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Abstract

Surgical robots have been widely adopted with over 4000 robots being used in practice daily. 

However, these are telerobots that are fully controlled by skilled human surgeons. Introducing 

“surgeon-assist”—some forms of autonomy—has the potential to reduce tedium and increase 

consistency, analogous to driver-assist functions for lanekeeping, cruise control, and parking. This 

article examines the scientific and technical backgrounds of robotic autonomy in surgery and some 

ethical, social, and legal implications. We describe several autonomous surgical tasks that have 

been automated in laboratory settings, and research concepts and trends.
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I Introduction

Robotic systems are increasingly incorporated into surgical procedures, such as hip 

replacement, spinal fusion, biopsy collection, and minimally invasive surgeries (MISs) for 

operations involving the gall-bladder, hernia, prostate, and many other organs. Current 
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surgical robots are fully teleoperated devices, i.e., the human surgeon/operator is responsible 

for all robot motions. The only element of “automated” intervention is in image processing 

and tremor reduction (low-pass filtering). As many surgical actions are repetitive and 

fatiguing, patients and surgeons alike could benefit from some degree of “supervised” 

autonomy where specific subtasks are delegated to the robot and performed autonomously 

under close supervision by a human surgeon. Such supervised autonomy has the potential 

to reduce the learning curve and increase overall accuracy. Supervised autonomy is also 

essential for telesurgery, as teleoperation is not feasible due to time delay. Research in 

autonomous robots is advancing, and many new commercial surgical robot systems are 

emerging, which could embed some semiautonomous features. This article considers the 

state of the art in autonomy for robot-assisted surgery and its prospects for adoption in 

practice.

An additional motivation for the use of automation in surgery is to compensate for human 

errors. Patient safety in medicine, and surgery, in particular, depends on many factors 

[1], [2]. Most medical errors are due to human shortcomings, either because of missing 

information, poor decision-making, lack of dexterity, or fatigue and lack of attention. For 

example, intensive care patients are exposed to 1.7 errors per day on average [3], and the 

economic and ethical implications are enormous. Automated image and data analysis have 

the potential to guide human operators to reduce errors.

There are many definitions of “autonomy,” ranging from the operation of a home thermostat 

to that of a self-driving vehicle on the highway. Many forms of autonomy exist in operating 

rooms (ORs), for example, automated monitors of blood pressure and heart rate. In this 

article, we focus on autonomy in surgery, where a system performs specific physical 

subtasks based on inputs from cameras and sensors rather than from human operators 

(almost always under close observation from human surgeons to recover in case of error).

II Autonomy in Robotic Surgery

Early attempts to automate surgical tasks included preparation of bones in joint 

reconstruction surgery [4]–[6], for Transurethral Resection of the Prostate (TURP) 

interventions [7], [8], and manipulation of laparoscopic cameras [9], [10]. Some of these 

tasks required only simple motions or execution of preplanned tool paths relative to the 

patient’s anatomy. The enormous increase in computational power, computer vision, and 

machine learning (ML) capabilities in recent years is beginning to permit surgical robots to 

perform more complex tasks with greater degrees of autonomy.

To better distinguish among the different automatic features, a few classifications 

of autonomy have been proposed. IEC/TR 60601-4-1: “Medical electrical equipment” 

Technical Report parameterizes autonomy along four cognitive functions.

• Generate an option: to achieve the desired goals.

• Select an option: among the possible options generated.

• Execute an option: to carry out the selected option.
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• Monitor an option: to collect data about option execution.

Each function can be assigned to a human or to the system or done in cooperation. This 

definition generates ten degrees of autonomy based on the different assignments of the 

functions.

Classifications of autonomous surgical robots are available in the literature. Yip and Das 

[11] indicate four levels of autonomy, direct control, shared control, supervised autonomy, 
and full autonomy, and show examples of systems with these characteristics. Dupont et al. 
[12] characterizes active topics of medical robotics by considering the number of papers 

published on each topic, and autonomy is one of the topics with the strongest representation.

Recently proposed classification schemes for surgical robots [13], [14] follow that proposed 

for self-driving vehicles and similar systems and are based on human involvement in the 

task. At level 0, the robot does not provide any cognitive or manual assistance to the 

surgeon. At level 1, the robot informs the surgeon about task options and may provide 

manual assistance. In the intermediate levels 2 and 3, the interaction between the robot and 

the operator becomes discrete, e.g., the surgeon approves a course of action at the beginning 

of the task. Levels 4 and 5 are different since the robot may be practicing medicine and 

will require a different testing and validation strategy. The relations between IEC definitions 

and the levels of autonomy are schematically shown in Fig. 1: level 0 has no function 

related to autonomy; in level 1, the robot cooperates with the human and has functions 

related to execution and monitoring; level 2 is similar to level 1, but the robot executes and 

monitors surgical actions independently of human participation; finally, levels 3-4-5 have all 

functions related to autonomy. Within reach of today’s technology are levels of autonomy 

2 and 3, in which small tasks are delegated to the robot under close human supervision. As 

mentioned in the Introduction, this approach will yield immediate and longer terms benefits, 

enabling more consistent task execution, e.g., in tissue manipulation and blood suction, in 

the longer term, compensating for slow or missing human response, when procedural cues 

are misinterpreted or missing because of communication interruption. These classifications 

can be used to identify, for selected surgical procedures, the technologies that would enable 

the different autonomy levels, as in [15].

Fundamentally, these classification schemes are based on differing answers to two basic 

requirements: 1) the task that the robot is to do must be clearly and unambiguously specified 

and 2) the robot needs to be able to execute the specified task safely and reliably. Satisfying 

the first requirement necessitates the provision of suitable human–machine interfaces that 

are appropriate for the level of autonomy involved. This may involve something as simple as 

a joystick or pointing device for basic (level 1) teleoperation to very sophisticated (and so far 

unrealized) voice commands, such as “remove the gall bladder.”

To satisfy the second requirement, the system must be able to physically do what it is 

asked to do. The robot needs sufficient dexterity, precision, sensors, strength, size, and so 

on to perform the necessary motions, and the robot controller needs to be able to use these 

capabilities to perform the specified task. Furthermore, robotic devices used in surgical 

systems need to meet stringent sterility, safety, and reliability requirements.
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Crucially, both requirements necessitate that systems have sufficient computational 

capabilities to interpret the surgeon’s specification of the task, relate it to the actual patient 

anatomy and task environment, and control the robot motions to perform the task. The level 

of situational awareness goes up rapidly as one moves up the hierarchy. For teleoperated 

surgical robots, such as the da Vinci Surgical System [16], the control computer needs to 

relate the motion of control handles and pedals to the motions of a surgical endoscope 

and surgical instruments manipulated by the robot. It must also perform very stringent 

internal safety checks to ensure that the robot’s motions are stable and consistent with the 

specifications coming from the control handles. Higher levels of autonomy typically require 

much more sophisticated models of the patient and the task to be performed.

Finally, it is important to realize that real-world systems generally do not operate only 

on a single level. For example, an orthopedic robot that automatically machines a bone 

to prepare it to receive an orthopedic implant may rely on some form of teleoperation 

or hand-over-hand guiding to position the robot where it needs to be in order to begin 

machining the bone. Similarly, a robotic system that is capable of automatically tying knots 

during suturing may rely on manual teleoperation for other portions of the procedure.

III Clinical Applications and Systems Involving Autonomy

In this section, we list existing medical systems where some aspect of autonomy is carried 

out by a computer without human intervention. Since the descriptions in the following refer 

to commercially available products, we can only estimate their level of autonomy from the 

operational characteristics that they exhibit. The relation between the IEC characteristics 

of autonomy and products, and applications exhibiting these functions are schematically 

represented in Fig. 2.

A Plan Generation and Selection With “Surgical CAD/CAM” Systems

Typically, the intervention is planned offline, usually from medical images, and the 

autonomous part of the system refers only to the generation and, sometimes, selection of 

the interventional plan. Before surgery, registration is done between the images and the 

real anatomy. Automatic plan generation is a well-established practice, and surgeons review 

and approves each step of the plan. In this case, system autonomy consists of providing 

alternate plans and carrying out complex calculations for the physician, e.g., to determine 

the best approach path to a lesion. Some examples of automatic plan generation include the 

following.

1) Radiation Therapy: The intervention is planned offline, the patient is placed 

in the machine, the registration is performed, and then, the machine delivers a 

pattern of radiation to the patient [17]. Typically, the off-line planning is done 

interactively based on a segmented CT image showing a tumor and surrounding 

anatomic structures. A medical physicist defines an optimization problem that 

is solved by a computer workstation to produce a proposed pattern of radiation 

beams and then presents a simulation of the dose pattern to the human. The 

process proceeds iteratively until an acceptable plan is found. There have also 

been efforts to further automate this process (e.g., [18]–[20]).

Fiorini et al. Page 4

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2022 July 28.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



2) Orthopedics: It, especially joint replacement surgery, follows the same plan 

generation paradigm of other interventions, with attention, as much as possible, 

to bone structure and consistency. Again, the key planning decisions are the 

selection of an appropriate implant and determining where the implant is to be 

placed relative to the patient’s anatomy. Planning is typically done interactively 

based on preoperative CT or X-ray images [5], [6], [21]. However, there have 

also been efforts to further automate planning based on statistical models and 

patient images (e.g., [22]).

3) Stereotactic Needle Placement: It includes brachytherapy [23], [24] and different 

biopsies. Here, the plan is chosen to spare healthy tissue (all tissues exposed 

to radiation are at risk of developing secondary cancers and, in most recent 

systems, can also be corrected in real time during execution to compensate for 

needle deflection and biological motions).

4) ENT Procedures: One example is the HEARO robot for cochlear implants [25] 

that plan, under surgeon supervision, the different steps of the implant insertion. 

This is a typical example of autonomy level 1 providing both cognitive and 

manual support to the physician.

5) Cosmetic Surgery: In this case, automation is used to create realistic patterns 

that can be similar to natural structures, as in hair restoration procedures [26].

B Plan Execution

Plan execution cannot, in general, be separated from plan generation, and it is its logical 

next step, as noted in Section III-A. Often, the plan is adapted to the changing anatomical 

conditions during the execution. This adaptation rarely takes the form of a new plan 

computation, and it is usually implemented with a control algorithm that tracks some 

predefined feature. Also, this level of adaptation can be labeled as a level 1 since it provides 

manual support to the operating surgeon.

1) Radiation Therapy: Radiation systems are arguably the first “autonomous 

robotic” interventional systems since all steps are carried out with minimal 

human intervention. One well-known example is the CyberKnife system [27] 

that combines image guidance and a robotic positioner to deliver highly focused 

radiation to the patient following a painting approach, i.e., following a trajectory 

that minimizes the exposure of healthy tissues to the radiation. X-ray cameras 

are used to track patient movements that provide real-time feedback to the robot 

positioner. The correctness of the compensation motions cannot be verified by 

the system operator when the robot executes them, because they are too fast. If 

an alarm condition is detected, the operator can only interrupt the motion with 

the Stop Button. This device is probably the most advanced on the market from 

the point of view of autonomy. The plan is generated by the machine and then 

approved by the physician, but, because of the limitation of human reaction time 

and perception, the operator cannot approve the actions of the robot during the 

therapy. Only major faults can be detected, and as with other surgical robots, 
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system safety is ensured by a very deep risk analysis during the certification 

phase and by extensive testing and training.

2) Orthopedic Surgery: Once the plan has been defined through the “Surgical 

CAD/CAM” approach, the execution is carried out with a cooperative approach 

in which the robot acts as a guide, i.e., a virtual fixture, to constrain the 

surgeon commanded motions. The Robodoc system (now marked by Think 

Surgical as the Solution One Surgical System) [28] was the first system to 

carry out part of a hip replacement procedure without human intervention [6] 

though the autonomous parts of the intervention were typically only the bone 

preparation portions. The Robodoc system was subsequently applied also to 

knee replacement surgery [29] and revision hip surgery [30]–[32]. A number of 

other systems for joint replacement surgery have subsequently appeared though 

these typically rely on automatic positioning of cutting guides (e.g., the Zimmer 

Rosa system) [33], constraining the motion of a hand-guided robot (e.g., the 

Stryker/Mako Rio system) [34], or automatically enabling a surgical cutter when 

it is positioned within a volume of bone to be removed (e.g., the Smith & 

Nephew Navio system [35]). Robotic systems have also been used in spine 

surgery to position a drilling guide to assist in inserting screws down vertebral 

pedicles, which are the struts of bone connecting the back part of the spine to the 

vertebral bodies (e.g., [36] and [37]). All of these systems combine presurgical 

planning from CT images to select an implant and determine its position on 

the patient’s bone, together with intraoperative registration of the surgical plan 

to the patient’s anatomy, followed by robotically assisted execution. Of these 

approaches, the Robodoc system exhibits the highest level of “autonomous” 

execution although it also uses hand-over-hand guiding of the robot during setup 

and registration phases with surgeon supervision during bone machining. This is 

again level 1 autonomy since the hand-guided robot gives manual support to the 

surgeon. The same feature can be interpreted also from the point of view of the 

automation system, and the robotic system can be considered as a cooperative 

surgical robot in the same fashion as industrial cooperative robots.

3) Stereotactic Procedures: One of the first uses of surgical robots was the 

positioning of needle guides for brain biopsies and similar procedures (e.g., 

[38]), and these uses are now ubiquitous, with biopsies, injections, and similar 

interventions carried out throughout the body. When the procedure is done 

inside an MRI, X-ray, or CT imaging system, the robot may do the actual 

needle puncture although it is also common for the robot to position a needle 

guide [39]. An example of frameless stereotaxy is the NeuroMate system by 

Renishaw that uses an ultrasound (Us) probe to locate fiducial markers placed 

on the patient’s head [40]. As with orthopedic systems, these systems typically 

rely on human judgment to designate an anatomic target. The robot then moves 

autonomously to aim a needle guide or active device at the target, and then, 

either the surgeon or the system performs the actual needle placement. This last 

case may happen when the robot is within an MRI bore, and it can be classified 

as level 2 autonomy, as in [41].
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4) Steerable Needles: Flexible needles can be “steered” from outside the body 

during the insertion to compensate for biological motions or planning errors. 

Steering can be achieved either by rotating the needle about its primary axis 

and using the forces generated by the asymmetry in the tip shape by the 

tissue medium as the needle is pushed through the tissue [42] or by applying 

torques to the proximal needle tip [43]. The control inputs (translation speed and 

rotation angle) are computed based on nonholonomic kinematic models using 

image-based feedback, which may provide for feedback-based refinement of the 

model as the needle propagates through the tissue. XACT Robotics in Israel now 

offers a commercial steerable needle system based on the second approach [44]. 

XACT Robotics has collected data from more than 200 preclinical and clinical 

successful procedures from leading centers globally, such as the Hadassah 

Medical Center (Jerusalem, Israel) and the Lahey-Beth Israel Medical Center 

(Burlington, MA, UsA), and recently initiated commercial use at a physician 

office-based setting at Sarasota Interventional Radiology (Sarasota, FL, USA). 

In this case, the surgeon is not able to intervene in approving the robot’s 

actions because they are too fast for human reaction. The safety of this type 

of system is verified by extensive testing and with analytical proofs of stability 

and convergence of the control algorithm.

5) Phlebotomy Procedures: Like other procedures using a needle to sample a tissue, 

these procedures use needles to make a puncture in a vein and draw blood. 

Often, the process of finding the vein is difficult, and Veebot developed an 

autonomous blood sampling robot that can find a vein using IR images, places 

the needle using US images, computes an optimal insertion path, and inserts it 

after verification [45]. Since this system can potentially carry out all the phases 

of the needle insertion autonomously, it achieves a high level of autonomy.

6) Cosmetic Surgery: Two systems have autonomous functions in the field of hair 

restoration [26] and tattoo removal [46]. The hair transplant robot is able to 

autonomously identify the hair follicles, harvest them, and reseed then on the 

scalp following a natural pattern computed by the planning software.

7) Interactive Surgical Procedures: In these cases, most of the surgical decisions 

and actions are made intraop-eratively by the surgeons, and systems with 

significant autonomous functions have not yet reached the market. Some 

examples include the following.

1) In endoscopic MIS procedures, such as the da Vinci procedures [47], 

the robot may be purely teleoperated and may perform “assistive” 

functions, such as autonomous endoscope aiming, retraction, or similar 

tasks. There is an increasing trend toward more overtly “surgical” 

tasks, such as suturing, debridement, and tissue resection. Tool 

placement in urology is carried out mostly by da Vinci systems [48] 

that have replaced dedicated systems, such as [49];

2) Robots for neurosurgery: These devices are mostly teleoperated, 

but they include some form of cognitive and manual support to 
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help the surgeon improve accuracy and increase both patient and 

physician safety. Examples of these devices are the Micromate by 

Isys [50] and the Mazor X Stealth [51] for spinal surgery. These 

devices allow surgeons to plan and monitor the intervention on 

a workstation away from the patient, thus preserving them from 

radiations generated by the intraoperative viewing system and reducing 

the exposure time of the patient. The visual guidance permits the 

registration of the robotic arm with the anatomical markers and 

the accurate position of a guide for the spinal intervention. The 

Renishaw Neuromate [52] is used for electrode implantation for 

deep brain stimulation, stereo electroencephalography, and stereotactic 

applications in neuroendoscopy and biopsy. It is used as a guide 

for the surgical tools and needles during robot-guided stereotactic 

implantation of multiple deep brain electrodes, providing a less 

invasive technique than open skull procedures and allowing the 

creation of a 3-D grid of electrodes [53].

3) Microsurgical robots: These are typically teleoperated or cooperatively 

controlled with a microscope as the primary feedback to the surgeon. 

Typical applications include ophthalmology and otolaryngology, such 

as the Steady Hand [54] cooperative robot and the teleoperated robot 

[55] for retinal microsurgery, and the Symani Surgical System for 

robot-assisted microsurgery [56].

4) Robotic catheters: They were used in angioplasty: their placement was 

carried out with the Sensei robotic system [57], the operator-driven 

navigation described in [58], and autonomous intracardiac catheter 

navigation described in [59].

5) Robotic pills: These untethered devices are commercial products, e.g., 

PillCam device [60], which can travel passively through the entire 

intestine and take pictures of areas of interest.

C Plan Monitoring

Most of the sensors available in the robotic industry cannot be used in robot-assisted surgery 

because of design, dimension, and sterilization issues. Vision sensors are limited to mono 

and stereo cameras, but the latter does not achieve a good tridimensional resolution in MIS 

because of the short intercamera distance. Specific 3-D cameras, such as RGBD devices, are 

too big to be used in MIS and open procedures. Force and touch sensors would be of great 

help in tissue manipulation and palpation, but, so far, surgical instruments are not sensorized 

because of the difficulty in meeting dimension and sterilization constraints. Thus, vision 

is the main sensing modality available to an autonomous surgical robot to monitor a task 

evolution.

1) Radiation Therapy: The CyberKnife system [27] discussed earlier tracks the 

patient’s movements and adjusts the radiation pattern to compensate for small 

biological motions, e.g., breathing, of the patient.
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2) Orthopedic Surgery: In this area, plan monitoring is mostly carried out by using 

IR markers positioned on the patient body and the tools. For example, in total 

knee replacement (TKR) procedures performed with the Mako system [21], the 

robot supports the surgeon’s movements by assuming a cooperative mode in the 

approach phase to the cutting plane.

3) Endoscopy Control: Commercial products are available to move the endoscopic 

camera without human control, following specific features in the scene. For 

example, camera stabilization and target tracking are done by SOLOASSIST 

[61], FreeHand [62], Viki [63], and AutoLap [64]. These devices were actually 

the first autonomous systems used to support MIS intervention. However, the 

autonomy is implemented by feature tracking algorithms that keep the surgical 

instrument in the field of view of the endoscope.

IV Technical Challenges of Autonomy

There is no single path to endow a robotic system with levels of autonomy, and in particular, 

autonomy in robotic surgery can be defined in different ways depending on the anatomical 

region of interest, the type of pathology, and surgical procedures. Therefore, we give an 

overview of key research results demonstrated in laboratories worldwide. Thanks to the 

availability of high-precision laboratory platforms for robot-assisted surgery, such as the da 

Vinci Research Kit (dVRK), the KUKA LBR Med collaborative robot, and the RAVEN 

robot, many research groups are addressing the technical challenges of automation of 

surgical procedures by developing realistic task demonstrations.

The dVRK research program was started when Intuitive Surgical Inc. donated 

decommissioned first generation (Classic) da Vinci hardware to academic research groups 

based on open-source software and electronic controllers developed at Johns Hopkins 

University and the Worchester Polytechnic Institute [65], [66]. There are now over 40 

such systems deployed around the world, and many of these systems have been used for 

research demonstrating varying levels of surgical autonomy. This ongoing dVRK program is 

summarized in a recent survey [67]. The basic dVRK system software has also been adapted 

to control multiple robots, and its open-source framework is also being extended to create 

a collaborative robotics toolkit (CRTK) [68]. Many research areas are addressed using the 

dVRK system, e.g., augmented reality [69], simulation [70], sensing [71], and task execution 

[72]. The complete list of papers published on research using the dVRK system is available 

on Github in [73].

The KUKA LBR Med [74] is one of the few commercial robots that are medically 

certifiable, and it has the same dimensions and capabilities as the equivalent industrial robot. 

It is the preferred choice when developing a medical system or a research demonstrator 

based on a medically certifiable robot, as shown by the many applications shown in this 

video [75].

The RAVEN robot was developed at the University of Washington, and its main features 

are described in [76] and [77]. The robot is distributed by Applied Dexterity [78] and is 

currently used in research projects on task autonomy [79].

Fiorini et al. Page 9

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2022 July 28.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



To support software and hardware interoperability, the users of the three research robots 

meet periodically at major events on surgical robotics to discuss progress and integration 

plans [80].

The use of “laboratory” surgical robots, as opposed to adapted industrial robots, is essential 

to carry out experiments that meet the constraints of a device that will operate in the OR and 

to be credible with surgeons who might be familiar with the clinical versions of the same 

robots.

To showcase the main aspects of autonomy, researchers have focused on tasks that are 

highly relevant to surgical interventions, e.g., needle handling as in suture and biopsy, or on 

technologies that are key for autonomy, e.g., perception and simulation, or on demonstrating 

simple, but complete, tasks, such as those performed during surgical training and described 

in the Fundamentals of Laparoscopic Surgery [81]. Sections IV-A–IV-J focus on these single 

technology demonstrations. In this context, it is difficult to extract and discuss the single 

technologies contributing to the success of the demonstration as, for example, a planning 

phase. Research on planning is an active research area in particular when addressing the 

deformable environment of MIS surgery. An example of MIS plan generation is presented 

in [82], which provides a tool for registering the instrument position in the abdominal cavity 

and a smooth, curvilinear path generator.

Fig. 3 attempts to connect the levels of autonomy described in Section II with the 

demonstrations described in this section. It is clear that each demonstrator exhibits a mixture 

of levels of autonomy, and a clear-cut correspondence is difficult to establish, at least for 

now.

A Autonomous Surgical Imaging

Imaging is the most common sensing modality in surgery, whether it is vision, with cameras, 

depth sensors, and machine vision, US, with its low cost and nonionizing radiation, or 

X-ray or magnetic resonance imaging systems. Each of them addresses a specific situation 

and is extensively used in clinical practice. Intelligent vision in robotic surgery is a 

research field on its own, and reviews of the state of the art are available, as in [83]. 

Furthermore, the vision system must be able to assess the quality of its own images 

and change its parameters autonomously, as demonstrated by researchers at the Technical 

University of Munich in [84] for the case of a US probe. In this case, the imaging system 

must recognize whether the probe has good contact with the organ surface and adjust 

position and orientation to optimize contact. Computer vision is now based on algorithms 

of artificial intelligence (AI), such as reinforcement learning (RL) or deep learning (DL), 

but their integration with autonomous functions is still challenging; researchers at the Centre 

Hospitalier Intercommunal, Poissy/Saint-Germain-en-Laye (France), discuss the application 

of AI techniques in autonomous surgery [85]. Researchers at Imperial College London 

(London, U.K.) have developed a simulator to generate large and accurate endoscopic 

datasets to study surgical vision and learning algorithms [86]. The need to autonomously 

provide better images of patients is particularly important in orthopedic surgery, where, 

besides the obvious need for good medical outcomes, there is the necessity to reduce the 

exposure time of both patients and medical staff to repeated acquisitions or even continuous 
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fluoroscopy with a C-arm. Researchers at the University of Heidelberg (Germany) have 

developed a method to automate the image acquisition procedure, estimate the C-arm pose, 

and update it according to the required anatomy-specific standard projections for monitoring 

and evaluating the surgical result [84].

B Autonomous Needle Handling

Needles are an essential tool for surgery, and they are often used in repetitive tasks, such 

as sutures or tissue sampling, which have the potential for automation. To explore this 

potential, needle handling has been divided into two main areas: curved needles used in 

sutures and straight needles used in percutaneous interventions. Suture needles carry the 

thread in their proximal hand, and they are picked up by a specific robotic instrument. 

Straight needles are usually hollow to let medications reach the tissues or biological samples 

to be collected, and they are installed on the robot’s wrist. It is clear that the development 

of autonomous sutures, which could lead to autonomy level 2 or 3, is a complex endeavor 

because it includes a full spectrum of robotic capabilities, e.g., perception, grasping, force, 

and position control, and has been addressed extensively by the robotic community. Before 

the suture can take place, an important part is needle grasping. The needle should be picked 

up by the robotic tool in such a way that it would not require, or minimize, the need to 

reposition it by moving it from one instrument to the other. This problem is addressed in 

[87] where researchers at the Politecnico di Milano propose a procedure consisting of a 

needle detection algorithm, an approach phase to the needle by the surgical instrument based 

on visual feedback, and a grasping phase according to the procedure to be executed. The 

specific case addressed in this article is radical prostatectomy, which requires a complex 

suture of the bladder to the urethra that could benefit from an intelligent grasp of the needle.

1) Suture Demonstrations: Suturing is an attractive task to be performed robotically 

because, in many cases, it takes a large percentage of the overall intervention 

time, and many research groups have focused on demonstrating some aspects 

of autonomous suturing. On the one hand, this is a challenging and interesting 

problem for an engineer, but, on the other hand, the suture may soon be replaced 

by other means of connecting tissues, e.g., glues, or be performed by new faster 

devices. In fact, this is the direction taken by the following projects in which 

Level 3 is achieved by developing an integrated robotic device.

1) SNAP: Researchers at UC Berkeley (UCB) developed a novel 

mechanical needle guide and a framework for optimizing needle 

size, trajectory, and control parameters using sequential convex 

programming. The Suture Needle Angular Positioner (SNAP) resulted 

in a 3× error reduction in the needle pose estimate in comparison 

with the standard actuator. They evaluate the algorithm and SNAP 

on a dVRK using tissue phantoms and compare completion time 

with that of humans from the JIGSAWS dataset [88]. Initial results 

suggest that the dVRK can perform suturing at 30% of human speed 

while completing 86% suture throws attempted. Videos and data are 

available at [89].
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2) STAR: Researchers at John Hopkins University (JHU) developed the 

Smart Tissue Autonomous Robot (STAR), which is able to perform an 

anastomosis procedure with an accuracy higher than a human surgeon 

[90]. This prototype is based on the KUKA Med robot equipped with 

the Endo360 laparoscopic suturing tool and a vision system consisting 

of a plenoptic camera for 3-D acquisition and an NIR camera for 

detecting targets. The latest prototype uses a force/torque sensor to 

measure suture tension, and it has reached Level of Autonomy 3 

(supervised autonomy) according to IEC TR 60601-4-1 [90], [91].

2) Needle Insertion Demonstrations: This task has a different complexity, 

depending on whether the needle is rigid or flexible. In the first case, the 

whole demonstration can be carried out autonomously from planning to the 

execution of needle insertion and extraction since the uncertainties are primarily 

due to tissue stiffness and can be addressed by the needle position control. 

The insertion of a flexible needle is more complex since it must consider the 

deflection of the needle due to the interaction with the tissues. However, current 

research exploits this difficulty to compute a curvilinear trajectory consisting 

of an appropriate sequence of needle deflections that permit avoiding critical 

structures. In both cases, needle insertion consists of a sequence of phases, 

i.e., reach the simulator surface, insert the needle, monitor the correctness 

of insertion, and reach the target. However, in the case of a flexible needle, 

real-time trajectory monitoring must be coupled with possible adjustments. 

The level of autonomy of these procedures depends on the number of human 

interventions necessary. Both procedures can be considered to have achieved 

level of autonomy 4, i.e., the action sequence is planned by the system, approved 

by the physician, and executed by the robot. Flexible needle insertion in 

complex structures may require human intervention to approve or correct the 

deflection compensation, and therefore, in these cases, it has a lower level of 

autonomy.

1) Rigid needle: Certain clinical procedures are carried out using a 

cannula that does not bend, e.g., brachytherapy or cryoablation, thus 

simplifying planning and control tasks. Researchers of the European 

Consortium Intelligent Surgical Robotics (I-SUR) [92] simulated 

a complete cryoablation procedure for kidney tumors using the 

demonstrator shown in Fig. 4. It consisted of three robots: a delta robot 

for macro positioning and needle insertion, a serial robot for precise 

needle holding, and a UR5 robot carrying a US probe for real-time 

guidance [93]. The “patient” was an abdomen segment with a kidney 

and relevant anatomical structures. The task was described using UML 

[94], and an executable finite state machine (FSM) was generated 

automatically from the task description. Human supervision was 

ensured by providing a smooth transition from autonomy to manual 

control [95] with haptic feedback [96]. This research is documented in 

[97], and a video is available at [98].
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2) Flexible needle: In 2005, researchers at UCB and (JHU) were 

among the first to develop a planning algorithm for the insertion 

of highly flexible bevel-tip needles into soft tissues with obstacles 

in a 2-D imaging plane. Given an initial needle insertion plan 

specifying location, orientation, bevel rotation, and insertion distance, 

the planner combines soft tissue modeling and numerical optimization 

to generate a needle insertion plan that compensates for simulated 

tissue deformations, locally avoids polygonal obstacles, and minimizes 

the needle insertion distance. The simulator computes soft-tissue 

deformations using a finite element model that incorporates the 

effects of the needle tip and frictional forces using a 2-D mesh 

[99]. This work has been greatly extended in subsequent years 

with a robot-assisted 3-D needle steering system that used three 

integrated controllers: a motion planner concerned with guiding the 

needle around obstacles to a target in the desired plane, a planar 

controller that maintains the needle in the desired plane, and a torsion 

compensator that controls the needle tip orientation about the axis 

of the needle shaft [100], [101]. Experimental results from steering 

an asymmetric-tip needle in artificial tissue and ex vivo biological 

tissue demonstrated the effectiveness of the approach. A review of the 

scientific and patent literature for needle steering is presented in [102], 

and the technology is applied to different areas, e.g., in neurosurgery 

[103], within the MRI bore [104], and using recurrent neural networks 

for roll estimation [105]. At this point, the obstacle to the clinical use 

of steering needle technology seems to be mostly related to regulatory 

and marketing issues. In fact, the ACE robot developed by XACT 

[44] has achieved regulatory clearance and is capable of carrying 

out autonomous flexible needle insertion in a complex anatomical 

structure under CT guidance [106].

C Autonomous Tissue Manipulation

Most surgical targets in MIS are soft tissues that deform while being interacted by surgical 

instruments, and the deformation could lead to target deviation, which hinders the operating 

accuracy of the surgical tasks; thus, robotic tissue manipulation is a well-known challenging 

robot control problem.

1) Lifting Policy Development: Tissue lifting is critical in many surgical 

procedures since it is instrumental in exposing the areas that have to be 

reached by the robot. The main challenge when attempting to automate robotic 

tissue manipulation is the dynamic behavior of soft tissues interacting with the 

anatomical environment. A critical element is the knowledge of the points where 

the tissue to be lifted is attached to other anatomical structures. At the University 

of Verona (UVR), a method was developed to perform this task, based on deep 

RL (DRL), which has shown promising results, without the need to design 

ad hoc control strategies. Training an agent in the simulation seems the most 
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appropriate strategy to apply DRL to learn surgical subtasks since it avoids 

technical and ethical limitations of clinical experiments. However, sim-to-real 

methods need realistic and fast simulation environments to develop and test the 

algorithms. The simulated task was grasping and pulling the fat tissue covering 

a kidney to expose a tumor, for which a synthetic kidney phantom covered with 

silicone fat tissue was used, as shown in Fig. 5. The portion of fat tissue lifted 

by the simulated and real robot was a square region rigidly anchored to the 

top part of the kidney, and the DRL algorithms learned the fixation points and 

the sequence of motions to lift the silicon patch. The simulation experiments, 

including RL training and dVRK policy computation, ran on a powerful GPU, 

while the real experiments were carried out using the laboratory dVRK robot 

[107].

2) Image Guided Tissue Manipulation: As image feedback is the sole sensing 

information in MIS, image-guided manipulation of tissue becomes promising to 

provide active regulation of tissue deformation. There are researchers addressing 

autonomous robotic manipulation of deformable objects. Researchers at The 

Chinese University of Hong Kong (CUHK) proposed different approaches to 

address this problem:

1) a Hamiltonian system that locally linearizes the motion mapping 

between deformable visual features to robot actuation [108], [109];

2) regarding tissue deformations as elastic behavior under local motions 

[110];

3) addressing shape-based deformable object control by using tissue 

contour rather than predefined point/line features [111].

4) considering the deformation model to be heterogeneous, where the 

interaction Jacobian between the motion behavior of the soft objects 

and robot movement is estimated online in a data-driven fashion 

[112]–[114].

D Simulation

Task simulations by virtual and physical anatomy models support many activities related to 

autonomy, from plan testing to deformation prediction and target localization in a moving 

organ. Current simulation trends use a combination of approaches: finite element methods 

(FEMs), position-based dynamics (PBDs), and ML. FEM is a popular numerical procedure 

capable of achieving mechanically realistic simulations of anatomic structures [116], but 

it is characterized by a high computational cost. Excellent results in FEM applications are 

available, e.g., [117], and simplifications have been proposed to reduce the computational 

cost of FEM [118]. Simplifications include different solving processes, new formulations, or 

implementations on GPUs, but the capability to simulate sophisticated material laws and/or 

interactions between multiple organs is still not general enough. Experiments using a GPU 

implementation based on the results of [117] have shown that a high-performance simulation 

of liver tissue becomes unstable when using different biomechanical parameters, e.g., breast 

tissue [119]. FEM limitations can be overcome by geometry-based approaches, e.g., PBD, 
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which model objects as an ensemble of particles whose positions are directly updated, 

as a solution to a quasi-static problem subject to geometrical constraints [120]. Stability, 

robustness, and simplicity are among the main reasons for the increasing popularity of the 

PBD method that can simulate different behaviors of elastic materials [121], [122]. PBD 

has been applied to the medical field to develop a training simulator involving dissection 

since they are able to handle topological changes in real time [123]–[125]. Modeling 

parameters can be learned by using ML techniques, whose long training sessions can be 

overcome using FEM simulations. A good balance between speed and accuracy is achieved 

by integrating all these methods in a single framework in which a deep network does the 

real-time computation, FEM produces the training data for the ML, and PBD is used for 

rendering. This makes it possible to test in real-time alternate execution plans in autonomous 

tasks.

E Complex Tasks

Most surgical tasks cannot be described as a single action with a specific level of autonomy 

but combine different actions and perception capabilities. The demonstrators described in 

the following combine sensing, compensation of unexpected events, and motion control and 

show how an actual autonomous task requires the tight integration of many autonomous 

functions.

1) Suturing With Tissue Control: Tissue deformation induced by needle insertion 

can significantly reduce the insertion accuracy during suturing; thus, CUHK 

researchers proposed a dual-arm control strategy for active tissue control [126] 

(see Fig. 6 as the experiment snapshots). During suturing, the excessive needle-

induced target deviation is minimized by using simultaneous control of the 

needle and the tissue [127]. This method led to high insertion accuracy (<1 

mm) while executing the needle tip penetration to a superficial target. Needle 

pose during insertion is estimated using an adaptive method [115], [128]. This 

autonomous suturing framework allows a five-throw multithrow suturing on soft 

tissues with a task success rate of 80% (8/10) in ten consecutive trials, validated 

on both artificial and porcine tissues (see Fig. 7 for the pipeline illustration).

2) Knot Tying: In 2010, researchers at UCB proposed an apprenticeship learning 

approach with the potential to allow robotic surgical assistants to autonomously 

execute specific trajectories with superhuman performance in terms of speed and 

smoothness. They recorded a set of trajectories using human-guided backdriven 

motions of the robot. These were then analyzed to extract a smooth reference 

trajectory, which we execute at gradually increasing speeds using a variant of 

iterative learning control. The approach was evaluated on two representative 

tasks using an earlier laboratory prototype, the Berkeley Surgical Robots [129]: 

a figure-eight trajectory and a two-handed knot-tie, a tedious suturing subtask 

required in many surgical procedures. Results suggest that the approach enables: 

1) rapid learning of trajectories; 2) smoother trajectories than the human-guided 

trajectories; and 3) trajectories that are seven to ten times faster than the best 

human-guided trajectories [130]. Direct force control of knot tying [131] has 

also been replaced by learned policies, as demonstrated in [132].
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3) Debridement: It is the subtask of removing dead or damaged tissue fragments 

to allow the remaining healthy tissue to heal. Researchers at UCB developed 

an autonomous multilateral surgical debridement system using the RAVEN, an 

open-architecture surgical robot with two cable-driven 7-DOF arms. The system 

combined stereo vision for 3-D perception with trajopt, an optimization-based 

motion planner, and model predictive control (MPC). Laboratory experiments 

involving sensing, grasping, and removal of 120 fragments suggest that an 

autonomous surgical robot can achieve robustness comparable to human 

performance and demonstrated the advantage of multilateral systems, as the 

autonomous execution was 1.5 × faster with two arms than with one; however, it 

was two to three times slower than a human [79].

4) Pattern Cutting: In the Fundamentals of Laparoscopic Surgery [81] standard 

medical training regimen, the pattern cutting task requires residents to 

demonstrate proficiency by maneuvering two tools: a surgical scissors and a 

tissue gripper, to accurately cut a circular pattern on surgical gauze suspended 

at the corners. The accuracy of cutting depends on tensioning, wherein the 

gripper pinches a point on the gauze and pulls to induce and maintain tension 

in the material as cutting proceeds. Researchers at UCB developed an automated 

tensioning policy that analyzes the current state of the gauze to output a 

direction of pulling as an action. The researchers used DRL with direct policy 

search methods to learn tensioning policies using a finite element simulator and 

then transferred them to the dVRK surgical robot [133].

5) Tumor Resection: In 2015, researchers at UCB demonstrated fully autonomous 

localization of a tumor phantom and autonomous extraction of the tumor 

using automated palpation, incision, debridement, and adhesive closure with the 

dVRK [134].

F Autonomous Execution of Training Tasks

As described above, autonomous tasks consist of a number of activities that alternate sensing 

and perception, with action execution, planning, and execution again, in a continuous loop 

driven by the evolving environmental conditions. Thus, another aspect of demonstrating 

autonomous behavior is to execute tasks that can be completely planned and executed by the 

autonomous agents. These tasks are not real surgical tasks on phantoms, but they are taken 

from the Fundamentals of Laparoscopic Surgery [81], i.e., the training curriculum followed 

by surgeons in training. This choice has the added benefit that it allows a direct comparison 

between human and robot performance, identifying the skill level of an autonomous agent as 

if it were a student in training.

1) Peg Transfer: It is a typical medical training task in the Fundamentals of 

Laparoscopic Surgery [81]. Researchers from UCB used a dVRK surgical robot 

combined with a Zivid depth sensor to autonomously perform three variants of 

the peg-transfer task. As illustrated in Fig. 8, the system combined 3-D printing, 

depth sensing, and DL for calibration with a new analytic inverse kinematics 

model and a time-minimized motion controller. In a controlled study of 3384 

peg-transfer trials performed by the system, an expert surgical resident, and nine 
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volunteers, results suggest that the system achieves accuracy on par with the 

experienced surgical resident and is significantly faster and more consistent than 

the surgical resident and volunteers. Videos and data are available at [135].

2) Peg and Ring: Another example training task performed by an autonomous 

robot is the “Peg and Ring” (P&R) task done by the dVRK research robot at 

UVR in the context of the autonomous robotic surgery (ARS) project [136]. 

The demonstrator setup is shown in Fig. 9, and an example of execution is 

available in this video [137]. The demonstrator integrates into a single task the 

technologies developed by the ARS project in terms of off-line and reactive 

planning [138], [139], situation awareness [140], motion representation and 

control [141], and simulation [142]. The task phases are represented by a hybrid 

automaton, which is implemented with an FSM written in the formalism of 

answer set programming (ASP) to represent actions, their preconditions and 

postconditions, task constraints, and the goal definition [143]. This framework 

supports the generation of multiple plans based on the values of environment 

variables called “fluents,” among which the best alternative can be chosen. 

When fluents change during a task, a replan request is issued, and the robot 

reacts to the unexpected event. The states of the FSM represent each action of 

the task, i.e., the discrete states of the automaton and, within each state, the robot 

actions are represented by smooth motions generated using the dynamic motion 

primitive (DMP) [141] formalism. Motion primitives can be learned from a 

single motion demonstration, thus greatly simplifying system tuning. Simulation 

is used to test the plan and to train a deep network to implement a specific 

action, e.g., tissue lifting,

G Perception

Organ perception can be carried out by adding force and bioimpedance sensing to a surgical 

robot or by developing virtual sensors based on image analysis.

1) Sensor-Based: The addition of sensors will permit to recognize by touch the 

organ health, and a safer grasp and lifting of tissues. Force sensing could 

be implemented by mounting sensing elements, e.g., strain gauges, on the 

instrument body to identify the contact force components. However, although 

many examples of robotic palpation have been demonstrated in laboratory 

setup [144], [145], the translation of even simple contact and force sensing 

to robot surgical instruments has been hampered by many technical factors, 

cost, and sterilization. Electric impedance sensing is an alternate sensing 

modality that does not require modifications to the instruments and can be 

used in a standard robot-assisted setup. Researchers at the Italian Institute of 

Technology in collaboration with UVR have developed a prototype of electric 

impedance sensing in surgical applications (ELISA) that allow measuring 

electric bioimpedance and identifying tissue type upon contact. This sensor is 

implemented by adding an impedance measurement to a standard dVRK electric 

cutter and using the cutter jaws to establish a contact with the tissue. It is clear 

that repeatability can only be achieved by a careful control of penetration depth 
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and jaw opening, but ex vivo experiments have shown that this approach can 

identify four tissue types with an accuracy of higher than 92.82%.

2) Image-Based: The critical challenges in perceiving a surgical procedure include 

segmentation of surgical instruments and surgical objects, and tracking of 

instruments. Instrument tracking and 3-D pose estimation are research areas, 

which produced significant results that are used, for example, to autonomously 

move the endoscopic camera or to interact with workspace boundaries [146]. 

However, to select the best approach for an autonomous system, performance 

and speed must match the overall system characteristics. Researchers at the 

Tianjin University of Technology summarize them in [147]. Specific approaches 

for autonomy are developed by researchers at CUHK, who demonstrated the 

feasibility and effectiveness of segmenting and tracking instruments in real 

scenarios using image-based DL methods. Segmentation can be performed 

in a supervised, semisupervised, or unsupervised manner depending on the 

ratio of labeled samples in the training set. In the supervised fashion, we 

reformulate the instrument segmentation as an instance segmentation task that 

combines both target detection with semantic segmentation task [128], and as 

a result, it is possible to detect and segment the instruments simultaneously 

with high accuracy and achieve new state-of-the-art performance on a publicly 

available EndoVis17 [148] dataset, as shown in Fig. 10. Unlike most previous 

methods using unlabeled frames individually, in [149] a dual motion-based 

method is proposed to wisely learn motion flows for segmentation enhancement 

by leveraging temporal dynamics, and in [150], MDAL is proposed, a 

learning scheme for adaptive instrument segmentation in robotic surgical videos 

trained with the EndoVis17 dataset [148], and achieved an average instrument 

segmentation result of 75.5% IoU and 84.9% Dice. The 3-D instrument 

tracking was demonstrated with monocular vision in [151]. The method used 

a modified U-Net model for the tool’s pixelwise position perception and a 

RobotDepth model for scale-aware depth recovery. Researchers at the University 

of California at San Diego developed SuPer [152], a framework for the effective 

interaction with soft tissues during MIS that continuously collects 3-D geometric 

information of the scenes and maps the organ deformations while tracking the 

rigid instruments.

H Telesurgery

Long-distance telesurgery has been proposed as a solution to the shortage of surgeons 

to operate from a safe distance in dangerous areas and to support mentoring and expert 

advice. Early experiments using supervised autonomy were performed between NASA-JPL 

(Pasadena, CA, USA) and Milan (Italy) [153], and between NewYork (USA) and Strasbourg 

(France) [154] and showed its feasibility, in spite of the long communication delay and 

the high cost. Models of robot-tissue interaction [155] and algorithms for compensation of 

communication time delay [156], [157] are active areas of research.
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I New Robot Designs

New types of surgical devices are being developed. For example, concentric-tube continuum 

robots consist of a set of concentric flexible tubes that are prebent to adapt to some 

anatomical structure, typically skull cavities, and can be inserted in the cavity thanks to 

their curvilinear shape. The amount of extension of each tube and the rotation about the 

central line determine the position of the tip holding a tool. An autonomous continuum tube 

robot learns all the configurations and develops an inverse map from the desired tool tip 

position to the robot’s degrees of freedom [158]. Soft surgical robots are summarized in 

the review paper [159] that describes the pros and cons of this technology. A soft surgical 

instrument will need to be controlled locally by an autonomous system to reach the target 

[160]. Soft endoscopes require autonomous support to perform the navigation tasks, e.g., 

endoscopes for gastrointestinal inspection have evolved from the early prototypes [161] to 

magnetically powered autonomous devices that allow forward and backward views of the 

digestive tract [162].

J Human Collaboration

To address the work overload of the OR personnel, several research groups have addressed 

the problem of adding robotic assistants to the OR. These robots could interact with 

the medical personnel and perform some of the intervention tasks. The most addressed 

goal has been to develop a robotic scrub nurse, i.e., a robotic arm to hand over the 

surgical instruments. The application described in [163], developed by researchers of the 

INKA Laboratory at the Otto-von-Guericke Universität (Magdeburg, Germany), used the 

collaborative robot developed by Franka Emika [164] to validate the combination of voice 

commands and instruments marked with ArUco codes to let the robot pick up the instrument 

and handle them to the surgeon. Researchers at the Politecnico di Milano added to the 

vocal interaction, the capability of the robot of recognizing the context of the human 

command [165]. In fact, by combining a deep network with an ontology describing the 

relation among the instruments, the robot is able to model the surgical workflow and 

recognize its phases, i.e., being context-aware during a robotic-assisted partial nephrectomy 

[166]. Researchers at UVR pushed this concept further with the EU-funded project Smart 

Autonomous Robotic Assistant Surgeon (SARAS) [167] that explored the development 

of a bed-side robotic assistant for robot-assisted and standard laparoscopic interventions. 

The bedside second surgeon in the OR is a significant cost, and his/her actions depend 

on the decision of the primary surgeon and on the intervention evolution. Thus, most 

of the tasks can be carried out by a robot that recognizes the intervention phase and is 

able to contextualize the main surgeon’s instructions. Fig. 11 shows an implementation 

of this concept by adding two Franka Emika robots [164] to the dVRK setup for the 

simulation of robot-assisted prostatectomy. The system shown uses a multimodal neural 

network trained on a cooperative task performed by human surgeons to produce an action 

segmentation that provides the required context timing for actions [168]. Statecharts are used 

to model the surgical procedures, and they are well suited to semi-ARS because they allow 

merging bottom-up knowledge acquisition, based on data-driven techniques (e.g., ML), with 

top-down knowledge based on preexisting knowledge [169].
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V Nontechnical Challenges of Autonomy

Society seems to now be ready for surgeon-assist robots in the same way we are ready 

for driver-assist features in cars. Autonomous robots represent a multifaceted challenge: for 

scientists and engineers who must develop technologies with high levels of safety, security, 

and privacy; for lawyers who must apply the law to each phase of an autonomous robot 

operation; and for philosophers and sociologists who have to address ethical and social 

issues. Robotics researchers, as well as lawyers and social scientists, are starting to address 

the implications of autonomy in the critical area of robot-assisted surgery [170].

It is questionable whether full autonomy in driving or surgery will be achievable in the 

foreseeable future. However, the addition of some small level of autonomy can be beneficial 

to surgery, such as many driver-assist functions that are useful while driving a car. The 

scientific community must clearly explain what can be expected from machines that can 

understand, act, learn, and adapt their behavior, albeit to a limited extent. The consequences 

of introducing autonomous machines into our society are being examined, and the robotics 

community is starting to articulate the answers to these questions by addressing ethical, 

legal, and societal (ELS) issues in specific funded projects [171], [172].

In this section, we summarize some of the issues that are increasing the difficulty of 

introducing systems with some levels of autonomy into clinical practice.

A Social Impact of Autonomous Robots

Recent advances in the field of digitization and robotics, such as driver-less cars, 

autonomous smart factories, and service robots, fuel public fears that technology may 

replace most workers. However, in the past, technological changes have affected the 

structure of employment and had, on average, positive effects on the level of employment. 

The introduction of computers in the workplace changed the general composition of the 

workforce, reducing clerical jobs and increasing the number of jobs requiring technical 

skills. However, although, on average, the workforce increased, not all workers who lost 

their job due to computerization could acquire the skills necessary for the new jobs.

Thus, the main social challenge of autonomy will be to address the potential inequalities 

of education, as the digital divide of the past. Fears of a “jobless future” [173] have been 

ignited also by reports, such as [174] predicting a sharp reduction in the workforce. It is 

too early to tell whether these predictions will become reality, but, in the medical field, 

automation and intelligent agents are perceived as the welcome and necessary support. 

Medical personnel, especially in times of crisis, are overworked and in high demand and 

have no fear of being replaced by machines. Furthermore, jobs at risk may be those that 

consist of routine tasks that can be codified and executed automatically and not tasks 

that require adaptation and personal interactions, such as most heath care jobs. The main 

challenges from intelligent machines will be related to interacting with them and training in 

their use since it will be slower than the technological advances. In the medical field, jobs 

will not be lost but will be changed, and therefore, education and training must immediately 

follow the introduction of the potentially disruptive technology of autonomous robots.
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A different type of social impact is the robotic divide, or accessibility gap [175], which 

is already occurring in the medical field, with only few affluent institutions able to afford 

the most advanced robotic technologies. This gap may increase with the introduction of 

autonomous technologies, and patients will be divided between those who can be admitted 

to certain hospitals and those who cannot.

B Legal Impact of Autonomous Robots

Regulation/standardization is important during technology development to ensure safety, 

but it should not limit new developments. Regulation has to address the development of 

technologies for autonomous robots and insure that victims of accidents caused by an 

autonomous agent can be properly protected and indemnified. Furthermore, the European 

Union Expert Group’s Report on Liability for AI has generated the EU proposal of 

regulating autonomous agents [176] that exclude the possibility of full autonomy in 

critical tasks, such as medicine and surgery, admitting only “supervised autonomy” as the 

acceptable approach.

The chain of responsibility from design to manufacture, to installation and maintenance, to 

the final user should be clearly defined to assign the proper share of liability and is actively 

studied and discussed by EU-based initiatives, such as the European Center of Excellence on 

the Regulation of Robotics and AI [177].

C Ethical Impact of Autonomous Robots

There is widespread uneasiness about robotics and AI. Thus, there is a need for ethical 

governance of autonomous robots, which, in turn, could support the process of building 

public confidence and trust in autonomous robotic systems. Governance is usually achieved 

by developing a roadmap connecting ethics, standards, and regulation. Ethical considerations 

for robotics were discussed in the EURON Roboethics Roadmap [178] and the Principles of 

Robotics [179].

Standards formalize ethical principles into a structure, which could provide guidelines for 

designers on how to conduct an ethical risk assessment for a given robot. Ethics justifies 

standards that need regulations to monitor the systems that are compliant with standards 

[180], [181]. Autonomous robot research should be conducted ethically, to transparently 

measure system capabilities with standardized tests or benchmarks. Further key elements 

for systems that work in the real world are verification and validation, to assure safety and 

adequacy to purpose.

Regulations require regulatory bodies that can provide transparency and confidence in the 

regulatory processes. Regulation should address robotics and autonomous systems, and not 

on software AI alone, because robots are physical objects that are easier to identify and 

verify than distributed or cloud-based AI [182].

Autonomous robots may take decisions that have real consequences for human safety or 

well-being, such as those made by medical diagnoses or surgical systems. Systems that 

make such decisions are critical systems. Existing critical software systems are not AI 

systems nor do they incorporate AI systems. The reason is that AI systems (and more 
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generally ML systems) are generally regarded as impossible to verify for safety-critical 

applications. The problem of verification and validation of systems that learn is the subject 

of current research in explainable AI [183].

The robotics community is addressing public fears about robotics and AI, through public 

engagement and consultation to jointly identify and develop new standards for intelligent 

autonomous robots, together with benchmark, verification, and validation tests to assure 

compliance with the standards.

VI Conclusion

This article summarizes some of the current efforts of the robotics community to give 

autonomous capabilities to surgical robots. In Section II, we summarize the definitions of 

the levels of autonomy that a surgical robot can have, and then, we describe some of the 

current products and clinical applications that have already some autonomous functions. 

To advance the use of autonomous functions in clinical practice, many challenges must be 

overcome. In the article, we describe how the robotics community addresses the technical 

challenges by presenting laboratory demonstrations that solve some of them. However, 

nontechnical challenges may affect the introduction of autonomous functions in robotic 

surgery, and we give a brief account of the ethical, legal, and social issues related to 

autonomous robots.

In the near future, the task of bringing some autonomy to robotic surgery may benefit 

from textbooks in robotic surgery that describes each procedure in algorithmic form, i.e., 

by a specific sequence of surgical actions that are personalized according to patient and 

pathology characteristics. However, the ability to adapt the autonomous robotic procedure 

to real circumstances and to react to unexpected situations will be the true challenge of the 

future.
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Fig. 1. Relation between cognitive functions and levels of autonomy.
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Fig. 2. Products and applications involving autonomy.
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Fig. 3. Technical challenges of autonomy.
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Fig. 4. I-SUR cryoablation demonstrator.
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Fig. 5. Experimental setup for tissue lifting at UVR.
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Fig. 6. Image-guided dual-arm needle insertion with active tissue deformation.
(a) and (b) The initial/final state of needle insertion into a phantom tissue. (c) and (d) The 

initial/final state of needle insertion into a porcine tissue.
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Fig. 7. Pipeline illustration of dual-arm autonomous multithrow suturing on soft tissues.
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Fig. 8. 
Automated peg-transfer task setup. The UCB group used the dVRK robot from intuitive 

surgical with two arms. The blocks, pegs, and peg board were monochrome red to simulate a 

surgical setting. The dimensions of the pegs and the blocks are shown in the lower left, along 

with a top-down visualization of the peg board to the lower right. The robot takes actions 

based on images taken from a camera, installed 0.5 m from the task space, and 50° inclined 

from vertical. The six joints {q1, q6} are illustrated for one of the arms.
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Fig. 9. ARS demonstrator.
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Fig. 10. Comparison of the results of instruments part and type segmentation.
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Fig. 11. SARAS bed-side robotic assistant.
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