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Metabolomic Biomarkers in Blood Samples Identify
Cancers in a Mixed Population of Patients with
Nonspecific Symptoms
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ABSTRACT
◥

Purpose: Early diagnosis of cancer is critical for improving
patient outcomes, but cancers may be hard to diagnose if patients
present with nonspecific signs and symptoms. We have previously
shown that nuclear magnetic resonance (NMR) metabolomics
analysis can detect cancer in animalmodels and distinguish between
differing metastatic disease burdens. Here, we hypothesized that
biomarkers within the blood metabolome could identify cancers
within a mixed population of patients referred from primary care
with nonspecific symptoms, the so-called “low-risk, but not no-risk”
patient group, as well as distinguishing between those with and
without metastatic disease.

Experimental Design: Patients (n ¼ 304 comprising modeling,
n¼ 192, and test, n¼ 92) were recruited from2017 to 2018 from the
Oxfordshire Suspected CANcer (SCAN) pathway, a multidisciplin-
ary diagnostic center (MDC) referral pathway for patients with
nonspecific signs and symptoms. Blood was collected and analyzed

by NMR metabolomics. Orthogonal partial least squares discrim-
inatory analysis (OPLS-DA) models separated patients, based upon
diagnoses received from the MDC assessment, within 62 days of
initial appointment.

Results: Area under the ROC curve for identifying patients with
solid tumors in the independent test set was 0.83 [95% confidence
interval (CI): 0.72–0.95]. Maximum sensitivity and specificity were
94% (95% CI: 73–99) and 82% (95% CI: 75–87), respectively. We
could also identify patients with metastatic disease in the cohort of
patients with cancer with sensitivity and specificity of 94% (95% CI:
72–99) and 88% (95% CI: 53–98), respectively.

Conclusions: For amixed group of patients referred fromprimary
care with nonspecific signs and symptoms, NMR-based metabolo-
mics can assist their diagnosis, and may differentiate both those with
malignancies and those with and without metastatic disease.

See related commentary by Van Tine and Lyssiotis, p. 1477

Introduction
There is a strong correlation between earlier cancer diagnoses and

improved outcomes (1). If cancers are detected early, they are more
easily treated and have better outcomes as they are likely to be at an
early stage, with less nodal involvement, and are less likely to have
metastasized (2, 3).

Current cancer referral pathways, such as the “2-week wait” path-
ways in the UK, are designed predominantly around organ-specific

symptoms, such as hemoptysis or hematuria, or clinically palpable
abnormalities, such as breast lumps or an abdominal mass. This
process is ideal for cancers that present with specific symptoms but
is problematic when patients present with nonspecific symptoms, such
as fatigue. If there are no organ-specific symptoms or signs it may be
difficult to know to which specialist the patient should be referred.
Time and resources may be wasted, leading to delays in diagnoses, in
turn leading to increases in the proportion of patients presenting with
advanced tumors (4).

To help identify cancers in patients with nonspecific symptoms, the
Suspected CANcer (SCAN) pathway was established in Oxfordshire,
UK, as part of the Accelerate, Coordinate, Evaluate (ACE) Wave 2
initiative, which developedmultidisciplinary diagnostic center (MDC)
based pathways for these patients (5). SCAN is a referral pathway from
primary care to the hospital for patients with nonspecific symptoms
such as fatigue and weight loss. All patients referred to SCAN undergo
a contrast-enhanced CT of the chest, abdomen, and pelvis, blood
biochemistry and hematology analysis. If an obvious pathology is not
detected on initial investigations, consultant physician review of the
patient at an MDC is used in an attempt to reach a diagnosis.

Biofluid metabolomics is potentially an alternative for this patient
group. Biofluidmetabolomics is a conceptually simple and inexpensive
technique that relies upon the simultaneous determination of the levels
of small-molecule constituents within a biological sample, which are
analyzed to establish disease-specific patterns. These metabolomic
profiles are produced by an analytical technique such as nuclear
magnetic resonance (NMR) spectroscopy or mass spectrometry. We
have previously demonstrated that we can use NMR-based biofluid
metabolomic analysis to sensitively and specifically detect the presence
of brain metastases in a mouse model of breast cancer (6). Moreover,
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our data indicate that there is a distinct pattern of metabolites that
allows discrimination between brain and systemic tumor burdens (6).
Other groups have further been able to identify different types of
cancers using NMR metabolomics, including lung (7), colorectal (8),
pancreatic (9), liver (10, 11), breast (12), and bladder (13) cancers.

Here, we hypothesized that biofluid metabolomics would (i) be able
to distinguish patients with cancer from those without cancer, in a
mixed cohort with nonspecific symptoms, and (ii) be able to distin-
guish patients with and without metastases. We have tested these
hypotheses using NMR analysis of blood samples from patients
recruited to the SCAN pathway.

Materials and Methods
Patient recruitment

Patients (n¼ 304) were recruited from theOxfordshire (UK) SCAN
pathway (5) between May 2017 and August 2018. Patients were
recruited to the SCAN pathway from the general Oxfordshire popu-
lation if they met three essential referral criteria: (i) there was no other
“2-week wait” cancer-specific referral pathway suitable for the patient;
(ii) the patient was ≥40 years old; (iii) the patient had at least one of the
following: unexplained weight loss, severe unexplained fatigue, per-
sistent nausea or appetite loss, new atypical pain, an unexplained
laboratory test finding that did not suggest a specific diagnosis, a
primary care physician clinical suspicion of cancer or serious disease
(“gut feeling”; ref. 5). All patients gave written informed consent prior
to study admission. The study was conducted in accordance with the
UK policy framework for health and social care research and was
approved by the Oxford Radcliffe Biobank (ORB) research tissue bank
ethics committee (reference 19/SC/0173). Patients were included in
the study if (i) both a blood sample and CT scan were available, (ii) a
confirmed cancer/noncancer diagnosis was reached during the SCAN
follow-up, and (iii) no contaminant peaks were observed in the NMR
spectrum.

Patient pipeline and biofluid sample collection
Patients were referred from primary care to the SCAN pathway

without diagnoses known, ensuring random sampling from the pop-
ulation. Referred patients underwent a contrast-enhanced thorax,
abdomen, and pelvis CT, a full blood count and blood-based bio-
chemical analyses, after a minimum fasting period of 2 hours. If a
significant pathology was not detected by initial investigations, each

patient then underwent medical consultation in a MDC. The MDC
recommended further investigations if indicated, to reach a definitive
diagnosis (5). If a patient received a cancer diagnosis within 62 days
(2months) of initial assessment they were considered to have had their
cancer at the time of initial investigation (14). Patients were followed
up for 12 months in total after SCAN assessment, both to record the
diagnosis from the SCAN pathway and to determine whether any
cancers developed that were not diagnosed within the first 62 days.

Blood for metabolomics was collected into lithium-heparin tubes
immediately prior to CT imaging and was left to stand at room
temperature before separation by centrifugation (2,200 � g, 10 min-
utes). Plasma was immediately separated, aliquoted, and stored at
�80�C.

NMR acquisition
NMRmetabolomics analysis of plasmawas carried out as previously

described (15, 16). Plasma samples from patients (n ¼ 299, 150 mL
each) were defrosted on ice and mixed with NMR buffer (450 mL,
70 mmol/L sodium phosphate at pH7.4 in D2O). Samples were
clarified by centrifugation (16,000 � g, 3 minutes) to remove partic-
ulate matter before transferring to a 5-mm NMR tube.

All NMR spectra were acquired using a 700MHz Bruker AVIII
spectrometer operating at 16.4T equipped with a 1H (13C/15N) TCI
cryoprobe. Sample temperature was stable at 310K. 1H NMR spectra
were acquired using both a 1D NOESY presaturation scheme with a
2-second presaturation for attenuation of the water resonance, as well
as a Carr-Purcell-Meiboom-Gill (CPMG) spin-echo sequence to
suppress broad signals arising from large molecular weight blood
components (40-millisecond total effective filter time, 32 data collec-
tions, acquisition time of 1.5 seconds, relaxation delay of 2 seconds,
fixed receiver gain; ref. 15). 2D 1H-1H total correlation spectroscopy
(TOCSY) spectra were acquired on at least one sample in each
classification to assign the metabolites. Assignments were confirmed
by reference to literature values (17, 18) and online databases (19, 20),
with spiking experiments. For quality control, pooled samples were
spread throughout the run to monitor technical variation. Approxi-
mately 70 soluble metabolites, including a range of lipoprotein species,
amino acids, carbohydrates, and ketone bodies, were detected, as
previously described (21).

NMR data preprocessing
All spectrawere phased, baseline corrected, and referenced to lactate

at d ¼ 1.33 ppm, followed by visual inspection for errors, spectral
distortion, or contamination. Only CPMG spectra were used for
statistical analyses. The region 0.20 to 9.68 ppm, excluding the region
covering the residual water peak, was divided into 0.01-ppm width
‘buckets’, integrated, andPareto scaled (more details in Supplementary
Methods). MeanNMR spectra for groups of patients were prepared by
summing individual processed spectra from a patient group, then
dividing the summed spectrum by the number of patients. Difference
spectrum is the mean solid tumor spectrum minus the mean non-
cancer spectrum.

Statistical analysis
Prior to metabolomics analyses, patients were randomized into a

modeling set (two thirds of patients, n¼ 192) and an independent test
set (one third of patients, n ¼ 92), based on referral order. The
independent test set was reserved for determining the ability of the
models to classify new patients.

NMR bucket integrals were imported into R (R Foundation for
Statistical Computing, Vienna, Austria; RRID:SCR_001905; ref. 22).

Translational Relevance

The accurate and timely diagnosis of cancer is critical for
reducing the morbidity and mortality associated with late-stage
cancer diagnoses, but early diagnosis can be difficult to achieve if
patients present with nonspecific symptoms that may be due to
cancer, the so-called “low-risk, but not no-risk” patient group. This
often presents a challenge to physicians, and tests that can help aid
diagnosis are urgently needed. Here we have shown that biofluid
metabolomics analysis of peripheral blood from a cohort of such
patients can detect cancers with high sensitivity and specificity.
Biofluid metabolomics is a cheap and easy-to-administer test,
requiring only a small blood sample, and has the potential to act
as an effective triage tool to prioritize patients with nonspecific
symptoms for more invasive investigations or to rule out cancer in
patients with nonspecific symptoms.
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All multivariate statistical analysis was conducted using in-house R
scripts and the ropls package (RRID:SCR_016888; ref. 23). Orthogonal
partial least squares discriminatory analysis (OPLS-DA) was used to
generate diagnostic mathematical models to classify patients in the
modeling set employing the nonlinear iterative partial least squares
(NIPALS) algorithm. The number of orthogonal components was
computed using a seven-fold internal cross-validation to identify the
number of components to produce the optimalQ2 up to amaximumof
nine. The independent test set was not used at this stage. Within the
modeling set, the quality of classification was assessed using a 10-fold
external cross-validation scheme with 1,000 repetitions in total (to
correct for unequal class sizes). This validation scheme involves
multiple iterations of splitting the data into training and external-
validation sets. The training data are used to estimate the model
parameters and learn the underlying discriminatory patterns between
the groups under consideration, whereas the external-validation sets
are employed to assess the accuracy and generalizability of the trained
models. We quantified the response of the ensemble of models by
calculating the accuracy, sensitivity, and specificity of eachmodel from
the predicted classifications of the external-validation sets (i.e., sam-
ples that were not used inmodel building). It is important to appreciate
that the classifier (OPLS-DA) was blinded to the external-validation
set during the process of model training. These values were compared
with those of a null distribution (obtained from randomly permuting
the classifications) using the two-sided Kolmogorov–Smirnov test
(significant if P value < 0.05). Discriminators were identified by
calculating the variable importance of projection (VIP) score. Meta-
bolites with a VIP > 2 were considered significant in the multivariate
modeling. This validation scheme tends to avoid overfitting and helps
assess the generalizability of the model to previously unseen datasets.
For an exhaustive discussion on validation see ref. 24. The generaliz-
ability of these models was further confirmed using the independent
test set which was left out of both model training and validation.

Following this exhaustive validation, receiver operator charac-
teristic (ROC) curves were constructed to determine the optimal
diagnostic threshold within the OPLS-DA model. The point
closest to the top left corner of the ROC curve was used to
determine the optimal overall sensitivity, specificity, and balanced
accuracy [ðsensitivity þ specificityÞ=2]. F1 values were calculated
from F1 ¼ 2TP

2TPþFPþFN to provide an overall assessment of accuracy
suitable for models with uneven group sizes.

This classification threshold was then used with the independent
test set (i.e., the one third of patients reserved at the beginning of the
study, unused until now). Classifications weremade for each patient in
the independent test set and 2 � 2 contingency tables constructed to
determine efficacy of the models for predicting the identity of
unknown samples. Fisher exact test was used to determine if this
classificationwas significantly better than chance. Confidence intervals
(CI) for classification metrics were calculated using the Wilson score
interval (details in Supplementary Methods). Finally, patients who
received a changed diagnosis within the first year were assessed to see if
the model predicted them as having cancer.

Comparisons of ROCcurves andmale:female sex ratioswere carried
out by calculation of the Z-statistic for each pair of curves or ratio and
comparing with the expected normal distributions (details in Supple-
mentary Methods). After multivariate modeling, univariate statistical
analyses were conducted by summing integrals for each metabolite
resonance identified as significant in the multivariate models. Differ-
ences between means were calculated using the Student t test. Cor-
relation analyses were carried out using Pearson’s correlation.

Data availability statement
The data generated in this study are available upon request from the

corresponding author.

Results
Patient demographics and NMR acquisitions

In total, 304 patients were recruited from the SCANpathway during
the study period. Eleven patients (3.6%) were excluded from analyses
owing to missing biofluid samples, lack of CT scan, loss to follow-up,
NMR spectrum contamination, or lack of confirmed cancer/noncan-
cer diagnosis. A flow chart of patient recruitment is given in Fig. 1.

The total numbers of patients with cancer diagnosed by the SCAN
pathway during the study periodwas 27 of 294 (9.2%). SCANwasmore
successful at detecting new cancer diagnoses than existing organ-
specific urgent cancer referral pathways (6.6% in 2019–20; ref. 25).
Solid tumors were diagnosed in 24 of the 294 patients (8.2%).
Hematologic malignancies were diagnosed in the remaining 3
patients, but these were removed from modeling owing to both
the low number and alternate diagnosis strategies available for these
diseases. The most common solid tumors diagnosed were large
bowel (n ¼ 8) and lung (n ¼ 5). The remaining cancers were found
in numerous organs and are listed in Supplementary Table S1.
Within the population that received solid tumor diagnoses, 8
patients (33%) had nonmetastatic cancers, and 16 patients (66%)
had metastatic cancer. Seven patients who received a noncancer
diagnosis from the MDC assessment received a cancer diagnosis
within 1 year. Of these, 5 received solid tumor diagnoses and 2
received hematologic malignancy diagnoses.

The mean patient age was 68 years. Patients receiving solid tumor
diagnoses were older (73� 10 years) than unwell patients that received
a noncancer diagnosis (68 � 12 years, P < 0.05). No other subgroup
analysis showed significant age differences. More women than men
were recruited (P < 0.001), but no difference was evident in the
distribution of men and women between the model-building and test
sets. The mean patient body mass index (BMI) was 26.0 � 6.2 kg/m2

and no differences in BMI were found between different patient
groups. Full patient demographic details are summarized
in Table 1 and a visual representation of BMI across the patient
population is included in Supplementary Fig. S1. The most common
reasons for patient referral were weight loss (64%), general practitioner
gut feeling (63%), unexplained laboratory results (37%), fatigue (29%),
nonspecific pain (28%), and nausea/appetite loss (27%). On average,
patients presented with symptoms in 2 � 1 of these six categories.

Plasma metabolomics identifies cancer in individuals with
nonspecific symptoms with high sensitivity and specificity

Mean NMR spectra from unwell patients with nonspecific symp-
toms receiving solid tumor and noncancer diagnoses are shown
in Fig. 2, along with the difference spectrum between the two groups.
OPLS-DA was able to separate unwell patients with solid tumor
diagnoses from unwell patients with noncancer diagnoses (Fig. 3A
and B) using the plasma metabolome with an AUC of 0.91 (95% CI:
0.83–0.99; P < 0.001; cut-off value Fig. 3B; ROC curve Fig. 3C). Cross-
validation and permutation testing confirmed that the model signif-
icantly out-performed random chance (P < 0.001; Supplementary
Fig. S2) confirming that the model performance is not a result of
overfitting and that the developed model should be robust to novel
data. Indeed, the model was able to identify cancer in the modeling set
with sensitivity of 94% (95% CI: 73–99), a specificity of 82% (95% CI:

Blood Metabolomics Identifies Cancer in Symptomatic Patients
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75–87), a negative predictive value of 99% (95% CI: 96–100), and a
balanced accuracy of 88% (95% CI: 85–91). Two by two contingency
tables are given in Supplementary Table S2 and complete summaries of
model quality metrics at different classification thresholds are pre-
sented in Supplementary Fig. S3.

Inspection of model VIPs revealed that patients with solid
tumors had significantly decreased plasma lipoprotein levels
[–CH3, (–CH2–)n, ¼CH–CH2–CH2–, and saturated lipid resonances]
along with an increase in plasma glucose, N-acetylglucosamine

(NAC1), and threonine concentrations compared with unwell
patients without cancer in the nonspecific symptom cohort
(Fig. 4A; individual metabolite graphs with univariate analyses are
shown in Supplementary Fig. S4). Correlation analyses, in the
unwell with no cancer cohort, between age and each identified
metabolite found no correlation with more than 5% of variation
explained by age. Maximum R2 for any correlation was 0.05 for the
mobile�CH3 chylomicrons/very low-density lipoprotein (CM/VLDL)
resonance (r ¼ �0.23).

Patient recruitment and SCAN assessment (n = 304)

Randomization (n = 284)

Modeling set (n = 192) 
Unwell with solid tumor (n = 17)
Unwell without cancer (n = 175)

MDC diagnosis

Exclusions:
No blood (n = 4)
No CT scan (n = 1)

One year of follow-up

Exclusions:
Lost to follow-up (n = 1)
Hematological malignancy (n = 3)

Changed diagnoses:
Solid tumor (n = 5)
Hematological malignancy (n = 2)

NMR analysis (n = 299)

Independent test set (n = 92) 
Unwell with solid tumor (n = 7)
Unwell without cancer (n = 85)

Metabolomics modeling Independent validations
Patient predictions
Threshold analysis

ROC analysisCross-validation with
random permutations

Exclusions:
Spurious NMR peaks (n = 4)

Figure 1.

Study schematic showing patient recruitment into the
study, exclusions, biofluid collection, and confirmed
diagnoses.

Table 1. Patient demographics.

Variables Total Solid tumor diagnoses Noncancer diagnoses Modeling set Independent test set

Number of patients 284 (100%) 24 (8%) 260 (92%) 192 (68%) 92 (32%)
Age

Mean � SD 68 � 12 73 � 10a 68 � 12 69 � 11 67 � 13
(Minimum, maximum) (40, 93) (53, 93) (40, 90) (40, 90) (44, 93)

BMI (kg/m2)
Mean � SD 26.0 � 6.2 28.1 � 4.6 25.8 � 6.3 25.8 � 6.3 26.3 � 6.0
(Minimum, maximum) (13.2, 57.1) (18.3, 38.4) (13.2, 57.1) (13.2, 57.1) (15.4, 45.7)

Sex
Male 123 (43%) 10 (42%) 113 (43%) 78 (41%) 45 (49%)
Female 161 (57%)b 14 (58%) 147 (57%)b 114 (59%)b 47 (51%)

Note: Data are presented as n (%), or as mean � SD with range (minimum, maximum) for age and BMI (BMI data were available for 278 out of the 284 patients).
Differences between groups were compared using Student t test for age and calculation of Z-statistic for sex.
aP < 0.05 compared with noncancer diagnoses.
bP < 0.001, male:female ratio differs from 1:1.
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Robustness of validated metabolomics models to independent
test data

Following identification of the optimal diagnostic cutoff for the
validated “solid tumor versus noncancer” model, classification per-
formance was investigated on the independent test set.

Overall area under the ROC curve for the independent samples was
0.83 (95% CI: 0.72–0.95), which is not significantly different to that of
themodeling set (P> 0.05). Although the decreased number of patients
in the independent set can increase error, this area under the ROC
translated to a sensitivity of 71% (five out of seven cancers detected), a
specificity of 70% (60 out of 85 noncancer patients identified as such),
and a negative predictive value of 97% (60 noncancer patients of 62
predicted noncancer). These classification results were significantly
better than chance (Fisher exact test, P < 0.05; Supplementary
Table S2).

Plasma metabolite profile of patients with metastatic cancers
are distinct from patients with nonmetastatic cancer

Within the population of 24 patients who had solid tumors,
OPLS-DAmodels were also able to separate patients with a metastatic
cancer from those with nonmetastatic cancer with an AUC of 0.91
(95% CI: 0.77–1.00; Fig. 3C and D). This model also had sensitivity,
specificity, and overall accuracy significantly better than random
chance (P < 0.05; Supplementary Fig. S5). Model sensitivity was
94% (95% CI: 72–99), specificity was 88% (95% CI: 53–98), and
balanced accuracy was 91% (95% CI: 83–98). Two by two contingency
tables are given in Supplementary Table S2 and complete summaries of
model quality metrics at different classification thresholds are pre-
sented in Supplementary Fig. S6.

Inspection of the VIPs highlighted as significant by the multivariate
model indicated that patients with metastatic cancer had elevated

Figure 2.

A,Mean NMR spectra for samples from unwell patients with either confirmed solid tumor diagnoses (red, n¼ 17) or confirmed noncancer diagnoses (black, n¼ 175).
B,Difference spectrum showing regions that were increased in patients with solid tumors (red), decreased in patients with solid tumors (blue), or unchanged (gray).
C, Insets showingmagnified regions at points of significant difference between unwell with solid tumor spectra (red) and unwell without cancer spectra (black). NAC,
N-acetylated glycoproteins.

Blood Metabolomics Identifies Cancer in Symptomatic Patients
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levels of threonine, b-hydroxybutyrate, NAC1, and N-acetylneurami-
nic acid (NAC2) resonances along with modest decreases in lipopro-
tein resonances (–CH3 CM/VLDL and unsaturated lipid) relative to
patients with nonmetastatic cancers (changes and univariate statistics
shown in Fig. 4B). A summary of the directions of change of key
metabolites in themetastatic andnonmetastatic cancer cohorts relative
to the unwell noncancer patient cohort is given in Fig. 4C.

Identification of cancer before conventional imaging; two case
studies

Next, we investigated whether the metabolomics model was able to
identify early-stage cancers before conventional imaging. The patient
cohort was followed up for 1 year to determinewhether any new cancer
diagnoses were made in patients who had received noncancer diag-
noses in the initial 62-day diagnostic window. From the 267 initial
noncancer diagnoses, 5 patients developed solid tumors and 2 devel-
oped hematologicalmalignancies (identified at amean of 7� 2months
after initial assessment). Of the 5 patients who developed solid tumors,
2 patients were identified as having cancer by metabolomics assess-

ment of baseline blood samples (taken at the point of CT scan and
MDC assessment; Fig. 5). Full prediction scatter plots are given in
Supplementary Fig. S7.

In the first case, a patient in their 60s was referred to the SCAN
pathway because of abdominal pain, anemia, and a raised C-reactive
protein level. The radiology identified a nonspecific lung nodule, but
metabolomics predicted cancer at baseline. The patient entered routine
CT surveillance for the lung nodule. Suspicious features on the
surveillance scans prompted a tissue biopsy which confirmed adeno-
carcinoma. The patient subsequently had a lobectomy 9 months after
the initial MDC assessment.

In the second case, a patient in their 80s was referred to the SCAN
pathway because of unexplained weight loss. The patient had a past
medical history of gastric cancer, treated with distal gastrectomy
11 years prior to referral to SCAN.Therewas no evidence of recurrence
on either the CT imaging or any of the other diagnostic tests conducted
as part of the MDC assessment and the patient received a noncancer
diagnosis. Recurrence of the gastric cancer was subsequently identified
by endoscopy 7 months after initial referral, and it was discovered that
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the baseline metabolomics data for this patient also clearly predicted
cancer.

Discussion
In this study we have shown that metabolomic analysis of blood can

sensitively and specifically identify solid tumors in patients with
nonspecific symptoms. We have demonstrated that our models per-
form consistently under an extensive cross-validation scheme and can
predict independent sample classifications, despite heterogeneity in
cancer types represented. We have further shown that we can distin-
guish between nonmetastatic and metastatic cancers, within the solid
tumor patient population. Finally, we present two cases in which
biofluidmetabolomics identified the presence of cancer earlier than the
initial CT scan.

Metabolomics detects cancer in patients with nonspecific
symptoms

The diagnosis ofmalignancy in patients presenting with nonspecific
symptoms is a problem that is not solved by established population-
level screening programs, such as those used for breast cancer, or by
specific symptom referral pathways, such as those used to refer a
patient with a persistent cough. In many centers there remains no
clinical referral pathway for patients with nonspecific symptoms.

Although multidisciplinary approaches, such as that being used in
Oxfordshire, have shown promise for cancer diagnosis in patients with
nonspecific symptoms (26) they are not established inmany centers in
the UK or around the world. Without such a pathway, most of the
patients with cancer in the cohort studied would probably have
remained undetected until they presented at a later stage. Metabo-
lomics analysis of blood is both rapid and inexpensive, andmay enable

accurate, timely, and cost-effective triaging of patients with suspected
cancer.

We have also shown that we can distinguish betweenmetastatic and
nonmetastatic cancers, within the solid tumor patient population. This
ability to diagnose metastasis is independent of our ability to be able to
diagnose the primary tumor and shows promise for the use of
metabolomics as a potential cancer staging tool. The ability to identify
metastatic patients at first presentation may change the investigations
performed and the pathway for these patients.

Metabolomics has the potential to identify cancers before they
are detectable by CT

In our study cohort, 5 patients developed solid tumors within 1 year
of receiving a noncancer diagnosis. In 2 of these 5, our baseline
metabolomics analysis indicated the presence of cancer before con-
ventional imaging and investigation enabled a diagnosis to be made.
This suggests that metabolomics analysis has the potential to detect
cancer earlier than the current conventional investigation pathways,
and may be of value for both new presentations of malignancy and
recurrence. Although the metabolomics did not predict cancer in all 5
of the patients who later went on to a cancer diagnosis, this may reflect
one of many factors, including insufficient training data for specific
tumor types or tumor size at baseline assessment. Our modeling set
was heterogeneous, including a broad range of cancers, but at the
expense of depth for individual cancer types. Future studies, with
increased numbers of patients in specific cancer subsets, are likely to be
needed to accurately determine the sensitivity of our models for early
cancer diagnoses.

The case of the patient with the new primary lung tumor offers an
interesting insight into howmetabolomics may be deployed clinically.
This patient’s CT demonstrated a small lung nodule, which is a
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A, Fold changes in key metabolites identified by multi-
variate analysis concentrations in unwell patients with
solid tumors relative to the mean metabolite concentra-
tions in unwell patients without cancer. B, Fold changes
in key metabolite concentrations in patients with met-
astatic cancer, relative to the mean metabolite concen-
tration in patients with nonmetastatic cancer. C, Venn
diagram illustrating direction of metabolite concentra-
tion changes in metastatic and nonmetastatic cancers,
relative to unwell patients without cancer. HDL, high-
density lipoprotein. Note that “/” represents that the two
metabolites overlap in the NMR data, and not a ratio of
the two metabolite concentrations. Individual plots of
metabolite concentrations are given in Supplementary
Fig. S4.
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relatively common scenario as these nodules are commonly identified
as an incidental abnormality on CT scans performed for a variety of
clinical indications. Fortunately, most of these lung nodules are
benign, but 2% to 3% will develop into lung cancers (27). Identifying
which nodules will develop into cancers in a timely fashion is impor-
tant for improving outcomes. The British Thoracic Society Guidelines
advise serial CT scans for solid lung nodules >5mm at either 3-, 12-, or
potentially 24-monthly intervals over a period of 1 to 2 years (27). By
observing changes in the characteristics and size of the nodule, those
nodules that are likely to be malignant can be detected. Diagnosis is
confirmed with further imaging, such as PET-CT scanning, and
potentially a CT-guided lung biopsy, which has a small but significant
morbidity and is rightly reserved for those where there is a significant
suspicion ofmalignancy. Interval scanning places an increased burden
on radiology departments, and an additional radiation dose and
multiple hospital visits for the patient. In this study, we had metabo-
lomic evidence that a small lung nodule of indeterminate etiology at
presentation was malignant. This required repeat CT scans to identify
nodule enlargement suggestive of malignancy which was then con-
firmed on biopsy.

Comparison of metabolomics with alternative technologies
The mainstay of modern clinical cancer diagnosis is imaging,

primarily CT scanning, and if positive this is frequently coupled with

biopsy. However, it is clear from observing the numbers of late-stage
cancer diagnoses (3) that not all patients with cancer are being referred
for imaging investigations soon enough. Here we have demonstrated
that metabolomics is one technology that could identify these patients
sooner, but it is not the only technology in development. One notable
alternative technology is the analysis of circulating tumor DNA
(ctDNA), which relies on the sequencing of DNA shed from tumors
into the blood stream (reviewed in ref. 28). The abundance of
particular tumor-associated mutations in the isolated DNA gives an
indication of tumor burden. Owing to its genetic approach, ctDNA
analysis has great potential for distinguishing tumor subtypes (29) and
for monitoring tumor evolution (30). However, for initial detection of
tumors the case is less clear, as ctDNA is released only by tumor cells.
Consequently, there is no indirect amplification of the signal as is seen
with metabolomics. Instead ctDNA analysis must detect the minute
traces of DNA released directly by tumor cells which has intrinsic
sensitivity limitations. A second factor is that all mutations must be
known a priori, meaning that some mutations may be missed, even if
they are being released by tumor cells.

Theoretical mechanism for cancer-mediated metabolic
disruption

Dysregulatedmetabolism is so inextricably linkedwith cancer that it
is included as one of the key hallmarks of cancer (31), and the study of
oncometabolites and altered metabolism are major areas of
research (32, 33). As such, it may be logical to assume that the
metabolic changes we observe in this study are direct consequences
of intracellular changes in cancer cells, for example there is a growing
body of evidence that lipid metabolism is disrupted directly in tumor
cells (reviewed in refs. 34, 35), which also has a direct impact on
intracellular glucose concentrations. However, the small size of some
of the tumors would limit their direct effect on the overall whole-body
metabolic profile. Therefore, we expect that the metabolic profile
changes we observe are the combined sum of changes associated with
tumor metabolism and altered stromal metabolism—the so-called
reactive stroma (36, 37). Others have shown that stromal signaling
pathways can be activated by cancerous epithelial cells to promote the
transition to a cancer-associated reactive stroma, which is thought to
generate a supporting microenvironment for tumor growth and
progression (38). Unfortunately, in most investigations metabolites
have been studied in samples from individuals with specific types of
cancer and then comparedwith those in healthy controls, whichmakes
direct comparison between our findings and those of others prob-
lematic. However, some generalizations are possible and largely agree
with our observations.

In this study, we see clear trends of change underpinning separa-
tions. Given that patients were fasted for at least 2 hours prior to
sample collection and that there’s no link to BMI, it’s likely that these
changes are metabolic responses. One clear trend is for decreased lipid
concentrations being associated with solid tumors. Although intra-
cellular changes in lipid metabolism do occur, we believe that the
systemic response to the presence of the tumor is a more likely source
of the altered lipidmetabolism (39). For example, it is often argued that
lipoproteins are an important source ofmetabolites for tumors and this
demand may account, at least in part, for the lipid changes we have
observed (39, 40). Another example is the association of low levels of
low-density lipoprotein (LDL) with poor outcomes in patients with
liver cancer (41) and lower levels of VLDL with breast carcinoma
compared with healthy controls (42). Inflammatory tumor-associated
cytokines like TNF, IL1b, IL6, andmonocyte chemoattractant protein-
1 (MCP-1) are all known to be involved in altered lipidmetabolism at a

Figure 5.

Example patient journeys showing how metabolomics and multidisciplinary
diagnostic center workup provided different diagnoses.
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systemic level (43). In particular, IL6 has been shown to reduce insulin-
induced lipogenesis (44), whilst IL1b stimulated lipid accumulation by
the liver (45). This involvement of cytokines lends credence to the
hypothesis that it is indirect systemic changes, both within the local
tumor microenvironment and across the whole body, e.g., changes in
liver metabolism, that may be driving the magnification of the cancer
metabolome signal. This indirectmagnification hypothesis agrees with
previous mouse studies, in which very small tumors growing in
different locations in the body produced markedly different metabolic
profile changes that cannot be simply attributed to any ‘direct’
metabolic effects they could have produced (6). These systemic effects
have been postulated for some time (46), but it is only relatively
recently that suitable whole-organism studies in cancer have been
carried out to explicitly investigate the link between tumor and
systemic metabolism (47, 48).

The increase in glucose concentrations in cancer and the increase in
threonine in metastatic disease are more counterintuitive based on the
Warburg effect. However, we are looking at systemic, not intratumoral
glucose concentrations, and increased circulating glucose concentra-
tions have often been associated with an increased risk of developing
cancer (49, 50). Moreover, changes in plasma glucose concentration
may reflect release from muscle glycogen stores in response to situa-
tions of stress (48).

Overall, we believe that the profile of alteredmetabolismwe observe
is a combination ofmultiple interactions involving the tumor, the local
microenvironment, and distant regions such as the liver and adipose
tissue, responding to the altered inflammatory profile induced by the
tumor.

Clinical application of metabolomics
Formetabolomics tomake the transition froma research project to a

clinically useful tool, it needs to: (i) have sufficient sensitivity and
specificity to detect tumors in a cohort of patients; (ii) enable altera-
tions in investigation pathways for patients with suspected malignan-
cies, including the cohort investigated here of “low-risk, but not no-
risk” patients.

Incorporating metabolomics into the initial investigation of
patients with nonspecific symptoms may assist in the triage of
patients for further referral or investigation. If metabolomic analysis
is ordered from primary care with other initial blood analyses, it
would provide valuable information for next diagnostics steps.
Practically speaking a metabolomics blood test would require a
blood sample collection and then analysis at a specialist center,
meaning results could be returned before imaging appointments.
Overall cost would be considerably lower than imaging-based
investigations, with a likely price around that of other moderately
specialist blood investigations.

At the optimum classification threshold, our negative predictive
value of 99% provides a valuable “rule-out” test for cancer that would
be useful for primary care physicians, letting them reassure their
patients. Although specificity in our model is high, the low percentage
of true cancers in the at-risk population would lead to false positives. A
positive test, therefore, is a strong indication for referral for imaging
investigation, but not a guarantee of cancer. In such cases, it will be
necessary for the physician to take into consideration both the
metabolomic prediction of cancer and other symptoms. In a larger
study, itmay be possible to formalize this framework into a risk score to
help diagnoses. In any case, even a strong suspicion of cancer often
justifies the nonnegligible radiation dose from a CT scan. In our study,
for every patient with cancer that we would recommend for CT
scanning, we would also recommend CT scans for 2 patients without

cancer. However, we would also eliminate 9 patients from cancer
imaging pathways.

In a more general sense, metabolomic analysis may help interpret
the significance of incidental findings on imaging studies, such as lung
nodules or pancreatic cysts, prompting earlier interventions than the
current watch-and-wait approach. This may enable an earlier diag-
nosis to be reached, reducing the need for surveillance imaging,
radiation exposure, and costs. The ability of metabolomics to differ-
entiate metastatic from nonmetastatic cancer may be clinically impor-
tant, providing a guide on the most appropriate investigations,
improving diagnostic pathway efficiency, with potential significant
cost and time savings.

Conclusions and future directions
In this study we have shown that the application of NMR

metabolomics to a small blood sample offers a complementary
approach to the current pathway for investigating patients with a
clinical suspected possible malignancy. It is sensitive, specific, and
of low cost, requiring nothing more than a blood sample in the
clinic and an inexpensive NMR analysis, and can identify patients
with solid tumors when referred with nonspecific symptoms—a
traditionally hard-to-diagnose cohort.

NMRmetabolomics now needs testing in a larger cohort of patients,
potentially linked to multiple specific cancer referral pathways, as well
as the pathway for the “low-risk, but not no-risk” patient group. By
including potential time and cost-savings in the analysis, as well as the
conventional cancer detection utility metrics, the utility of NMR
metabolomics can be evaluated in a broader fashion.
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