DOI: 10.1002/pro.435 [PubMed: 20556825] 

[74]. Martin EW, et al. Sequence determinants of the conformational properties of an intrinsically 
disordered protein prior to and upon multisite phosphorylation. J Am Chem Soc. 2016; 138: 
15323–15335. DOI: 10.1021/jacs.6b10272 [PubMed: 27807972] 

[75]. Fuertes G, et al. Decoupling of size and shape fluctuations in heteropolymeric sequences 
reconciles discrepancies in SAXS vs. FRET measurements. Proc Natl Acad Sci U S A. 2017; 
114: E6342–E6351. DOI: 10.1073/pnas.1704692114 [PubMed: 28716919] 

[76]. Mylonas E, et al. Domain conformation of tau protein studied by solution small-angle 
X-ray scattering. Biochemistry. 2008; 47: 10345–10353. DOI: 10.1021/bi800900d [PubMed: 
18771286] 

[77]. Wells M, et al. Structure of tumor suppressor p53 and its intrinsically disordered N-terminal 
transactivation domain. Proc Natl Acad Sci U S A. 2008; 105: 5762–5767. DOI: 10.1073/
pnas.0801353105 [PubMed: 18391200] 

[78]. Uversky VN, Gillespie JR, Fink AL. Why are “natively unfolded” proteins 
unstructured under physiologic conditions? Proteins. 2000; 41: 415–427. DOI: 
10.1002/1097-0134(20001115)41:3<415::aid-prot130>3.0.co;2-7 [PubMed: 11025552] 

[79]. Baul U, Chakraborty D, Mugnai ML, Straub JE, Thirumalai D. Sequence effects on size, shape, 
and structural heterogeneity in intrinsically disordered proteins. J Phys Chem B. 2019; 123: 
3462–3474. DOI: 10.1021/acs.jpcb.9b02575 [PubMed: 30913885] 

[80]. Arbesú M, et al. The unique domain forms a fuzzy intramolecular complex in Src family kinases. 
Structure. 2017; 25: 630–640. e4 doi: 10.1016/j.str.2017.02.011 [PubMed: 28319009] 

Joseph et al. Page 23

Nat Comput Sci. Author manuscript; available in PMC 2022 July 05.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



[81]. Gomes G-NW, et al. Conformational ensembles of an intrinsically disordered protein consistent 
with NMR, SAXS, and single-molecule FRET. J Am Chem Soc. 2020; 142: 15697–15710. DOI: 
10.1021/jacs.0c02088 [PubMed: 32840111] 

[82]. Lichtinger SM, Garaizar A, Collepardo-Guevara R, Reinhardt A. Targeted modulation of protein 
liquid–liquid phase separation by evolution of amino-acid sequence. PLOS Comput Biol. 2021; 
17 e1009328 doi: 10.1371/journal.pcbi.1009328 [PubMed: 34428231] 

[83]. Rowlinson, JS, Widom, B. Molecular theory of capillarity. Dover; 2013. 

[84]. Schuster BS, et al. Identifying sequence perturbations to an intrinsically disordered protein that 
determine its phase-separation behavior. Proc Natl Acad Sci U S A. 2020; 117: 11421–11431. 
DOI: 10.1073/pnas.2000223117 [PubMed: 32393642] 

[85]. Hub JS, de Groot BL, van der Spoel D. g_wham—A free weighted histogram analysis 
implementation including robust error and autocorrelation estimates. J Chem Theory Comput. 
2010; 6: 3713–3720. DOI: 10.1021/ct100494z 

[86]. Portz B, Lee BL, Shorter J. FUS and TDP-43 phases in health and disease. Trends Biochem Sci. 
2021; 46: 550–563. DOI: 10.1016/j.tibs.2020.12.005 [PubMed: 33446423] 

[87]. Akerlof GC, Oshry HI. The dielectric constant of water at high temperatures and in equilibrium 
with its vapor. J Am Chem Soc. 1950; 72: 2844–2847. DOI: 10.1021/ja01163a006 

[88]. Ashbaugh HS, Hatch HW. Natively unfolded protein stability as a coil-to-globule transition in 
charge/hydropathy space. J Am Chem Soc. 2008; 130: 9536–9542. DOI: 10.1021/ja802124e 
[PubMed: 18576630] 

[89]. Torrie G, Valleau J. Nonphysical sampling distributions in Monte Carlo free-energy estimation: 
Umbrella sampling. J Comput Phys. 1977; 23: 187–199. DOI: 10.1016/0021-9991(77)90121-8 

[90]. Kästner J. Umbrella sampling. WIREs Comput Mol Sci. 2011; 1: 932–942. DOI: 10.1002/
wcms.66 

[91]. Kumar S, Rosenberg JM, Bouzida D, Swendsen RH, Kollman PA. The weighted histogram 
analysis method for free-energy calculations on biomolecules. I. The method. J Comput Chem. 
1992; 13: 1011–1021. DOI: 10.1002/jcc.540130812 

[92]. Bayly CI, Cieplak P, Cornell W, Kollman PA. A well-behaved electrostatic potential based 
method using charge restraints for deriving atomic charges: the RESP model. J Phys Chem. 1993; 
97: 10269–10280. DOI: 10.1021/j100142a004 

[93]. Frisch, MJ; , et al. Gaussian 09. Revision D.01. 2013. 

[94]. Vitalis A, Pappu RV. Methods for Monte Carlo simulations of biomacromolecules. Annu Rep 
Comput Chem. 2009; 5: 49–76. DOI: 10.1016/s1574-1400(09)00503-9 [PubMed: 20428473] 

[95]. Hess B, Bekker H, Berendsen HJC, Fraaije JGEM. LINCS: A linear constraint 
solver for molecular simulations. J Comput Chem. 1997; 18: 1463–1472. DOI: 10.1002/
(sici)1096-987x(199709)18:12<1463::aid-jcc4>3.0.co;2-h 

[96]. Essmann U, et al. A smooth particle mesh Ewald method. J Chem Phys. 1995; 103: 8577–8593. 
DOI: 10.1063/1.470117 

[97]. Schrödinger. PyMol Molecular Graphics System, version 2.4.2. 

[98]. Ladd A, Woodcock L. Triple-point coexistence properties of the Lennard-Jones system. Chem 
Phys Lett. 1977; 51: 155–159. DOI: 10.1016/0009-2614(77)85375-x 

[99]. Fernández RG, Abascal JLF, Vega C. The melting point of ice Ih for common water models 
calculated from direct coexistence of the solid-liquid interface. J Chem Phys. 2006; 124 144506 
doi: 10.1063/1.2183308 [PubMed: 16626213] 

[100]. Espinosa JR, Sanz E, Valeriani C, Vega C. On fluid-solid direct coexistence simulations: The 
pseudo-hard sphere model. J Chem Phys. 2013; 139 144502 doi: 10.1063/1.4823499 [PubMed: 
24116630] 

[101]. Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys. 1995; 
117: 1–19. DOI: 10.1006/jcph.1995.1039 

Joseph et al. Page 24

Nat Comput Sci. Author manuscript; available in PMC 2022 July 05.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 1. Designing a coarse-grained model for LLPS from potential-of-mean-force calculations 
and bioinformatics data.
a (Top) Potential of mean force (PMF) of selected amino-acid (or nucleic-acid) pairs are 

computed in all-atom simulations with explicit solvent and ions. The computed curves 

provide a free energy of interaction for the pair in question. (Bottom) The frequencies of π–

π contacts for amino acids are obtained from bioinformatics work [13]. Together, these data 

are used to parameterise the pairwise interactions in the Mpipi model. b (Top) In the Mpipi 

model, each amino acid (or nucleic acid) is represented by a unique bead. The potential 

energy is computed as a sum of short-ranged pairwise terms, electrostatic interactions and 

bonded interactions modelled as harmonic springs. (Bottom) Short-ranged pairwise and 

electrostatic interactions are computed via a Coulomb term with Debye–Hückel screening 

(red and blue curves) and the Wang–Frenkel potential [19] (black curve), respectively. 

c To study biomolecular phase behaviour, we use direct-coexistence molecular-dynamics 

simulations [20] and compute phase diagrams in the temperature–concentration (or density) 

space.
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Figure 2. Obtaining the correct balance of π–π and non-π-based interactions in the Mpipi 
model.
a–c PMF calculations at 150 mM NaCl salt concentration for π–π, cation–π and non-

π-based interactions, respectively, as a function of the centre-of-mass (COM) distance. 

Statistical errors (mean±s.d.) are given as error bands, and are only just larger than the 

line width. They were computed via Bayesian bootstrapping of 3 independent simulations. 

Each pair is labelled using one-letter amino-acid codes (SI Table I). d Comparison of 

relative interaction strengths of selected residue pairs (SI Table I) from the PMF calculations 

with those implemented in the Mpipi model, relative to the Arg–Tyr (RY) interaction. 
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Values are computed by taking the integral of the curves in a–c and the integral of the 

Wang-Frenkel potential only (between σ and 3σ) for the PMF and Mpipi sets, respectively; 

for the PMF data only the leftmost well is considered. These correspond to mean energies in 

the high-temperature limit. e Summary of relative interaction strengths in the Mpipi model. 

These relative interaction strengths include electrostatic interactions and are computed by 

numerically integrating Eq. (8) and normalising the result by the RY interaction strength.
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Figure 3. Relative contributions of π–π, cation–π and non-π-based interactions in different 
residue-level models.
a–f Relative interaction strengths [Eq. (8)] for selected residue pairs (see SI Table I 

for one-letter amino-acid codes) in Mpipi, KH, HPS-KR, FB-HPS, HPS+cation–π(i) and 

HPS+cation–π(ii) models. For each model, the data set is normalised relative to the 

corresponding Arg–Tyr (RY) interaction. In each plot, a horizontal dashed line at the RY 

interaction strength is provided for comparison purposes. Aromatic π–π interactions are 

coloured in magenta, Arg–π in blue, Lys–π in cyan and non-π-based interactions in dark 

yellow.
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Figure 4. Comparison of single-molecule radii of gyration with experiment.
a Composition of simulated IDPs. We select 17 IDPs for which experimental radii of 

gyration (Rg) are available (see SI Sec. S2.1 and SI Table III) and assess the composition of 

the IDPs in terms of the proportion of glycine (orange), neutral (dark yellow; no net charge 

at pH 7 and no π electrons in side-chain: A, C, I, L, M, P, S, T, V), neutral with π (green; no 

net charge at pH 7 with π electrons in side chain: N, Q), positive (cyan; without π electrons 

in side-chain: K), positive with π (blue; with π electrons in side-chain: H, R), negative 

(red: D, E) and aromatic (magenta: F, W, Y) residues. b–g Comparison of simulated and 

experiment Rg. Rg values are computed at 300 K in each model. Each protein is coloured 

based on its dominant residue class (as categorised in a and excluding the ‘neutral’ class). 

The broken line represents the ‘perfect fit’ line. For each model, the Pearson correlation 

coefficient r and the root mean squared deviation D are reported in the respective figure title.
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Figure 5. Recapitulating the phase behaviour of A1-LCD variants.
a Nine variants of the A1-LCD (including the wild-type) are studied in this work. Variants 

are prepared following Bremer et al. [10] Experimental critical temperatures are estimated 

as described in SI Sec. S2.2. The colour of each variant used in panel a is also used in all 

remaining panels. b–g Phase diagrams for A1-LCD variants obtained via direct-coexistence 

simulations using the Mpipi, KH, HPS-KR, HPS+cation–π(ii), FB-HPS and HPS-Urry 

models, respectively. Estimation of critical points of simulated phase diagrams is described 

in the Methods section. Curves are derived from empirical fits of the data to Eqs (6) and (7); 

typical errors are discussed in SI Sec. S8.4. h–m Simulated critical temperature Tc relative 

to the critical temperature of the wild type (Tc
wt) shown against the experimental analogue. 

The Pearson correlation coefficient r and the root mean squared deviation D are provided 

above each graph. The red lines correspond to a perfect fit to the experimental data, while 

the black lines represent the linear regression fit.
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Figure 6. Predicting LLPS propensities of other proteins and multiphasic compartmentalisation.
a Temperature–density phase diagrams for FUS PLD, LAF-1 RGG (WT) and two other 

variants of LAF-1 RGG for the Mpipi model. Filled symbols represent simulation data, 

while empty symbols depict estimated simulation critical points (see Methods). The 

horizontal dashed lines represent estimated Tθ (temperature of the coil-to-globule transition) 

for FUS PLD (magenta) and LAF-1 RGG (WT) (black) obtained with the ABSINTH potential. 

b, c Same as in a, but for four DDX4 variants and full FUS variants, respectively. d We 

simulate a mixture of PolyK (50 residues; 128 chains), PolyR (50 residues; 128 chains) and 

RNA (10 residues; 1280 chains) with an extended Mpipi model (see Methods and SI Fig. 

S4). The density profile along the simulation box’s long axis (L; normalised) is given for 

each mixture component. A simulation snapshot is provided below the density plot. The 

colour code in the snapshot is consistent with that used in the density plot. The mixture 

is simulated at T/Tc ≈ 0.8, where Tc is the critical temperature for liquid-vapour phase 

separation.
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