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Abstract

Spectral similarity calculation is widely used in protein identification tools and mass spectra 

clustering algorithms while comparing theoretical or experimental spectra. The performance of 

the spectral similarity calculation plays an important role in these tools and algorithms especially 

in the analysis of large-scale datasets. Recently, deep learning methods have been proposed 

to improve the performance of clustering algorithms and protein identification by training the 

algorithms with existing data and the use of multiple spectra and identified peptide features. 

While the efficiency of these algorithms is still under study in comparison with traditional 

approaches, their application in proteomics data analysis is becoming more common. Here, we 

propose the use of deep learning to improve spectral similarity comparison. We assessed the 

performance of deep learning for spectral similarity, with GLEAMS and a newly trained embedder 

model (DLEAMSE), which uses high-quality spectra from PRIDE Cluster. Also, we developed a 

new bioinformatics tool (mslookup - https://github.com/bigbio/DLEAMSE/) that allows users to 

quickly search for spectra in previously identified mass spectra publish in public repositories and 

spectral libraries. Finally, we released a human database to enable bioinformaticians and biologists 

to search for identified spectra in their machines.
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1 Introduction

Mass spectrometry (MS) based proteomics has become an indispensable tool for protein 

identification.[1] In a typical MS-based bottom-up proteomics experiment, proteins are 

extracted from samples and enzyme-digested into peptides, which are separated by 

chromatography, ionized, and resolved in tandem mass spectrometry, resulting in millions 

of tandem mass spectrometry (MS/MS) scans [2]. The resulted MS/MS spectra are assigned 

peptide sequences using different computational methods with spectral similarity scoring 

as the core calculation [3]. These spectral similarity scorings compare each query MS/MS 

spectrum against a target MS/MS spectrum set obtained either theoretically derived from 

peptide sequences (database search algorithms), or from previously acquired MS/MS spectra 

(spectral library algorithms). The first kind of approaches is typically adopted in database 

searching engines, such as Mascot [4], MaxQuant [5], MS-GF+ [6], while the latter is 

used in spectral clustering tools such as MaRaCluster [7], PRIDE Cluster [8, 9] and MS-

Cluster [10], or spectral library searching engines such as SpectraST [11–15], pMatch [16], 

and Pepitome [17]. Spectral similarity calculation even allowed the differential expression 

analysis of proteins without a reference sequence [18]. Therefore, the performance of 

spectral similarity calculation plays an important role in proteomics data analyzes.

Multiple methods are used to compare theoretical or experimental mass spectra during 

clustering or peptide identification algorithm. Dot product (DP) based algorithm is one 

of the most widely used methods for MS/MS spectral similarity scoring, especially in 

many spectrum library search algorithms [11, 19–24]. Shao et al. summarized 12 spectral 

library search tools and 10 of which used the DP-based method in 2017 [25]. To assess 

the performance of the scoring algorithms, Yilmaz et al. evaluated 5 of them in 2017 

and concluded that Pearson’s r, as well as normalized dot product (NDP), is the best 

performance and most robust approaches [3]. The conventional process of general spectral 

similarity scoring methods includes three steps [25, 26]: features extraction, ion peak 

intensity transformation, and the core scoring function. These steps are repeated in every 

analysis job for each spectrum, which could cause the waste of computing resources and 

time. Even inside a single analysis job, the core scoring function is applied many times (e.g., 

in spectral clustering processes). Reducing these repeated calculations in the large-scale 

spectral analysis would significantly improve computing efficiency.

Deep learning-based [27] tools for mass spectrometry-based proteomics has been proposed 

including: (DeepNovo [28]) for de novo identification, (pDeep [29, 30], Prosit [31]) for 

peptide-protein identification using predicted theoretical spectra and simulating spectra 

for spectral library generation, and (GLEAMS - deep neural network-based learning 

model) [32] for spectral clustering. GLEAMS enable embedding the high-dimensional 

spectra features into a low-dimensional hidden space in which spectra generated by the 

same peptide are close to each other. GLEAMS’s results can be further clustered into 

“communities” for detecting groups of unidentified, proximal spectra representing the 

same peptide, revealing misidentified or assigning peptide sequences to the consistently 

unidentified spectra. With a deep learning network’s ability to learn the implicit and 

effective features from large-scale training datasets, this model is hoped to have good 

prediction performance. However, the direct performance comparison between the deep 
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learning model and the traditional method in spectral similarity scoring is still unknown 

though interesting.

Here, we extended the learning embedder models for spectral similarity search. We assessed 

the performances of deep learning embedder models (GLEAMS) and a new proposed 

model (DLEAMSE - Deep LEArning-based Mass Spectra Embedder) trained by using the 

PRIDE Cluster [9] data) on spectral similarity, and compared them with five traditional 

spectral similarity scoring methods: Pearson's r, Spearman's rho, NDP, DP, mean squared 

error (MSE). Experiments show that the deep learning model is computationally more 

efficient, without a major difference in the accuracy compared to the best traditional 

methods: NDP and Pearson's r. Besides, we developed a new bioinformatics tool (mslookup 

- https://github.com/bigbio/DLEAMSE/) to enable bioinformaticians and biologists to search 

unidentified spectra on previously identified spectra. Finally, we released a human database 

to enable bioinformaticians and biologists to search for identified spectra in their machines.

2 Materials and Method

GLEAMS

GLEAMS [32] (GLEAMS is a Learned Embedding for Annotating Mass Spectra - https://

bitbucket.org/noblelab/gleams), its main idea is using a deep neural network to embed 

tandem mass spectra into a 32-dimensional hidden space in such a way that spectra 

generated by the same peptide, with the same post-translational modifications and charge, 

are close together. Preprocessing before GLEAMS’ embedding is encoding, in which each 

input spectrum is encoded to a vector of 3,010 features in three types: precursor attributes 

(61 features), binned fragment intensities (2,449 features), and NDP similarities to a set of 

500 reference spectra (500 features). Then the outputs of them are concatenated and passed 

to a final, fully connected layer with dimension 32, as the final output. Siamese network [33] 

is adopted for training the weights of the deep learning model, with positive and negative 

spectral pairs as the training and test data. More than five million mass spectra from 22 

publicly available experiments, were used to train and validate the GLEAMS model.

Similarity scoring methods for benchmark

In addition to the GLEAMS and the proposed method DLEAMSE, the Euclidean distance 

between the pair of embedded vectors in the hidden space is calculated as the similarity 

measure of the pair of spectra using:

1- Normalized dot product (NDP): After the top n peaks are binned, the spectral 

pair can be considered as two n dimension vectors, and the cosine distance 

between the vectors is calculated as the spectral similarity.

2- Correlation coefficients: Some statistical correlation coefficients, such as 

Pearson’s r and Spearman’s rho, have also been used to calculate spectral 

similarities [34, 35]. Correlation coefficients provide the measuring of the linear 

relationship between two random variables.

3- Mean squared error (MSE): is an estimator based on the differences between 

two datasets. For MS/MS spectra, let x and y represent two spectra with n 
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binned peaks’ intensity. The differences between x and y are squared and then 

divided by the number of elements [3].

For convenience, we used the Spectrum_similarity-1.0 tool [3] (https://github.com/

compomics/spectrum_similarity) to calculate these similarity scoring functions (except the 

deep learning models). This tool allows users to compare spectra in .mgf files, its result file 

contains spectra pairs and their corresponding five similarity scores (Pearson's r, Spearman's 

rho, NDP, DP, MSE).

Benchmark datasets to assess scoring

The benchmark data comes from three species: Yeast-UPS, Arabidopsis, and Mouse. The 

Yeast-UPS data comes from study-6 of CPTAC (Clinical Proteomic Technology Assessment 

for Cancer). The others come from PXD000223 [36] (Arabidopsis) and PXD000625 [37] 

(Mouse). Positive and negative spectral pairs are prepared from these species for assessing 

the performance of scoring functions, based on the MaxQuant searching results (see details 

of the building of these test data for spectral similarity assessing in Supplementary Note 3).

Performance evaluation metrics

To assess the performance of DLEAMSE and other spectral similarity scoring methods, we 

used the receiver-operating characteristic (ROC) curve as well as AUC (the area under the 

roc curve). The closer the ROC curve to the left corner or the closer the AUC value to 1, the 

performance is better. And overall accuracy (ACC) [38] is employed in this study too, which 

is defined as:

ACC = TP + TN
TP + TN + FP + FN (1)

Here, TP and TN represent the numbers of positive or negative spectral pairs that are 

correctly classified in prediction, FP and FN represent the numbers of positive or negative 

spectral pairs that be classified to wrong types, respectively.

3 Results

DLEAMSE

We first developed a new deep learning model (DLEAMSE - https://github.com/bigbio/

mslookup) with an adjusted network (see the details of determining the deep learning 

network structure in Supplementary Note 1) based on the GLEAMS approach. PRIDE 

Cluster [9] was used to train and test the new model for the following reasons: i) 

the spectra in high-quality clusters contain consistently identified spectra; ii) the mass 

spectra from PRIDE Cluster covers more species and instrument types. Two filters 

were used for retrieving high confidence spectra. The first filter controls the quality of 

the collected clusters. We customized clustering-file-converter (https://github.com/spectra-

cluster/clustering-file-converter) to retain the high-quality spectral clusters (cluster size >= 

30, cluster ratio >= 0.8, and the total ions current (TIC) >= 0.2). The second filter eliminates 

duplicate clusters assigned with the same peptide sequence, only one in the duplicates has 
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been chosen, to ensure that the retained clusters are from different peptides. Then 113,362 

clusters have been retrained from PRIDE Cluster release 201504. The needed spectra in 

clusters are acquired from the PRIDE Archive. The training network of DLEAMSE is based 

on the Siamese network, which needs labeled spectral pairs as input. A pair of spectra 

coming from the same cluster is defined as positive spectral pair and labeled "1"; a pair of 

spectra coming from different clusters but within the precursor mass window is defined as 

negative spectral pair and labeled "0". Finally, a set of 730,823 spectra pairs was built, with 

363,853 positive pairs and 366,970 negative pairs. According to the ratio around 9:1, the set 

was randomly divided into a training dataset and a test dataset (see details of training and 

testing dataset’s building process for deep learning model in Supplementary Note 2).

In DLEAMSE, the Siamese network (Figure 1a) trains two same embedding models (Figure 

1c) with shared weights, and spectra are encoded by the same encoder (Figure 1b) before the 

embedding. (see details of determining of network structure and the final determined model 

in Supplementary Note 1). Based on the Euclidean distance between the pair of embedded 

spectra, the weights of the embedding model are learned by contrastive loss function that 

penalizes far-apart same-label spectra (label=1) and nearby different-label spectra (label=0). 

Backpropagation from the loss function is used to update the weights in the network. The 

codes are implemented in Python3 with the PyTorch framework [39].

Deep learning models vs traditional similarity methods

The accuracy of the two deep-learning models and the other five spectral similarity scorings 

(Pearson's r, and Spearman's rho, NDP, DP, MSE) were compared. Six datasets from three 

species are used in spectral similarity comparison, ROC curves of seven methods on these 

six datasets are shown in Figure 3, and their AUC and ACC values are presented in 

Supplementary Table 4. Pearson’s r and the NDP are the best performing methods while 

DP and MSE performed relatively poorly. This matches the results reported by Yilmaz et al. 
[3]. Supplementary Table 4 shows that the difference between DLEAMSE to NDP in AUCs 

ranged from -0.03 to - 0.004, and the differences in ACCs range from -0.041 to 0.008. This 

shows that DLEAMSE’s is slightly less accurate than the best traditional methods, such as 

NDP and Pearson’s r. Compare with GLEAMS, DLEAMSE shows superior performance in 

both measurements (AUC and ACC).

Computing performance benchmark

When analyzing large scale datasets, the computational cost of the mass spectra similarity 

function becomes increasingly important [9]. To evaluate the computing performance 

of deep learning models, compared with traditional methods, we recorded the running 

times (wall clock time) of normalized dot product similarity and DLEAMSE similarity 

scoring. Four spectra datasets containing 10,000, 20,000, 40,000, 80,000 (758 peaks in each 

spectrum on average) spectral pairs respectively were used. We thought the peak number in 

spectra also affects the computing performance of both methods. Hence a dataset contains 

40,000 spectral pairs with 39 peaks in each spectrum on average, has been retrieved from 

contaminants spectral libraries provided by PRIDE Cluster for testing. Training, testing, and 

performance benchmark tasks were run on a computer with 48 Intel (R) Xeon (R) Gold 

6126 CPU @ 2.60 GHz, a Tesla V100 Data Center GPU, and 128GB memory. The running 
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environment was Ubuntu 18.04 LTS (GNU/Linux 4.15.0-20-generic x86_64), Anaconda3 

(with Python 3.7.4), PyTorch-1.0.0. All run-times in this study are wall-clock time. Table 

4 shows the run-times of NDP’s and GLEAMSE’s major subtasks on five data sets in 

CPU and GPU environments. The “encoding” subtask in NDP represents the preprocessing, 

which includes binning to 2449 bins and picking the top 100 peaks. Besides, the DLEAMSE 

has “embedding” and “model loading” subtasks rather than NDP.

Figure 3 illustrates the comparison in total run-time and subtasks’ run-times between NDP 

and DLEAMSE. DLEAMSE (on GPU) outperforms NDP (on CPU), while DLEAMSE on 

CPU is much slower than NDP in most of the tasks. The “encoding” subtasks are compared 

in Figure 3a. As shown, the “encoding” of NDP took more run-time than DLEAMSE’s 

in both CPU and GPU environments. The “similarity calculation” of NDP (dot product 

calculation on 2449 bins) took more time than DLEAMSE’s (Euclidean distance on 32-D 

vectors) in both CPU and GPU environment on four data sets (Figure 3b). The computing 

time in the GPU version is about 80 times faster than the CPU versions (Figure 3d). 

Compare NDP and DLEAMSE on the CPU environment, DLEAMSE outperforms NDP on 

“encoding” and “similarity calculation” in the first four test data sets (Supplementary Table 

5). However, the “embedding” subtask, which contains computing on the deep network 

computing, slowed DLEAMSE down and multiplied the total computing times.

Besides the computing advantage on GPU servers, a deep learning-based model has another 

advantage for large-scale analysis: the encoding and embedding are only needed to run once 

for each spectrum and the output from embedding can be reused in subsequent analyses. The 

final similarity scoring is only based on Euclidean distance calculation, which is proved to 

be faster than the other part and takes about 1/3 of the NDP’s core calculation time.

mslookup tool

We used the new model DLEAMSE to implement a novel tool (mslookup - https://

github.com/bigbio/DLEAMSE) for fast searching of MS/MS spectra previously identified 

in public proteomics databases (Figure 4). Spectra are encoded into a 32-feature vector as 

originally proposed by GLEAMS and the DLEAMSE model trained with PRIDE Cluster 

data. The vectors are stored in a faiss database (https://github.com/facebookresearch/faiss). 

In summary, faiss is a library for efficient similarity search and clustering of dense vectors. 

It contains algorithms that search in sets of vectors of any size, up to ones that possibly do 

not fit in RAM. faiss is written in C++ with complete wrappers for Python/NumPy and many 

algorithms support GPU. Also, a key-value pair file allows mslookup to retrieve for every 

faiss vector the unified spectrum identifier (USI - http://www.psidev.info/usi) of the spectra 

in ProteomeXchange [40]. By using the USI of each spectrum, the system does not need 

to store the actual MS/MS data after indexing but can use the respective ProteomeXchange 

resources to retrieve the MS/MS information (e.g., precursor charge and mz, or peak lists).

The indexing of the spectra can be distributed, incremental, and is extremely scalable 

for big datasets. The first step (embedder) allows transforming the spectra into a vector 

representation and USI. The mslookup command generates a USI file and an embedder 

file for each input spectra file. Then, the command makes faiss can be used to add the 

generated vectors to the database. These two steps will generate a ready to use the database 
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for searching spectra against a database of identified spectra. mslookup is not a search 

engine or a spectral library identification tool but a fast-searching tool that suggests to the 

user previously identified spectra for their query spectra (e.g., unidentified and biological 

interested spectra). The search tool allows filtering by similarity score from 0 to 1, where 

higher scores are for more similar spectra. The output of the search tool is a JSON file with 

the USI in ProteomeXchange of all the spectra similar to the query spectra and the similarity 

score. A database of human identified spectra from PRIDE Cluster and NIST spectral 

libraries was created (ftp://ftp.pride.ebi.ac.uk/pride/data/proteogenomics/projects/mslookup/

human-092020/). The original file size of all the spectra library files (MSP) data was 47G 

while the mslookup database is only 1G for the 32-feature vector database and more than 7 

million for the USIs database. The mslookup tool allows having a centralized small database 

of previously published identified or unidentified spectra with references (USIs) to spectra in 

ProteomeXchange or other services that support USIs.

The accuracy of mslookup has been tested by querying an example Human proteomics 

experiment dataset against the mslookup database (version 092020). Peak and database 

search result files are collected from PXD002600, then the mslookup query results of these 

spectra have been compared with the original Mascot search results. Spectra matched by 

mslookup on similarity score thresholds from 0.94 to 0.99 have been tested, and each result 

set has been spliced into two subsets: (i) intersection with the original search results for 

calculating the error rates (the relative number of the spectra in intersection spectra, whose 

peptide assigned by mslookup is different from the original peptide); (ii) the rest as the new 

PSMs assigned by mslookup. Figure 5(a) shows that with a smaller similarity threshold, 

newer PSMs can be identified, but at an increased error rate. When threshold = 0.955, the 

error rate is 4.5%. At this error rate, we can identify about 9.7% new PSMs, and 15.9% 

new peptides compared to the original results. Figure 5(b) shows the numbers of PSMs in 

original searching, mslookup querying, and their intersection when the threshold = 0.955.

Computing performance on searching

To evaluate if mslookup fit large scale spectral analysis, we tested the run-times of mslookup 

at different data scales and compared them to that of a popular spectral library software 

SpectraST. Four spectral libraries from the NIST human library (https://chemdata.nist.gov/

mass-spc/ftp/download/peptide_library/libraries/human) are used as a library and query data 

(Supplementary Table 6). The server used for the test is a Linux server with 2 Intel(R) 

Xeon(R) Gold 6126 CPUs @2.60 GHz (each has 12 cores), a Tesla V100 Data Center 

GPU, and 128G memory. The operating environment is Ubuntu 18.04 LTS (GUN/Linux 

4.15.0-20-generic x86 s64), Anaconda 4.5.11 (with Python3.7.0), torch-1.0.0. SpectraST in 

TPP (version 5.2.0), is compiled from source code.

mslookup includes four subtasks: (i) encoding, (ii) embedding, (iii) creating-library (faiss 

indexing), (iv) and searching. SpectraST has two subtasks: (i) creating-library (from .msp 
file to. splib file), (ii) and searching. The searching in SpectraST includes the pre-processing 

of query spectra, which is similar to the encoding part in mslookup. This pre-processing step 

for each spectrum will be repeated in every search, though encoding and embedding for each 

spectrum are one-time subtasks and could be reused in the future. Supplementary Table 7 
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shows the run-times of SpectraST (serial), and that of mslookup both in serial and in parallel 

(with CPUs and GPUs). The searching step in mslookup only includes range-search (search 

database) in the faiss index, preparing the output in format is included in total times.

We found when running in serial (Supplementary Table 7 and Figure 6), mslookup is 

slower than SpectraST at all scales, its total run-time on 1000K data is 2.6-fold slower than 

SpectraST. The main reason is embedding by the deep network is a heavy subtask which 

accounts for most (72%) of the total time. For SpectraST, library searching accounts for 

most (96%) of the time, which includes the NDP calculation for candidate spectral pairs. 

However, with the support of parallel computing (using GPU in embedding, multi-process/

multi-threads in other subtasks), mslookup gets a significant advantage in total run-time. 

As Figure 5(d) shows, as the number of spectra increases, the advantages of mslookup 

are getting more significant. At 1000K level, mslookup takes only 12.5% of SpectraST’s 

total time. The performance advantages mostly get from the time of mslookup's faiss index 

searching, which is only 7.4% that of SpectraST’s "spectra library searching" part. And this 

advantage could get more significant as the computing power increases, based on the faiss’ 

scalable feature.

In serial computing, mslookup takes about doubled times than SpectraST, because of the 

expensive cost of deep network embedding. However, with the parallel computing support 

of GPUs, and with the powerful faiss indexing system, mslookup has better performance 

on large scale spectral data. Besides, the heavier subtasks (encoding + embedding) for 

each spectrum is a one-time calculation, which means when these spectra are analyzed in 

multi-times, the cost will be diluted as the number of analyses increases.

Conclusion

We assessed the deep learning-based models’ performance on spectral similarity and 

compared them with the traditional spectral similarity methods such as normalized dot 

product. Results showed that some traditional methods still have an advantage over the deep 

learning-based models. The performance deep learning model DLEAMSE is following the 

best methods (NDP and Pearson’s r) but even outperforms them in the Yeast-UPS datasets. 

Besides we also find there is some difference in the performances between GLEAMS and 

DLEAMSE, DLEAMSE outperformed GLEAMS in the tests, this may because of their 

different network structure or different training data.

While deep learning methods are outperformed inaccuracy by traditional similarity methods, 

they are better suited for big data analyses such as spectral clustering or similarity searching 

across millions of spectra. The main reason is that after the one-off embedding for each 

spectrum, the similarity between two spectra is a very simple Euclidean distance calculation 

on two 32-D vectors. Besides, our tests have shown that the deep learning model DLEAMSE 

can outperform NDP on the popular GPU servers on both “encoding + embedding” and core 

similarity calculation. Based on these results, we argue that it should be possible to leverage 

existing big data for the processing of all available proteomics data by using the deep 

learning model to embed the existing big number of spectra data to low-dimensional vectors 

and enable more big data analysis jobs with it. We explored the use of the DLEAMSE model 
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to create a bioinformatic tool that allows searching spectra into previously identified spectra 

in ProteomeXchange. The mslookup can be used to create a database of spectra with links 

to stored spectra in ProteomeXchange, the size of the database is 40 times smaller than the 

original data. We created a database of 1 Gigabyte of 7.8 million human identified spectra 

from PRIDE Cluster and NIST libraries. The mslookup will enable the development of new 

architectures for large scale searching of identified spectra in ProteomeXchange.
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Refer to Web version on PubMed Central for supplementary material.
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Abbreviation

AUC Area under the roc curve

DP Dot product

MS Mass spectrometry

MS/MS Tandem mass spectrometry

MSE Mean square error

NDP Normalized dot product

Pearson’s r Pearson’s correlation coefficients

ROC Receiver-operating characteristic

Spearman’ rho Spearman’s correlation coefficients

References

[1]. Aebersold R, Mann M. Mass-spectrometric exploration of proteome structure and function. 
Nature. 2016; 537: 347. [PubMed: 27629641] 

[2]. Manes NP, Nita-Lazar A. Application of targeted mass spectrometry in bottom-up proteomics for 
systems biology research. Journal of Proteomics. 2018; 189: 75–90. [PubMed: 29452276] 

[3]. Yilmaz, Ş, Vandermarliere, E, Martens, L. Proteome Bioinformatics. Keerthikumar, S, 
Mathivanan, S, editors. Springer New York; New York, NY: 2017. 75–100. 

[4]. Perkins DN, Pappin DJC, Creasy DM, Cottrell JS. Probability-based protein identification by 
searching sequence databases using mass spectrometry data. ELECTROPHORESIS. 1999; 20 
(18) 3551–3567. [PubMed: 10612281] 

[5]. Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range 
mass accuracies and proteome-wide protein quantification. Nat Biotechnol. 2008; 26: 1367. 
[PubMed: 19029910] 

Qin et al. Page 9

J Proteomics. Author manuscript; available in PMC 2022 August 14.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



[6]. Kim S, Pevzner PA. MS-GF+ makes progress towards a universal database search tool for 
proteomics. Nat Commun. 2014; 5 5277 [PubMed: 25358478] 

[7]. The M, Käll L. MaRaCluster: A fragment rarity metric for clustering fragment spectra in shotgun 
proteomics. Journal of proteome research. 2016; 15 (3) 713–720. [PubMed: 26653874] 

[8]. Griss J, Foster JM, Hermjakob H, Vizcaíno JA. PRIDE Cluster: building a consensus of 
proteomics data. Nature Methods. 2013; 10: 95. [PubMed: 23361086] 

[9]. Griss J, Perez-Riverol Y, Lewis S, Tabb DL, Dianes JA, del-Toro N, Rurik M, Walzer M, 
Kohlbacher O, Hermjakob H, Wang R, et al. Recognizing millions of consistently unidentified 
spectra across hundreds of shotgun proteomics datasets. Nature Methods. 2016; 13: 651. 
[PubMed: 27493588] 

[10]. Frank AM, Bandeira N, Shen Z, Tanner S, Briggs SP, Smith RD, Pevzner PA. Clustering 
millions of tandem mass spectra. Journal of proteome research. 2007; 7 (01) 113–122. [PubMed: 
18067247] 

[11]. Lam H, Deutsch EW, Eddes JS, Eng JK, King N, Stein SE, Aebersold R. Development 
and validation of a spectral library searching method for peptide identification from MS/MS. 
Proteomics. 2007; 7 (5) 655–667. [PubMed: 17295354] 

[12]. Shao W, Zhu K, Lam H. Refining similarity scoring to enable decoy-free validation in spectral 
library searching. PROTEOMICS. 2013; 13 (22) 3273–3283. [PubMed: 24115759] 

[13]. Baumgardner LA, Shanmugam AK, Lam H, Eng JK, Martin DB. Fast parallel tandem mass 
spectral library searching using GPU hardware acceleration. Journal of proteome research. 2011; 
10 (6) 2882–2888. [PubMed: 21545112] 

[14]. Mohammed Y, Mostovenko E, Henneman AA, Marissen RJ, Deelder AM, Palmblad M. Cloud 
parallel processing of tandem mass spectrometry based proteomics data. Journal of proteome 
research. 2012; 11 (10) 5101–5108. [PubMed: 22916831] 

[15]. Ma CWM, Lam H. Hunting for unexpected post-translational modifications by spectral library 
searching with tier-wise scoring. Journal of proteome research. 2014; 13 (5) 2262–2271. 
[PubMed: 24661115] 

[16]. Ye D, Fu Y, Sun R-X, Wang H-P, Yuan Z-F, Chi H, He S-M. Open MS/MS spectral library search 
to identify unanticipated post-translational modifications and increase spectral identification rate. 
Bioinformatics (Oxford, England). 2010; 26 (12) i399–i406. 

[17]. Dasari S, Chambers MC, Martinez MA, Carpenter KL, Ham A-JL, Vega-Montoto LJ, Tabb 
DL. Pepitome: Evaluating Improved Spectral Library Search for Identification Complementarity 
and Quality Assessment. Journal of Proteome Research. 2012; 11 (3) 1686–1695. [PubMed: 
22217208] 

[18]. Yilmaz Ş, Victor B, Hulstaert N, Vandermarliere E, Barsnes H, Degroeve S, Gupta S, Sticker A, 
Gabriёl S, Dorny P, Palmblad M, et al. A Pipeline for Differential Proteomics in Unsequenced 
Species. Journal of Proteome Research. 2016; 15 (6) 1963–1970. [PubMed: 27089233] 

[19]. Burke MC, Mirokhin YA, Tchekhovskoi DV, Markey SP, Heidbrink Thompson J, Larkin C, Stein 
SE. The hybrid search: A mass spectral library search method for discovery of modifications in 
proteomics. Journal of proteome research. 2017; 16 (5) 1924–1935. [PubMed: 28367633] 

[20]. Craig R, Cortens JC, Fenyo D, Beavis RC. Using Annotated Peptide Mass Spectrum Libraries 
for Protein Identification. Journal of Proteome Research. 2006; 5 (8) 1843–1849. [PubMed: 
16889405] 

[21]. Li H, Zong NC, Liang X, Kim AK, Choi JH, Deng N, Zelaya I, Lam M, Duan H, Ping P. A 
novel spectral library workflow to enhance protein identifications. Journal of proteomics. 2013; 
81: 173–184. [PubMed: 23391412] 

[22]. Wang J, Tucholska M, Knight JD, Lambert J-P, Tate S, Larsen B, Gingras A-C, Bandeira N. 
MSPLIT-DIA: sensitive peptide identification for data-independent acquisition. Nature methods. 
2015; 12 (12) 1106. [PubMed: 26550773] 

[23]. Horlacher O, Lisacek F, Müller M. Mining large scale tandem mass spectrometry data for protein 
modifications using spectral libraries. Journal of proteome research. 2015; 15 (3) 721–731. 
[PubMed: 26653734] 

Qin et al. Page 10

J Proteomics. Author manuscript; available in PMC 2022 August 14.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



[24]. Cho J-Y, Lee H-J, Jeong S-K, Paik Y-K. Epsilon-Q: an automated analyzer interface for mass 
spectral library search and label-free protein quantification. Journal of proteome research. 2017; 
16 (12) 4435–4445. [PubMed: 28299940] 

[25]. Shao W, Lam H. Tandem mass spectral libraries of peptides and their roles in proteomics 
research. Mass Spectrometry Reviews. 2017; 36 (5) 634–648. [PubMed: 27403644] 

[26]. Yu D, Ma J, Xie Z, Bai M, Zhu Y, Shu K. Progress in the spectral library based protein 
identification strategy. Sheng wu gong cheng xue bao = Chinese journal of biotechnology. 2018; 
34 (4) 525. [PubMed: 29701026] 

[27]. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015; 521 (7553) 436–444. [PubMed: 
26017442] 

[28]. Tran NH, Zhang X, Xin L, Shan B, Li M. De novo peptide sequencing by deep learning. 
Proceedings of the National Academy of Sciences. 2017; 114 (31) 8247–8252. 

[29]. Zhou X-X, Zeng W-F, Chi H, Luo C, Liu C, Zhan J, He S-M, Zhang Z. pDeep: Predicting 
MS/MS Spectra of Peptides with Deep Learning. Analytical Chemistry. 2017; 89 (23) 12690–
12697. [PubMed: 29125736] 

[30]. Zeng W-F, Zhou X-X, Zhou W-J, Chi H, Zhan J, He S-M. MS/MS Spectrum Prediction for 
Modified Peptides Using pDeep2 Trained by Transfer Learning. Analytical Chemistry. 2019; 91 
(15) 9724–9731. [PubMed: 31283184] 

[31]. Gessulat S, Schmidt T, Zolg DP, Samaras P, Schnatbaum K, Zerweck J, Knaute T, Rechenberger 
J, Delanghe B, Huhmer A, Reimer U, et al. Prosit: proteome-wide prediction of peptide tandem 
mass spectra by deep learning. Nature Methods. 2019; 16 (6) 509–518. [PubMed: 31133760] 

[32]. May DH, Bilmes J, Noble WS. A learned embedding for efficient joint analysis of millions of 
mass spectra. bioRxiv. 2018. 483263 

[33]. Zhang, C; Liu, W; Ma, H; Fu, H. Siamese neural network based gait recognition for human 
identification; 2016 IEEE International Conference on Acoustics, Speech and Signal Processing 
(ICASSP); 2016. 2832–2836. 

[34]. Frank AM. Predicting Intensity Ranks of Peptide Fragment Ions. Journal of Proteome Research. 
2009; 8 (5) 2226–2240. [PubMed: 19256476] 

[35]. Degroeve S, Maddelein D, Martens L. MS2PIP prediction server: compute and visualize MS2 
peak intensity predictions for CID and HCD fragmentation. Nucleic Acids Research. 2015; 43 
(W1) W326–W330. [PubMed: 25990723] 

[36]. MacLean AM, Orlovskis Z, Kowitwanich K, Zdziarska AM, Angenent GC, Immink RGH, 
Hogenhout SA. Phytoplasma Effector SAP54 Hijacks Plant Reproduction by Degrading MADS-
box Proteins and Promotes Insect Colonization in a RAD23-Dependent Manner. PLOS Biology. 
2014; 12 (4) e1001835 [PubMed: 24714165] 

[37]. Bracht T, Hagemann S, Loscha M, Megger DA, Padden J, Eisenacher M, Kuhlmann K, Meyer 
HE, Baba HA, Sitek B. Proteome Analysis of a Hepatocyte-Specific BIRC5 (Survivin)-Knockout 
Mouse Model during Liver Regeneration. Journal of Proteome Research. 2014; 13 (6) 2771–
2782. [PubMed: 24818710] 

[38]. Huang J, Ling CX. Using AUC and accuracy in evaluating learning algorithms. IEEE 
Transactions on knowledge and Data Engineering. 2005; 17 (3) 299–310. 

[39]. Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein 
N, Antiga L. Pytorch: An imperative style, high-performance deep learning library. Advances in 
neural information processing systems. 2019. 8026–8037. 

[40]. Deutsch EW, Bandeira N, Sharma V, Perez-Riverol Y, Carver JJ, Kundu DJ, Garcia-Seisdedos D, 
Jarnuczak AF, Hewapathirana S, Pullman BS, Wertz J, et al. The ProteomeXchange consortium 
in 2020: enabling ‘big data’ approaches in proteomics. Nucleic Acids Res. 2019. 

Qin et al. Page 11

J Proteomics. Author manuscript; available in PMC 2022 August 14.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Significance Statement

Spectral similarity calculation plays an important role in proteomics data analysis. With 

deep learning’s ability to learn the implicit and effective features from large-scale 

training datasets, deep learning-based MS/MS spectra embedding models has emerged 

as a solution to improve mass spectral clustering similarity calculation algorithms. 

We compare multiple similarity scoring and deep learning methods in terms of 

accuracy (compute the similarity for a pair of the mass spectrum) and computing-

time performance. The benchmark results showed no major differences in accuracy 

between DLEAMSE and normalized dot product for spectrum similarity calculations. 

The DLEAMSE GPU implementation is faster than NDP in preprocessing on the GPU 

server and the similarity calculation of DLEAMSE (Euclidean distance on 32-D vectors) 

takes about 1/3 of dot product calculations. The deep learning model (DLEAMSE) 

encoding and embedding steps needed to run once for each spectrum and the embedded 

32-D points can be persisted in the repository for future comparison, which is faster 

for future comparisons and large-scale data. Based on these, we proposed a new tool 

mslookup that enables the researcher to find spectra previously identified in public data. 

The tool can be also used to generate in-house databases of previously identified spectra 

to share with other laboratories and consortiums.
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Figure 1. The structure of the training Siamese network.
(a) The Siamese network: Spectrum A and spectrum B are firstly encoded by the encoder 

and passed to two instances of the embedder network, with tied weights. The Euclidean 

distance between the resulted embedded vectors is calculated and passed to a contrastive 

loss function that penalizes far-apart same-label spectra and nearby different-label spectra. 

(b) The encoder: each spectrum is encoded to a vector of 2,983 features in three types: 

34 precursor attributes, 2,449 binned fragment intensities, and similarities to 500 reference 

spectra. (c) The embedder: three types of features are processed separately at first (precursor 

features are processed through a fully connected (fc) network, while the binned peaks are 

passed through a two-layer convolution and max pooling, and 500 similarities are processed 

through a single-layer convolution and max-pooling), then outputs are concatenated and 

passed through a final fc layer to generate 32D-vector.
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Figure 2. ROC curves of seven spectral similarity scoring methods on Arabidopsis, Mouse, and 
Yeast-UPS datasets.
(a) ROC curves of seven spectral similarity scoring methods on AT_194SP_DATA and 

AT_ALLSP_DATA of Arabidopsis Thaliana. “Pearson” represents Pearson’s r; “Spearman” 

represents Spearman’s rho. (b) ROC curves of seven spectral similarity scoring methods on 

two datasets of Mouse. (c) ROC curves of seven spectral similarity scoring methods on two 

datasets of Yeast-UPS.
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Figure 3. Computing time of all tasks (in CPU and GPU environments) as the number of spectra 
increase for NDP and DLEAMSE methods.
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Figure 4. 
mslookup creates a database from MS spectra by encoding peaks, charge and precursor 

mass into a 32-D vector. Additionally, the tool creates a key-value database that contains 

the 32-D representation and the Universal Spectrum Identifier (USI). When a user queries a 

spectra file against the database using the mslookup search tool, the query spectra is encoded 

and compare against the vector database (faiss) and a list of USIs are returned with the 

corresponding similarity score.
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Figure 5. 
(a) error rates, new PSMs rates, new peptides rates of mslookup queries on similarity 

thresholds from 0.94 to 0.98; (b) the Venn diagram to compare the number of original PSMs 

and new PSMs when threshold = 0.955.
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Figure 6. Run-times of mslookup (in serial and parallel), and SpectraST.
(a) run-times of Encoding and Embedding in mslookup; (b) run-times of building a spectral 

library; (c) run-times of searching spectral library; (d) total run-times (includes creating a 

spectral library and searching the spectral library).
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