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Abstract

Differences in cardiac and aortic structure and function are associated with cardiovascular 

diseases and a wide range of other types of disease. Here we analyzed cardiovascular 

magnetic resonance images from a population-based study, the UK Biobank, using an automated 

machine learning-based analysis pipeline. We report a comprehensive range of structural and 

functional phenotypes for the heart and aorta across 26,893 participants and explore how these 

phenotypes vary according to sex, age and major cardiovascular risk factors. We extended 

this analysis with a phenome-wide association study, in which we tested for correlations of 

a wide range of non-imaging phenotypes of the participants with imaging phenotypes. We 

further explored the associations of imaging phenotypes with early-life factors, mental health 

and cognitive function using both observational analysis and Mendelian randomization. Our study 

illustrates how population-based cardiac and aortic imaging phenotypes can be used to better 

define cardiovascular disease risks as well as heart-brain health interactions, highlighting new 

opportunities for studying disease mechanisms and developing image-based biomarkers.

Cardiac and aortic structure and function are associated with cardiovascular diseases 

(CVDs)1,2 and a wide range of other types of disease3–6. Quantitative phenotypes derived 

from cardiovascular magnetic resonance (CMR) images enable us to assess cardiac and 

aortic structure and function in a non-invasive way and provide important biomarkers for the 

determination of pathological states in CVDs. For example, the left ventricular ejection 

fraction (LVEF) is an important clinical biomarker for the diagnosis and treatment of 

heart failure1. The left ventricular myocardial mass (LVM) is widely used for classifying 

hypertrophy and predicting risks of cardiovascular events7. Although CMR imaging 

phenotypes clearly play an important role in disease research and diagnosis, extracting these 

phenotypes demand significant involvement of experienced image analysts. This has become 

a limiting factor for applying CMR in large-scale studies and exploiting imaging phenotypes 

at a population level.

Large-scale imaging studies potentially provide a wealth of information for investigating 

disease risk factors and discovering early-stage image-based biomarkers. Recent large-scale 

imaging studies collecting CMR images include the Framingham Heart Study (offspring 

cohort: 1,114 subjects)8, MESA (5,004 subjects)9, DETERMINE (655 subjects)10, Dallas 

Heart Project (2,921 subjects)11 and UK Digital Heart Project (~2,000 subjects)12, to name a 

few. They illustrated the potential informativeness of CMR in large-scale studies, but lacked 

the power to explore a wide range of individual phenotypes simultaneously.

UK Biobank is a population-based prospective study for investigating risk factors of 

common adult diseases in middle and old age13–16. It recruited 500,000 women and 

men initially aged 40-69 years old between 2006-10 for long-term follow-up, from whom 

extensive sociodemographic, life-style and health-related information were collected serially 

along with a range of physical measurements and a growing range of genetic and biomarker 

data. Currently, UK Biobank is in the process of acquiring comprehensive multi-modal 
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images of different organ systems from 100,000 participants using a highly standardised 

protocol, including magnetic resonance (MR) scans of the heart, brain and abdomen, 

ultrasound scans of carotid arteries, whole body dual-energy X-ray absorptiometry (DXA) 

scan of bones and joints, retinal photographs and optical coherence tomography (OCT) 

images14. These will add additional imaging phenotypes for understanding the determinants 

of diseases.

Deriving quantitative imaging phenotypes at this scale forms a major challenge. Recently, 

an image analysis pipeline has been developed for UK Biobank brain MR images, 

which generates ~4,350 imaging phenotypes of brain structure and function for 10,000 

subjects17. The derived brain imaging phenotypes, along with the breadth of life-style and 

health information collected by UK Biobank, provide a valuable resource for studying 

the influence of ageing, progression of neuropathology and identifying early-stage image-

based biomarkers for diseases18. An initial genome-wide association study (GWAS) has 

been performed19, which identified 148 clusters of associations between single nucleotide 

polymorphisms (SNPs) and brain imaging phenotypes that replicate at p < 0.05, providing 

insights into the genetic architecture relevant to the brain.

Here we present cardiac and aortic structural and functional imaging phenotypes for 26,893 

subjects and demonstrate association studies enabled by these imaging phenotypes at a 

population level. The phenotypes were derived from UK Biobank CMR images using an 

automated machine learning-based analysis pipeline, built upon previously proposed cardiac 

and aortic image segmentation methods using convolutional neural networks20, 21. The 

pipeline evaluates comprehensive imaging phenotypes for the heart and aorta, including 

global phenotypes of the four cardiac chambers and two aortic sections: the left ventricle 

(LV), right ventricle (RV), left atrium (LA), right atrium (RA), ascending aorta (AAo) and 

descending aorta (DAo), as well as regional phenotypes of the LV myocardial wall thickness 

and strain. We report associations of the cardiac and aortic imaging phenotypes with sex, 

age and traditional cardiovascular risk factors. We then conducted a large, population-based 

phenome-wide association study to relate the cardiac and aortic phenotypes to non-imaging 

phenotypes. We discovered a wide range of highly significant associations with life style, 

early-life factors, mental health and cognitive function of the participants.

Results

Image phenotyping

Figure 1 summarises the image analysis steps performed on short-axis, long-axis and 

aortic cine images (see detail in Methods). In total, 82 quantitative imaging phenotypes 

characterising the structure and function of the heart and aorta (Table 1) were generated 

for each subject. After running the analysis pipeline and performing quality control 

(Supplementary Table 1), imaging phenotypes were available for 26,893 subjects. 

Supplementary Table 2 describes the basic participant characteristics of the population. 

Supplementary Tables 3-6 report the summary statistics of the derived imaging phenotypes.

Bai et al. Page 3

Nat Med. Author manuscript; available in PMC 2022 August 06.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Associations with sex and age

We investigated imaging phenotypes which describe cardiac and aortic size (mass, volume 

or area) and change (ejection fraction or distensibility) during a cardiac cycle. Two or 

three imaging phenotypes were selected for each of the six anatomical structures, including 

the LV myocardial mass (LVM), LV end-diastolic volume (LVEDV), LV ejection fraction 

(LVEF), RV end-diastolic volume (RVEDV), RV ejection fraction (RVEF), LA maximum 

volume (LAV max), LA ejection fraction (LAEF), RA maximum volume (RAV max), RA 

ejection fraction (RAEF), AAo maximum area, AAo distensibility, DAo maximum area and 

DAo distensibility.

We first characterised the associations of these phenotypes with sex and age in the 

population. Subjects with self-reported CVDs were excluded to mitigate the impact of 

established cardiac conditions on imaging phenotypes. As the majority of the subjects were 

Caucasian, we excluded other ethnicities to mitigate the impact of ethnicity. After these 

exclusions, 23,415 subjects were used with available sex and age information. Multiple 

linear regression models were built, using each imaging phenotype as the dependent variable 

and sex and age as independent variables. An interaction term sex * age was included for 

LVM, LVEDV, RVEDV, RAEF, AAo distensibility and DAo distensibility, where it led to a 

model of better fit (one-sided F-test, p < 0.05).

Figure 2 and Supplementary Table 7 report the regression results. Overall, myocardial 

mass (LVM: β = 53.0, p = 3×10−218), cardiac chamber volumes (LVEDV: β = 53.1, p = 

2.9×10−74; RVEDV: β = 71.1, p = 7.7×10−116; LAV max: β = 10.6, p = 2.6×10−297; RAV 

max: β = 22.7, p = 10−324) and aortic cross-sectional areas (AAo max area: β = 143.9, p 

= 10−324; DAo max area: β = 104.9, p = 10−324) were greater for men than for women. 

Men consistently had lower cardiac chamber ejection fractions (LVEF: β = −3.2, p = 10−324; 

RVEF: β = −4.1, p = 10−324; LAEF: β = −0.9, p = 1.7× 10−15; RAEF: β = −8.9, p = 

1.4×10−19) than women.

In this cross-sectional study, ageing was associated with reduced myocardial mass and 

cardiac chamber volumes (LVM: β = −1.0, p = 2.2× 10−12; LVEDV: β = −5.9, p = 

2.5×10−136; RVEDV: β = −6.1, p = 4.7×10−130; LAV max: β = −2.0, p = 9.1× 10−44; 

RAV max: β = −1.0, p = 1.7×10−9), increased aortic areas (AAo max area: β = 29.3, p = 

6.1× 10−146; DAo max area: β = 20.8, p = 10−324) and reduced aortic distensibilities (AAo 

disten.: β = −0.7, p = 10−324; DAo disten.: β = −0.8, p = 10−324). We found that women had 

greater aortic distensibilities than men between 40 to 50 years old (Figure 2). However, there 

was a strong sex and age interaction (AAo disten.: β = 0.1, p = 8.4×10−14; DAo disten.: β 
= 0.1, p = 10−11). Aortic distensibilities decreased more quickly with age for women than 

for men. LVM, LVEDV, RVEDV and RAEF also exhibited strong sex and age interactions. 

Myocardial mass and ventricular volumes decreased more quickly with age for men than for 

women (LVM: β = −2.4, p = 5.6× 10−36; LVEDV: β = −1.5, p = 8.6× 10−6; RVEDV: β = 

−2.6, p = 4.6×10−13).
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Associations with traditional cardiovascular risk factors

We explored the associations of cardiac and aortic imaging phenotypes with demographics 

(sex, age, sex * age), anthropometrics (weight, height) and cardiovascular risk factors22, 

including systolic blood pressure (SBP), diastolic blood pressure (DBP), current smoking 

status, alcohol intake, vigorous physical activity (PA) frequency, high cholesterol and 

diabetes. Sex, current smoking status, high cholesterol and diabetes are binary variables. 

The others are continuous variables.

Supplementary Table 8 reports the regression coefficients and p-values for these factors. 

Figure 3 plots the regression coefficients with 95% confidence intervals. As expected, 

higher weight or height was associated with greater cardiac chamber volumes and aortic 

areas (p ranges from 10−324 to 4.1×10−15, apart from weight with RAV max). Higher 

SBP was associated with greater myocardial mass (LVM: β = 4.8, p = 10−324), greater 

ventricular volumes (LVEDV: β = 5.8, p = 2.4×10−130; RVEDV: β = 3.0, p = 4.8×10−32), 

greater ventricular ejection fractions (LVEF: β = 0.9, p = 4.9×10−49; RVEF: β = 1.6, p 
= 1.4×10−161) and lower aortic distensibilities (AAo disten.: β = −0.2, p = 1.1× 10−41; 

DAo disten.: β = −0.3, p = 2.9×10−53). Smoking, higher alcohol intake and more frequent 

vigorous PA were associated with greater LVM (p ranges from 6.4×10−132 to 6.7×10−8). 

Smoking and vigorous PA both were associated with lower left ventricular ejection fraction 

(p ranges from 1.1×10−4 to 0.037). Diabetes was associated with lower myocardial mass, 

lower cardiac chamber volumes, lower ejection fractions and aortic areas (p ranges from 

3.4×10−34 to 0.025, apart from RAEF).

Associations with clinical outcomes

We also explored the associations of cardiac and aortic imaging phenotypes with 12 

categories of common diseases, defined by self-reported disease code (Supplementary Table 

9). Figure 4 and Supplementary Table 10 report the odds ratios (ORs) and p-values of 

each imaging phenotype as a risk factor for a common disease as the outcome in logistic 

regression. Greater LVM was associated with higher risk of hypertension (OR = 1.66, p = 

3×10−84) and cardiac disease (OR = 1.41, p = 1.8×10−19). Greater cardiac chamber volumes 

were associated with higher risk of cardiac disease (p ranges from 1.5×10−63 to 0.008) and 

with lower risk of diabetes, asthma, COPD and bronchitis (p ranges from 1.3×10−37 to 

0.004, apart from LVEDV with asthma). Greater cardiac chamber ejection fractions were 

associated with lower risk of cardiac disease and diabetes (p ranges from 2.3×10−107 to 

0.028, apart from RAEF with diabetes). Greater aortic areas were associated with higher risk 

of hypertension (p ranges from 4.6×10−55 to 1.3×10−19) and lower risk of diabetes (p ranges 

from 3.7×10−17 to 1.8×10−10). Greater aortic distensibilities were associated with lower risk 

of hypertension and high cholesterol (p ranges from 6.6×10−30 to 0.022).

Phenome-wide association study

We performed a phenome-wide association study (PheWAS) to explore the correlations 

between imaging phenotypes and 11 categories of non-imaging phenotypes of the 

participants. The non-imaging phenotypes include primary demographics, early-life factors, 

education and employment, diet, alcohol, smoking, physical activity, physical measures, 

self-reported medical conditions, mental health and cognitive function. Figure 5a shows 
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the Manhattan plot of the univariate correlation p-values (two-sided) between imaging 

phenotypes and non-imaging phenotypes and Figure 5b shows the correlation coefficients. 

Univariate correlations were performed between M = 82 imaging phenotypes and N = 555 

non-imaging phenotypes for M × N = 45,510 times, with 2,617 correlations reaching the 

Bonferroni threshold for multiple comparisons (pBonf = 1.1×10−6 for α = 0.05) and 6,481 

correlations reaching the false discovery rate (FDR) threshold (pFDR = 0.007 for α = 0.05).

Supplementary Table 11 lists the five most significant PheWAS associations for each 

anatomical structure. Higher SBP, more frequent PA and lower pulse rate were most 

consistently associated with larger cardiac chamber volumes. Overall health rating was 

associated with lower cardiac chamber volumes. Higher birth weight, whole body fat mass 

and hip circumference were associated with larger aortic areas.

Figure 5a also highlights associations between cardiac imaging phenotypes and mental 

health and cognitive performance phenotypes. Supplementary Table 12 presents five 

most significant PheWAS associations with mental health phenotypes. Risk taking and 

neuroticism score were significantly associated with cardiac and aortic phenotypes. 

Supplementary Table 13 reports the most significant associations with cognitive 

performance, assessed as fluid intelligence score, response time or number of correct trials 

completed in cognitive tests.

Further exploring associations with birth weight, mental health and cognitive performance

Following the mass univariate characterisation of associations using PheWAS, we selected 

several novel and most strongly associated non-imaging phenotypes and performed multiple 

linear regressions to further investigate their associations with cardiac and aortic structure 

and function. We adjusted for sex, age, sex * age, weight, height, SBP, DBP, current 

smoking status, alcohol intake, vigorous PA frequency, high cholesterol, diabetes and added 

the non-imaging phenotypes of interest as additional independent variables.

Birth weight—Early-life influences and birth weight are associated with later-life 

cardiovascular disease risk23. A previous, smaller population study concluded that these 

can be attributed to influences on general somatic growth24. We investigated this further. 

Extended Data Figure 1 shows the conditional plots of imaging phenotypes against birth 

weight and Supplementary Table 14 reports detailed regression coefficients and p-values. 

Even with control for current weight and height as covariates, birth weight was still 

significantly associated with myocardial mass and cardiac chamber volumes (LVM: β = 

0.5, p = 1.4×10−5; LVEDV: β = 1.0, p = 7.5×10−7; RVEDV: β = 1.8, p = 7.4×10−15; LAV 

max: β = −0.7, p = 4.3×10−4; RAV max: β = 1.7, p = 2.2×10−14) and in particular with aortic 

areas. Higher birth weight was associated with greater aortic areas (AAo max area: β = 20.2, 

p = 10−40; DAo max area: β = 7.1, p = 3.2×10−26) and lower aortic distensibilities (AAo 

disten.: β = −0.04, p = 8.8×10−4; DAo disten.: β = −0.1, p = 5.5×10−4).

Risk taking and neuroticism—Symptoms potentially related to the heart and CVDs 

have an increased prevalence amongst people with depression and suggestive associations 

with other psychological states or traits, such as anxiety, stress or anger25. Here we 

extend these observations with evidence for more general associations of affective and 
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psychological traits with cardiac and aortic structure and function (Supplementary Table 15). 

Risk taking behaviour was associated with greater LVM (β = 1.0, p = 4.4×10−6) and lower 

ejection fractions (LVEF: β = −0.3, p = 0.004; RVEF: β = −0.5, p = 1.6×10−7; LAEF: β = 

−0.5, p = 0.001; RAEF: β = −0.8, p = 5.3 ×10−7). Higher neuroticism score was associated 

with lower cardiac chamber volumes (LVEDV: β = −0.6, p = 0.002; RVEDV: β = −1.0, p = 

9.8×10−7; LAV max: β = −0.4, p = 0.023; RAV max: β = −0.7, p = 3.7×10−4).

Fluid intelligence—Subclinical population variation in cardiac haemodynamics has 

been associated with measures of processing speed and executive function in an 

Icelandic population26, although both the association and its potential mechanisms remain 

controversial27. With the greater statistical power afforded by this large population study, 

we have found similar and much stronger associations in a UK population (Supplementary 

Table 16). Higher fluid intelligence score was strongly associated with greater LVM (β = 

0.8, p = 1.8×10−18) and greater cardiac chamber volumes (LVEDV: β = 1.1, p = 3.3×10−10; 

RVEDV: β = 2.0, p = 2×10−26; RAV max: β = 1.6, p = 1.9×10−20). We further performed 

a mediation analysis (Extended Data Figure 2), regressing fluid intelligence score against 

the LVM, using the brain volume as a mediator and adjusting for the same covariates. In 

this model, higher LVM was strongly associated with greater brain volume (β = 0.189, p 
= 1.3 ×10−53), which was associated with higher fluid intelligence score (β = 0.330, p = 

3.7×10−49). Approximately one-fourth (26%) of the association between LVM and fluid 

intelligence score was mediated by brain volume.

Mendelian randomisation

By leveraging the SNPs associated with risk factors as instrumental variables and the genetic 

data from UK Biobank, we performed two-sample Mendelian randomisation analysis to 

investigate the relationships between risk factors and cardiac or aortic imaging phenotypes. 

Five risk factors, which have publicly available genetic association statistics that are 

needed for Mendelian randomisation, were investigated (Supplementary Tables 17). Three 

Mendelian methods were used, including inverse-variance weighting (IVW), weighted 

median (WM) and MR-Egger. Comparisons of heterogeneity statistics28 suggested that 

IVW and MR-Egger fitted equally well in most of the Mendelian randomisation analyses 

with the ratio statistic QR being close to 1. Supplementary Table 18 compares the effect 

sizes and p-values of Mendelian randomisation (detailed results in Supplementary Table 

19) to observational analysis results. Higher SBP was associated with greater LVM (IVW: 

β = 4.8, p = 0.006; WM: β = 4.6, p = 0.044) and lower AAo distensibility (IVW: β = 

−0.3, p = 0.042; WM: β = −0.4, p = 0.048) with the same effect direction as conventional 

observational associations. Diabetes was associated with lower AAo max area (IVW: β 
= −12.0, p = 0.003) and with the same effect direction as the observational association. 

However, findings for SBP and diabetes were not significant after Bonferroni correction 

for multiple testing (pBonf = 1.4 ×10−3 for α = 0.05). Birth weight was associated with 

LVM, LVEDV, RVEDV and AAo max area (IVW and WM: p ranges from p = 6.2×10−8 

to 0.049) and with consistent effect directions to those seen with observational analyses. 

The findings for birth weight using the IVW method sustained after adjustment for multiple 

testing and also with QR > 0.99. The effect directions of risk taking and fluid intelligence 

on imaging phenotypes were mostly consistent with observational associations, although the 
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effects were not statistically significant. The MR-Egger pleiotropy test was only significant 

for the association between birth weight and AAo distensibility (p = 0.014).

Discussion

This study makes four major contributions. First, we presented quantitative phenotypes for 

six anatomical structures of the heart and aorta on a population-level CMR study, which 

were extracted using an automated machine learning-based analysis pipeline. We have 

returned the derived imaging phenotypes from the 26,893 subjects included in this study to 

UK Biobank to be made available for use by other researchers. A data visualisation website 

was built (https://heartvis.doc.ic.ac.uk), which allows researchers to explore the associations 

between imaging phenotypes and non-imaging phenotypes. We have shared the image 

analysis pipeline (https://github.com/baiwenjia/ukbb_cardiac), which we anticipate will be a 

generally valuable resource for CMR image analysis. Second, we demonstrated the potential 

informativeness of quantitative cardiac and aortic imaging phenotypes, which enabled both 

targeted association studies and a large-scale PheWAS. Third, based on novel observations 

in the PheWAS, we reported significant associations of cardiac and aortic phenotypes 

with a wide range of participant phenotypes, including birth weight, mental health and 

cognitive performance measures, illustrating the utility of generating these phenotypes even 

from a relatively healthy population when acquired at such a novel scale. Finally, we 

investigated the effects of these non-imaging phenotypes on imaging phenotypes using 

Mendelian randomisation and provided further evidence supporting the meaningfulness of 

the observational associations.

Using the imaging phenotypes, we characterised age-related changes in the heart and 

aorta for women and men. In this cross-sectional study, ageing was strongly associated 

with lower volumes of all the four cardiac chambers and with higher ejection fractions. 

Compared to cardiac chamber volumes and ejection fractions, aortic distensibilities were 

even more sensitive to age. For example, the mean distensibility of the ascending aorta in 

our population was substantially lower at 70 years old (1.3 ×10−3 mmHg−1) than at 50 years 

old (3.1 ×10−3 mmHg−1), consistent with the previous finding of an age-related tendency 

to increased arterial stiffness29, 30. Women showed a steeper decline of aortic distensibility 

with age compared to men. Some study suggested that this may be a consequence of 

physiological changes after menopause30.

Our study substantially extends findings in22 with association tests over a wider range of 

structural and functional phenotypes. We showed strong relationships of cardiac and aortic 

imaging phenotypes with SBP, smoking, alcohol intake, PA and diabetes, all of which are 

well described risk factors for cardiovascular diseases22. Although the percentage of current 

smokers is relatively low in this UK Biobank imaging subcohort (3.7%) compared to the full 

UK Biobank cohort (10.5%)31 or the general UK population32, we still found a relatively 

large effect size for smoking, highlighting its association with subclinical differences in 

cardiac structure and function33. In addition, due to the large sample size that we have, small 

signals of influence on cardiac and aortic anatomy and function are able to be detected. 

For example, although the effect sizes were relatively small, alcohol intake was highly 

Bai et al. Page 8

Nat Med. Author manuscript; available in PMC 2022 August 06.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

https://heartvis.doc.ic.ac.uk
https://github.com/baiwenjia/ukbb_cardiac


significantly associated with greater myocardial mass, cardiac chamber volumes and aortic 

areas, which could not be established in an earlier, smaller population study22.

Additional associations between cardiac or aortic imaging phenotypes and prevalent diseases 

suggested their potentials for predicting the risks of diseases. Greater left ventricular mass 

or cavity volumes were associated with increased risk of cardiac diseases34. We also 

found that greater right ventricular volume was associated with increased risks for lung 

diseases, including asthma, COPD and bronchitis. This is probably due to the physiological 

interaction between the heart and the lung, consistent with previous findings35, 36. Aortic 

areas and distensibilities, which play important roles in the haemodynamics of the 

circulatory system37, were highly associated with the risk of hypertension.

The PheWAS analysis demonstrated that cardiac and aortic imaging phenotypes were 

significantly correlated with a wide range of non-imaging phenotypes of the participants 

(Supplementary Tables 20 and 21). PheWAS is a data-driven way to generate new 

hypotheses regarding developmental, life-style, clinical and environmental influences on 

disease risks through the discovery of their associations with population variation in cardiac 

and aortic anatomy and function. Particularly interesting were associations with early-life 

development, traits related to mental health and cognitive function. The large population 

allowed the identification of highly significant associations of aortic structure with birth 

weight independent of the general anthropometric measures such as adult height and 

weight38. We found associations between higher birth weight and greater aortic area, the 

diameter of which is a possible predictor for all cause mortality and incident cardiovascular 

events39.

The PheWAS also provided novel data for generating hypotheses relating cardiovascular 

function to mental health. We found that risk-taking behaviour was significantly associated 

with greater left ventricular myocardial mass and lower ventricular and atrial ejection 

fractions. This could be explained by common co-morbid behaviours such as smoking, 

drug and alcohol abuse40, 41, which are independently associated with cardiovascular 

diseases42, 43. Alternatively, neurogenic factors may contribute directly to cardiac 

remodelling44. Associations of risk taking with brain structure and function have been 

described45.

Our exploration of fluid intelligence score associations supports conclusions of an earlier, 

smaller study26, suggesting relationships between cardiovascular and cognitive function. 

Many studies have already demonstrated the importance of cardiovascular function in 

cognition and cognitive diseases6, 46. This may be a consequence of shared risk factors 

between dementia and cardiovascular diseases, such as smoking, hypertension, high 

cholesterol and diabetes47 or direct consequences of impaired cardiovascular function on 

the brain48. Our mediation analysis demonstrated a positive association between heart and 

brain structure, the latter of which was positively associated with general cognitive ability49.

The Mendelian randomisation analysis provided further evidence for the associations 

between non-imaging phenotypes and imaging phenotypes. Perhaps most interesting was 

the potential causal relationship discovered between birth weight and cardiac and aortic 
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structures even in mid-later ages. This substantially extends earlier findings that heart size at 

birth has subtle but significant and persistent effects on cardiac structure into adulthood50. 

While the positive association between SBP and left ventricular mass is consistent with 

a previous interventional study51, it raises questions about the best interpretation of a 

more recent interventional study showing that intensive blood pressure (BP) control and 

standard BP control reduced left ventricular mass to a similar extent52. There was a negative 

association between diabetes and aortic area and distensibility, an observation that is useful 

for understanding observations such as the negative relationship of aortic distensibility to all 

cause mortality53.

However, there are several limitations to our analysis approach and observations. First, 

the central component of the image analysis pipeline, the convolutional neural network 

(CNN), was trained using UK Biobank images20, 21. It is possible to adapt the pipeline 

to images scanned on different systems or using different protocols, if training data is 

available for retraining or fine-tuning the network54. To apply the pipeline to images 

with completely unknown characteristics, however, the neural network is likely to produce 

less accurate segmentations. In machine learning, this problem is referred to as transfer 

learning or domain adaptation and machine learning methods that can reliably address 

this problem still remain elusive55. Second, the image analysis pipeline is automated. 

However, at this point, quality control for the image segmentation, was still performed 

manually. A future methodological extension is to develop and incorporate accurate and 

automated quality control to reduce the need for this manual intervention. Third, our image 

analysis pipeline focuses on a limited range of short-axis, long-axis and aortic cine images, 

which broadly characterise the cardiac and aortic structure and function. UK Biobank also 

collects tagged MR, aortic valve flow and T1 map images, the analysis of which will 

provide additional imaging phenotypes for the heart and aorta. Fourth, while Mendelian 

randomisation analysis may provide support for certain potential causal relationships, more 

reliable evidence needs to be provided by interventional research56. In the two-sample 

Mendelian randomisation analysis, the genetic associations of SBP, birth weight and risk 

taking were obtained from meta-analyses on both UK Biobank cohort and other cohorts 

(Supplementary Table 17), as findings excluding UK Biobank cohort were not available. 

This may introduce bias due to the overlap between the samples for risk factor GWAS 

and the samples for outcome (imaging phenotype) associations57. The summed proportion 

of variance in risk factors explained by all independent SNPs (r2 < 0.1) ranged from 

0.25% (risk taking), 0.44% (SBP) to 10.78% (fluid intelligence) (Supplementary Tables 

22-26). The relatively lower proportions of variance explained for risk taking and SBP 

may indicate bias due to the overlapping sample. However, since only a UK Biobank 

imaging subcohort (n = 22,229) was used for outcome associations, the overlap with the 

SBP (n = 1,006,863), birth weight (n=298,142) or risk taking GWAS cohort (n = 466,571) 

and the resulting bias may be presumed to be small. For the other risk factors used for 

Mendelian randomisation, the genetic associations were obtained from cohorts other than 

UK Biobank and thus without overlapping samples. Finally, the UK Biobank population 

is a relatively healthy cohort compared to the general UK population14. The extent to 

which observations are generalisable to populations with other ethnic mixes or with different 

frequencies of co-morbid diseases will need to be explored. The current imaging study 
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focuses on observational associations on a cross-sectional dataset from a specific population, 

which may limit its generalisability for estimation of associations in other populations or 

making causal inferences. However, a re-imaging project for a subset of 10,000 UK Biobank 

subjects has just begun, which will increase its value for longitudinal studies.

In summary, we have developed and applied novel analytical methods to generate 

quantitative and clinically relevant phenotypes of the heart and aorta for 26,893 CMR 

images from the ongoing UK Biobank study. We have defined 2,617 significant associations 

between imaging phenotypes and non-imaging phenotypes of the participants, which 

provides a proof of principle for the use of quantitative imaging phenotypes for more 

precisely describing relationships between risk factors and cardiovascular diseases. Our 

findings provide novel insights into the influence of early-life factors and diabetes on cardiac 

and aortic structure and function, as well as the interaction between heart and cognitive 

phenotypes. We also demonstrate that in conjunction with data on genetic determinants 

of individual susceptibilities to life style or co-disease risks, causal relationships can be 

better defined using instruments such as Mendelian randomisation and genetic data available 

from UK Biobank16. A particular opportunity afforded by UK Biobank is the linkage to 

the long-term health outcomes of the participants through the National Health Service 

(NHS) record. In principle, this should enable extensions of investigations from associations 

to causal models for major later-life disorders. The power for such studies will increase 

rapidly over time. For example, of the 100,000 imaging participants, it was estimated that 

approximately 5,600 participants will have myocardial infarction (MI) and coronary death 

by 2022, rising to 9,400 by 2027 (diabetes: 8,000 rising to 13,600; stroke: 1,800 rising 

to 4,000; Alzheimer’s disease: 1,800 rising to 6,000)14. The derived imaging phenotypes, 

together with participant health information and other phenotype and genotype data, will 

provide a valuable resource for extension of studies on genetic architecture relevant to the 

heart, discovering risk factors and early-stage biomarkers for a variety of diseases and for 

new understanding in emerging areas of interest, such as the relationship between late-life 

heart and brain health.

Methods

Data

UK Biobank is an open access resource, open to bona fide scientists undertaking health-

related research that is in the public good. Ethical approval is obtained from the North West 

Research Ethics Committee (REC reference: 11/NW/0382) and written consent is obtained 

from all participants. The UK Biobank CMR protocol is described in58. In brief, CMR 

images are acquired using clinical wide bore 1.5 Tesla scanners (MAGNETOM Aera, Syngo 

Platform VD13A, Siemens Healthcare, Erlangen, Germany). The image analysis pipeline 

consists of several parts, respectively for short-axis, long-axis and aortic cine images, which 

provide measures for different anatomical structures.

Short-axis image analysis

The LV, myocardium and RV are segmented on short-axis cine images using a fully 

convolutional network20, which was trained on manual annotations of 3,975 subjects. The 
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LV and RV volumes across a cardiac cycle are derived from segmentation, as illustrated 

in Figure 1a. The end-diastolic volume (EDV), end-systolic volume (ESV), stroke volume 

(SV) and ejection fraction (EF) are determined for both ventricles. The LV myocardial mass 

is calculated from the myocardial volume using a density of 1.05 g/mL. The myocardial 

wall thickness is measured on each image slice using the distance between endocardial 

contour and epicardial contour at the end-diastolic (ED) frame, illustrated in Figure 1e. The 

myocardium is divided into 16 AHA segments according to59. The AHA segment model is a 

standard model recommended by the American Heart Association (AHA), which divides the 

LV into 16 or 17 segments for assessing regional variations of structure and function. Based 

on the model, the mean wall thickness for each segment and the global mean wall thickness 

are calculated.

Motion tracking is performed on short-axis images using non-rigid image registration60 

between successive time frames, using the MIRTK toolkit. The inter-frame displacement 

fields are composed to obtain the displacement at frame k with regard to the reference frame, 

the ED frame or frame 0. To avoid the drift effect due to the accumulation of registration 

errors61, motion tracking is performed twice, respectively along the forward direction 

(tracking starting from frame 0 to frames 1, 2, 3, …) and backward direction (tracking from 

frame 0 to frames T – 1, T – 2, T – 3, …, where T denotes the number of frames per cardiac 

cycle). The average displacement field is calculated by weighted averaging the forward 

field and backward field, u0 k(x) = T − k
T ⋅ u0 k,  forward (x) + k

T ⋅ u0 k, backward(x), where 

u0→k(x) denotes the displacement from frame 0 to frame k at pixel x, and T − k
T  and k

T
denote the weights for the forward and backward displacement fields. For a frame at the 

early stage of a cardiac cycle (small k), the forward displacement field will have a higher 

weight. For a frame at the late stage of a cardiac cycle (k close to T), the backward 

displacement field will have a higher weight.

Three images slices are used for motion tracking, namely a basal slice at 25% of the LV 

length (the distance from the mitral annular plane to the apex of the LV), a mid-cavity slice 

at 50% and an apical slice at 75% of the LV length, according to62, 63. The myocardial 

contours on the three slices are divided into AHA 16 segments, illustrated in Figure 1f. 

Based on the displacement field from motion tracking, myocardial contours at the ED 

frame are warped onto each time frame of the cardiac cycle, illustrated in Figure 1g. 

Circumferential and radial strains are calculated for each time frame based on the change 

of length for each line segment according to64, using the equation Edir  =
ΔLdir
Ldir

, where dir 

denotes the direction, Ldir denotes the length of a line segment along this direction and 

ΔLdir denotes its change. The peak strain for each segment and the global peak strain are 

calculated.

Long-axis image analysis

The LA and RA are segmented on long-axis 4-chamber (4Ch) view cine images using 

neural networks20, illustrated in Figure 1b. The LA and RA 4Ch areas and longitudinal 

diameters are determined from the segmentation. The LA is also segmented on long-axis 
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2-chamber view (2Ch), illustrated in Figure 1c. The LA 2Ch area and longitudinal diameter 

are also determined. The LA volume is calculated using the biplane area-length formula 

V = 8
3π ⋅

A2Cℎ ⋅ A4Cℎ
L , where A2Ch and A4ch denotes the atrial area on the 2Ch and 4Ch view, 

L denotes the longitudinal diameter averaged across two views65, 66. The RA volume is 

calculated using V = 8
3π ⋅

A4cℎ
2

L . The maximum, minimum volumes and the ejection fraction 

are determined for both atria.

Motion tracking is performed on long-axis 4Ch view images, using the same approach 

as short-axis image motion tracking. The longitudinal strain is calculated from 4Ch view 

motion tracking results. The myocardial contour is divided into 6 segments, basal septal 

(1), basal lateral (2), mid septal (3), mid lateral (4), apical septal (5) and apical lateral (6), 

illustrated in Figure 1h. The peak strain for each segment and the global peak strain are 

calculated.

Aortic image analysis

The AAo and DAo are segmented on aortic cine images using a spatio-termporal neural 

network21, illustrated in Figure 1d. The maximum and minimum cross-sectional areas, Amax 

and Amin, are derived from the segmentation. The aortic distensibility is calculated by 

D =
Amax − Amin

Amin ⋅ Pmax − Pmin
, where Pmax denotes the central systolic blood pressure and Pmin 

denotes the central diastolic blood pressure. The central blood pressure is calculated from 

the brachial blood pressure using Vicorder (Skidmore Medical, Bristol, UK) by applying a 

previously described brachial-to-aortic transfer function58.

Quality control

All image segmentations are manually quality controlled by an experienced cardiologist. 

The segmentation screenshots for short-axis, long-axis and aortic images at ED and ES 

frames are visually inspected. Bad segmentations, images with insufficient coverage of 

the LV or missing anatomical structures are discarded. For motion tracking, subjects with 

failed image registration or outlier peak global strain values (positive circumferential strain, 

negative radial strain or positive longitudinal strain) are discarded.

Statistical analysis

Multiple linear regression is used to identify the associations between imaging phenotypes 

and cardiovascular risk factors, using the Python statsmodels library. The risk factors 

are provided by UK Biobank, including sex (31), age (derived using the date attending 

assessment centre (53), birth year (34) and birth month (52)), weight (21002), height (50), 

SBP (4080), DBP (4079), current smoking status (20116), alcohol intake, vigorous PA 

frequency (904), high cholesterol and diabetes. The number inside the parenthesis indicates 

the UK Biobank field ID. Alcohol intake in the unit of g/day is derived from self-reported 

alcohol intake, including average weekly intake of red wine (1568), champagne plus white 

wine intake (1578), beer plus cider (1588), spirits (1598) and fortified wine (1608). The 

quantity of each type of drink is multiplied by its standard drink size and reference 
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alcohol content, then converted to consumption per day67. High cholesterol is derived from 

self-reported non-cancer illness code (20002), using illness code 1473. Diabetes is derived 

similarly, using illness code 1220, 1221, 1222 and 1223. Mediation analysis is performed 

following Baron and Kenny’s steps68 and implemented also using the Python statsmodels 

library.

In the PheWAS, effects such as age, sex, weight and height are regressed out of 

the imaging phenotypes, similar to18, as they may confound with many non-imaging 

phenotypes. The non-imaging phenotypes are normalised to follow the Gaussian distribution 

N(0,1). Univariate cross correlation is then performed between each deconfounded imaging 

phenotype and each normalised non-imaging phenotype. The non-imaging phenotypes are 

grouped into 11 categories similar to18, including primary demographics (1001), early-life 

factors (1002), education and employment (1007), diet summary (1004), alcohol summary 

(100051), smoking summary (100058), physical activity (100054), physical measure 

summary (1006), self-reported medical conditions (1003), mental health (1018), cognitive 

function (100026). The number inside the parenthesis indicates the UK Biobank category ID 

listed at http://biobank.ndph.ox.ac.uk/showcase/cats.cgi. We use all non-imaging phenotypes 

that are available to us in our UK Biobank Application 18545 and that belong to the 11 

categories. Then we perform data cleaning, discarding phenotypes with more than 90% 

missing data and keeping only one phenotype if there are two highly correlated phenotypes 

with correlation coefficient > 0.9999.

Mendelian randomisation

Data sources for the genetic associations of each risk factor of interest are presented in 

Supplementary Table 17, including SBP, diabetes, birth weight, risk tolerance and fluid 

intelligence. The genetic instruments, the SNPs, were selected with p < 5 ×10−8. For fluid 

intelligence, due to the lack of genetic instruments, a p-value cut-off of 1 ×10−5 was used. 

To avoid weak-instrument bias, we calculated the F-statistics and only included genetic 

instruments with an F-statistic > 10. We removed correlated SNPs (r2 > 0.1) by keeping 

the SNP with the smallest p-value for the association with the risk factor of interest. 

Supplementary Tables 22-26 list the SNPs used for each risk factor. Genetic associations of 

imaging phenotypes were performed among genotyped Caucasian, adjusting for sex, age, 

height and genetic principal components. Three Mendelian randomisation methods were 

used56: inverse-variance weighting (IVW), weighted median (WM) and MR-Egger69, 70. 

We assessed the heterogeneity statistics Q for IVW, Q′ for MR-Egger and calculated the 

ratio statistic QR = Q′ / Q for model selection28. A QR close to 1 indicates that IVW and 

MR-Egger models fit the data equally well, whereas a QR much less than 1 indicates that 

MR-Egger is better fitting. MR-PRESSO was used to identify outlier SNPs71. Outlier SNPs 

identified by MR-PRESSO were excluded from the analysis. Analysis was performed using 

the TwoSampleMR package in R72. We adjusted for multiple testing of 5 risk factors and 7 

imaging phenotypes using Bonferroni correction.

Bai et al. Page 14

Nat Med. Author manuscript; available in PMC 2022 August 06.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

https://biobank.ndph.ox.ac.uk/showcase/cats.cgi


Extended Data

Extended Data Figure 1. The conditional plots of imaging phenotypes against birth weight.
The dark line denotes the conditional plot of an imaging phenotype against birth weight, 

with other variables (sex, age, sex * age, weight, height, SBP, DBP, current smoking status, 

alcohol intake, vigorous PA frequency, high cholesterol and diabetes) set to their mean. The 

grey area denotes the 95% confidence interval. n = 12,169 subjects were analysed with 

available birth weight information. The p-values were calculated from two-sided t-tests.
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Extended Data Figure 2. Mediation model for LVM, brain volume and fluid intelligence score.
The relationship between LVM and fluid intelligence score (path c) is 26% (difference 

between c and c’) mediated by total brain volume. n = 18,369 subjects were analysed with 

available fluid intelligence information. The values are depicted as regression coefficient 

(two-sided t-test p-value) for standardised imaging phenotypes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Reporting summary

Further information on research design is available in the Life Sciences Reporting 

Summary linked to this paper.
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Figure 1. Automated CMR image analysis pipeline.
a) LV and RV volumes are derived from short-axis image segmentation (red: LV cavity; 

green: myocardium; blue: RV cavity). b, c) LA and RA volumes are derived from long-axis 

image segmentation (purple: LA cavity; orange: RA cavity), as illustrated using a 4 chamber 

view (b) and a 2 chamber view (c). d) AAo and DAo cross-sectional areas are derived 

from aortic image segmentation (red: AAo; green: DAo). e) Myocardial wall thickness is 

measured using the distance between LV endocardial contour (red) and epicardial contour 

(green). f) For measurement of myocardial wall thickness, three short-axis image slices 

are selected, including a basal slice at 25% of the LV length (the distance from the mitral 

annular plane to the apex of the LV), a mid-cavity slice at 50% and an apical slice at 

75% of the LV length. The endocardial and epicardial contours are divided into 16 AHA 

segments, which are coded by different colors, as indicated by the color bar. g) Motion 

tracking is performed on short-axis image slices, warping the contours to each time frame 

across a cardiac cycle. Circumferential and radial strains (color-coded on the contours) are 

calculated using the change of length of the line segments. h) On the long-axis 4 chamber 

view image, the endocardial and epicardial contours are divided into 6 segments (coded by 

different colors). i) Motion tracking is performed on the long-axis 4 chamber view image. 

Longitudinal strain is calculated using the change of length of the line segments.
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Figure 2. Associations of selected imaging phenotypes with sex and age.
Each graph displays a kernel density plot of an imaging phenotype plotted against age, 

as well as the linear regression lines for the whole population (gray), for women (red) 

and for men (blue). n = 23,415 subjects were included in the analysis. Detailed regression 

coefficients and association p-values can be found in Supplementary Table 7.
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Figure 3. Regression coefficients for cardiac and aortic imaging phenotypes on demographics 
(blue), anthropometrics (green) and cardiovascular risk factors (red).
For continuous variables, the coefficient describes the effect per standard deviation of the 

variable. For binary variables, the coefficient describes the effect with a change in the 

variable from 0 to 1. The gray bars denote the 95% confidence interval. n = 19,988 subjects 

were included in the analysis.
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Figure 4. Associations of cardiac and aortic imaging phenotypes with common diseases.
(a) Odds ratio for an imaging phenotype as a risk factor for a common disease as the 

outcome. Sex, age, weight and height were adjusted in a logistic regression analysis. n = 

25,743 subjects were included in the analysis. (b) The corresponding p-values (two-sided 

t-test) for odds ratios shown in (a). *: reaching the FDR threshold (pFDR = 0.017 for α = 

0.05); **: reaching the Bonferroni threshold (pBonf = 3.2 ×10−4 for α = 0.05).
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Figure 5. Phenome-wide association study.
(a) Manhattan plot showing the p-values (two-sided t-test) for correlations between imaging 

phenotypes and non-imaging phenotypes. The height of each data point denotes the negative 

logarithm of the univariate correlation p-value between one imaging phenotype and one non-

imaging phenotype. The area of the data point denotes the absolute value of the Pearson’s 

correlation coefficient. The colour of the data point denotes the anatomical structure of 

the imaging phenotype. The Bonferroni threshold for multiple comparisons (α = 0.05) is 

shown as a dashed horizontal line. n = 26,893 subjects were included in the analysis. 

(b) Plot showing the Pearson’s correlation coefficients between imaging phenotypes and 
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non-imaging phenotypes. The height of each data point denotes the correlation coefficient 

and the area denotes the negative logarithm of the p-value (two-sided t-test).
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Table 1
Quantitative imaging phenotypes of the heart and aorta, derived from short-axis, long-
axis and aortic cine images.

Anatomical structure Quantitative imaging phenotypes

Left ventricle (LV)
End-diastolic volume, end-systolic volume, stroke volume, ejection fraction, cardiac output, myocardial mass, 
global and regional myocardial wall thickness at end-diastole, global and regional peak circumferential, radial and 
longitudinal strains

Right ventricle (RV) End-diastolic volume, end-systolic volume, stroke volume, ejection fraction

Left atrium (LA) Maximum volume, minimum volume, stroke volume, ejection fraction

Right atrium (RA) Maximum volume, minimum volume, stroke volume, ejection fraction

Ascending aorta (AAo) Maximum area, minimum area, aortic distensibility

Descending aorta (DAo) Maximum area, minimum area, aortic distensibility
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