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Abstract

The recent improvements in mass spectrometry instruments and new analytical methods are 

increasing the intersection between proteomics and big data science. In addition, bioinformatics 

analysis is becoming increasingly complex and convoluted, involving multiple algorithms and 

tools. A wide variety of methods and software tools have been developed for computational 

proteomics and metabolomics during recent years, and this trend is likely to continue. However, 

most of the computational proteomics and metabolomics tools are designed as single-tiered 

software application where the analytics tasks can’t be distributed, limiting the scalability and 

reproducibility of the data analysis. In this paper we summarise the key steps of metabolomics 

and proteomics data processing, including the main tools and software used to perform the data 

analysis. We discuss the combination of software containers with workflows environments for 

large scale metabolomics and proteomics analysis. Finally, we introduce to the proteomics and 

metabolomics communities a new approach for reproducible and large-scale data analysis based 

on BioContainers and two of the most popular workflow environments: Galaxy and Nextflow.

1 Introduction

Large-scale identification and quantification of proteins and metabolites provides a unique 

snapshot of a biological system of interest at a given time point [1]. MS-based high-

throughput technologies have resulted in an exponential growth in the dimensionality and 

sample size [2]. This increase has two major directions: I) the number of samples processed, 

powered by new mass spectrometers; and II) the number of molecules (metabolites, 

peptides, and proteins) identified alongside each sample [3]. In addition, the data analysis 

in MS-based metabolomics and proteomics is becoming more complex, including several 

convoluted steps to go from the spectra identification to the final list of relevant molecules. 

This scenario creates major challenges for software developers and the bioinformatics 

community: I) software and data analysis scalability; II) software availability and findability; 

and III) reproducibility of the data analysis [3, 4].

Computational proteomics and metabolomics have been dominated by desktop and 

monolithic software for the past decades, which hampered high throughput analysis in 

High-Performance Computing systems (HPCS) and cloud environments [5, 6]. Furthermore, 

many of these tools are proprietary closed-source solutions, often run only on MS Windows 

or from vendor’s hardware, and use proprietary binary formats for data intake. These 

are barriers for reproducible science. During the last decade, open source software and 
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distributed solutions have slowly made their way in these computational fields, with an 

ecosystem of computational tools flourishing in proteomics and metabolomics (see reviews 

in both fields [6, 7]). While the irruption of open source and distributed frameworks into the 

aforementioned omics fields is positive for the scalability, portability, and reproducibility of 

data analysis in this fields, it often comes at the cost of an increased technical complexity: 

installing, maintaining and executing these analysis software is usually complex and requires 

advanced software expertise, which is often a rare skill among scientific practitioners. 

This is further complicated by the fact that reproducibility and collaboration demand the 

installation of these tools on different computational environments (local computers, HPC, 

cloud, collaborators cluster, etc), often requiring different installation processes and software 

dependencies to be fulfilled [8].

Software containers, such as Docker containers, simplify the distribution and execution of 

software, by providing a way to isolate the software desired and its dependencies. Once 

a container for a specific tool has been built, it can be distributed as easily as if it was 

a single file, by depositing it in an online container registry. Then, the container can 

directly execute the enclosed software without any additional installation processes. The 

same container can be executed on different operating systems. In the past few years, the 

use of software containers and software packaging systems has markedly increased in the 

field of Bioinformatics [8, 9]. In particular, the BioContainers [8] (http://biocontainers.pro) 

and BioConda [10] (http://bioconda.github.io) communities have expanded the availability 

of containers and adequately packaged bioinformatics tools respectively, providing today 

thousands of tools in a format that can be used in local workstations, HPC and cloud 

environment seamlessly [9]. These software containers reduce the technical entry barrier for 

setting up scientific open source software and for making setups portable across multiple 

environments.

While containers and software packages simplify installation and increase portability of 

bioinformatics tools, they still leave to the scientist the task of combining tools together 

to create bioinformatics analysis workflows and pipelines [11]. This is a complex task and 

demands the use of the Linux command line environment; the underlying file system and 

data streams. In addition, if the analysis needs to run in distributed architectures (e.g. 

HPC clusters or Cloud), the bioinformatician will need to combine the workflow design 

(what tools to run with which data inputs and parameters) with the execution logic (e.g. 

job scheduler, data filesystem). To facilitate workflow design and execution on different 

distributed architectures, the bioinformatics community has developed various workflow 

systems [11].

A workflow system is a software that facilitates the setup of sequential and parallel steps 

of tool executions, by providing abstraction layers that deal with the connectivity between 

tools, tool execution, error handling, re-execution policies and adaptive layers to deal with 

different execution environments (single machine, containers, HPC, clouds, etc), among 

others. Without a workflow system, the developer or bioinformatician needs to write logic 

(usually on a bash script) to deal with all these functionalities, besides having to take 

care of designing the analysis flow itself. For a more detailed observation of what are 

workflow systems, see [11]. During the past 10 years, open source workflow environments 
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have started to consolidate in the field of bioinformatics. The first popular workflow 

environment systems in bioinformatics where Taverna (now Apache Taverna) (https://

taverna.incubator.apache.org) and Galaxy (https://galaxyproject.org/) [12], released in 2003 

and 2005 respectively. The list is increasing every year with prominent examples such as 

Nextflow (https://www.nextflow.io/) [13], Cromwell (https://software.broadinstitute.org/wdl), 

toil (http://toil.ucsc-cgl.org) and Snakemake (https://snakemake.readthedocs.io/en/stable/) 
[14], among others. Besides workflow systems, different workflow languages have appeared, 

such as CWL or WDL, among others.

In this manuscript, we discuss the combination of software containers with workflows 

environments for large scale metabolomics and proteomics analysis. The combination 

of software containers and workflows environments promises to make scientific analysis 

pipelines scalable, reproducible, portable and accessible to scientists that do not have 

any expertise in the use of complex computational infrastructure and command line 

environments. We will introduce to the metabolomics and proteomics communities a new 

approach for reproducible and large scale data analysis based on BioContainers and two of 

the most popular workflows environments: Galaxy [12] and Nextflow [13].

2 Current approaches for computational mass spectrometry

In proteomics, the most common strategy for the interpretation of data-dependent acquisition 

(DDA) MS/MS spectra consists of comparing the experimental spectra to a set of ideal 

spectra (also called theoretical spectra), extrapolated from the predicted fragmentation of 

peptides derived from a protein database [15]. During this process, every spectrum obtained 

by the mass spectrometer needs to be compared with all the theoretical spectra within 

the same precursor mass. As data from larger cohorts and more complex samples is 

generated, data analysis running time increases [16]. During recent years, algorithms and 

tools have been developed to perform the identification step, such as Andromeda [17], 

MSGF+ [18] or MSFragger [19]. Even though most of these algorithms have become robust 

and reliable, analysis of large scale experiments will still be computationally intensive 

and take considerable execution time [20]. After the identification process, the resulting 

peptide-spectrum matches can be reliably controlled by false discovery rates filters (such as 

FDR) (Figure 1). Finally, the list of quantified protein is ensemble based on the identified 

peptides by using protein inference algorithms [21, 22]. The list of quantified proteins is 

provided to the downstream statistical analysis step, which reports the final relevant proteins. 

In data independent acquisition (DIA) methods precursor ions are selected according to 

their abundances, DIA aims to implement a parallel fragmentation of all precursor ions, 

regardless of their intensity or other characteristics, enabling the establishment of a complete 

record of the sample [23]. Different software have been implemented to analyse DIA 

datasets, such as OpenSWATH [24] and Skyline [25].

Similarly, computational metabolomics is mainly based on the comparison of the 

metabolites spectra against a well-curated database of previously identified metabolites 

(Spectral library strategy) (Figure 1). Spectral libraries such as METLIN (https://

metlin.scripps.edu/) and MassBank (https://massbank.eu/MassBank/) contain information 

about mass and structure of small molecules, although MS/MS spectra are available for 
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only a share of the small molecules in the database. The basic analytical workflow yields 

thousands of molecular features within minutes of data acquisition. But, similarly to 

proteomics, only a fraction of detected masses can be matched a molecule in the database, 

or more commonly to several possible molecular formulas [26, 27]. A statistical validation 

and manual curation can only be achieved by a matched MS/MS spectrum and/or by another 

compound-specific property such as retention time, which is then compared to a synthesised 

standard compound. In principle, quantitative analysis in metabolomic experiments is very 

similar to the label-free quantitation approaches based on extracted ion chromatograms in 

proteomic workflows. Feature alignment and detection is followed by quantitation and then 

perhaps identification of a compound [26].

3 Examples of established tools for computational mass spectrometry

Many established tools for proteomics and metabolomics data analysis are monolithic 

desktop applications and online tools. In this type of bioinformatic tools, all the analysis 

steps (Figure 1) are encapsulated into one application, which is used as a black box, 

with little understanding from users on the intermediate analysis steps. Most of these 

tools perform the whole data analysis on a single server machine, from raw data through 

protein identification and quantitation and on to statistical analysis of the results. From 

a bioinformatics perspective there are clear disadvantages with this approach: lack of 

flexibility, lack of transparency due to closed source code in some cases and scalability 

issues (both for desktop-based Windows software and online tools) for large datasets. We list 

here a few emblematic and popular software tools that illustrate these points, hampering the 

scalability and reproducibility of data analysis in metabolomics and proteomics.

3.1 MaxQuant (Proteomics)

MaxQuant [28] is one of the most frequently used platforms for mass-spectrometry 

(MS)-based proteomics data analysis. The platform includes a database search engine 

(Andromeda) to perform the peptide identification and a set of algorithms and tools designed 

for quantitative label-free proteomics, MS1-level labelling, and isobaric labelling techniques. 

In 2013, the MaxQuant team published a detailed documentation of the running time and 

input/output operations for each step of the analysis [29]. The results showed bottlenecks 

in overall performance and time-consuming algorithms related to peptide features detection 

in the MS1 data as well as the fragment spectrum search. The MaxQuant algorithms are 

efficiently parallelized on multiple processors and scale well from desktop computers to a 

server with many cores. However, all the framework and algorithms have been designed as 

a monolithic tool where all the steps of the data processing cannot be easily distributed in 

HPC or Cloud architectures [29].

3.2 Skyline (Proteomics)

Skyline [25] is an open source platform for targeted and data-independent proteomics 

and metabolomics data analysis. It runs on Microsoft Windows and supports the raw 

data formats from multiple mass spectrometric vendors. It contains a graphical user 

interface to display chromatographic data for individual peptide or small molecule 

analytes. Skyline supports multiple workflows, including selected reaction monitoring 
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(SRM) / multiple reaction monitoring (MRM), parallel reaction monitoring (PRM), data-

independent acquisition (DIA/SWATH) and targeted data-dependent acquisition. Because 

both SRM and DIA data are based on the analysis of MS/MS chromatograms (selected and 

extracted respectively), the processing (chromatogram peak integration) and visualization 

of data acquired using these two methods are very similar within Skyline. In a recent 

publication, the Skyline team has recognized that one of the areas to work in the future 

is the parallelization and distribution of computation and processing in HPC and cloud 

architectures [30]. These developments will be vital in obtaining the robust, sensitive 

quantitative measurements required to understand better the systems biology of cells, 

organisms, and disease states.

3.3 XCMS Online (Metabolomics)

XCMS-2 [31] has become arguably the most widely used free software tool for pre-

processing untargeted metabolomics data. XCMS-2 is publicly available software that can be 

used within the R statistics language. It can provide structural information for unknown 

metabolites. This “similarity search” algorithm has been developed to detect possible 

structural motifs in the unknown metabolite which may produce characteristic fragment 

ions and neutral losses to related compounds contained in reference databases, even if the 

precursor masses are not the same.

In 2017, Weber and co-workers conducted a survey [32] on software data usage in 

metabolomics and found that LC-MS data analysis in metabolomics is performed in 84% 

of the cases using open-source tools. The predominant open-source software is XCMS 

(70%), followed by Mzmine and MZmine2 (26%). Interestingly, most of the usage of 

XCMS is through the Online XCMS Portal (https://xcmsonline.scripps.edu/), a popular 

Web application that helps the user to go through each step of the data analysis. XCMS 

Online directly searches the experimental mass spectra into METLIN online data using 

the traditional precursor ion selection window and additionally a distance matrix score 

to obtain good spectral matches. While the Online version of XCMS cannot be used in 

a component-based manner, the underlying XCMS R package can be executed by parts. 

For the reader interested in the wider landscape of Metabolomics tools and their usage in 

different scenarios, Spicer et. al [6] provides guidance.

4 Moving from desktop applications to distributed HPC and cloud 

architectures: A proposal for developers and bioinformaticians

The field of MS-based computational proteomics and metabolomics heavily relies on 

monolithic desktop applications or online tools, which prevents the analysis of large 

amounts of data in HPC clusters and cloud architectures. In order to overcome these 

problems, four areas of software engineering and algorithm development need to be adopted 

soon in computational MS-based proteomics and metabolomics: I) component-based and 

modularized applications; II) standard practices for tool packaging and deployment, III) 

standardised input/output file formats for exchange between tools and iv) workflow systems.
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Figure 2 shows a proposal for the next generation of computational proteomics tools and 

algorithms. Each of the data processing step should be designed as an independent module 

component, that can be executed in an independent computing node. Multiple tools and 

modules can be packaged into the same framework but all of them should be executable 

independently and interchangeably (through adequate exchange file formats). A component-

based software framework is a branch of software development that emphasizes the 

separation of concerns with respect to the wide-ranging functionality available throughout a 

given software system. The component-based development allows the data analyst to replace 

and substitute components of the workflow by new tools or a new version of the same tool 

without impacting the development process or the larger structure of the workflow.

4.1 Examples of component-based applications

In MS-based proteomics and metabolomics at least three popular frameworks have been 

designed as component-based frameworks: OpenMS (Proteomics and Metabolomics) [33], 

Trans-proteomics pipeline (Proteomics) [34], and MzMine (Metabolomics) [35]. OpenMS 

and OpenSWATH provide a set of computational tools which can be easily combined into 

analysis pipelines even by non-experts and can be used in proteomics workflows. These 

applications range from useful utilities (file format conversions, peak picking) to wrappers 

for known applications like peptide identification search engines. These two frameworks 

have been used recently to analyse big datasets [36].

MZmine is an open-source software toolbox for LC-MS metabolomics data processing, 

including different tools for data processing (e.g. peak noise detection) and visualization. In 

2010, a critical assessment of the tool detected that MZmine was a build in a monolithic 

design, thus limiting the possibility of expanding the software with new methods developed 

by the scientific community. MZmine2 was built in multiple data processing modules, with 

an emphasis on usability and support for high-resolution spectra processing. MZmine2 

includes the identification of peaks using online databases, MSn data support, improved 

isotope pattern support, scatter plot visualization.

These two frameworks (OpenMS, Mzmine), allow the bioinformaticians and developers 

to execute each step of the data analysis independently. For example, OpenMS allows to 

execute the identification step using MSGF+ tool with the command: MSGFPlusAdapter 
-iniid.config -database database.fasta -in run1.mzML -out run1.idXML, the following 

command can be parallelised and run simultaneously N MSRun in a distributed system with 

M compute nodes. Although these tools have been fully implemented as component-based 

frameworks, they have been less successful at using standard file formats between each 

component.

4.2 Standard file formats for better compatibility between components

Standard file formats enable the usage of a common persistence (e.g. file) representation 

of the data that is analysed (e.g. spectra, peptides). The proposed approach in Figure 2 

reduces the need for components to translate from one file format to another, diminishing 

input-output (IO) and data transformation operations. Standard file formats enable the 
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development of new tools based on a common representation, making the input and output 

parameters of tools common to any software component.

The Human Proteome Organization (HUPO) and the Proteomics Standards Initiative (PSI) 

have developed for 15 years file formats and common representations for MS-based 

proteomics and metabolomics data, from the spectra to protein expression [37]. For 

mass spectra, the mzML specification is the most stable, robust and mature file format, 

representing not only the MS/MS signal, but also chromatograms and instrument metadata 
[38]. For peptide/protein identification results, the mzIdentML file format not only captures 

the peptide and protein identifications, but also the software metadata (e.g. FDR thresholds, 

search parameters) used to perform the analysis [39]. Finally, mzTab file format stores the 

information of quantitative data for proteomics and metabolomics experiments [40].

Despite advances in the past years, standard file formats need time to evolve and 

consolidate. The software development process shouldn't be slower because of the 

development of a specific file format. Our recommendation is to replace and reuse existing 

file formats when possible and avoid the creation of new ones. A good example of these 

efforts is the peptide search engine MSGF+, that natively use mzIdentML and has been 

extensively used in open source workflows. A major problem in the use of standardised 

workflows for metabolomics and proteomics in the field of mass spectrometry is the lack of 

intermediate exchange formats, compared for instance to the existing formats in genomics 

(such as BAM, SAM, CRAM, VCF, bed, etc. to name a few). Often in younger fields like 

metabolomics and proteomics, tools will generate results in ad-hoc formatted files with poor 

specifications and often incompatible with downstream tools that would naturally pipe. This 

means that further tailored conversion steps are required; this slows down development, 

requires more maintenance, and can introduce errors or data loss.

4.3 Packaging and deployment using BioContainers

A component-based architecture like the one proposed in this manuscript (Figure 2) prompts 

multiple challenges in deployment and execution. Moving from single desktop applications 

to distributing data analysis and complex workflow systems create major challenges 

for the bioinformatics community: I) software availability, II) results reproducibility 

and III) automated software/environment deployment. Component-based pipelines require 

substantial effort for correct installation and configuration (e.g. conflicting dependencies, 

different base libraries, etc.). In addition, versioning components, key for reproducing the 

results of the analysis, are a burden to scientific software development groups, who are less 

used to proper software engineering standards.

Recently, containers and packaging technologies such as Conda (http://conda.io), 

Docker (http://www.docker.com) and Singularity (https://www.sylabs.io/) have emerged to 

overcome these challenges by automating the deployment of analysis tools inside so-called 

software containers. The BioContainers community [8] (http://biocontainers.pro) has created 

a complete architecture and solution to overcome these challenges based on community-

driven BioConda packages [10] and Docker containers.
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The BioContainers community has defined a set of guidelines on how to create, deploy 

and maintain containers (Figure 3) [9]. Each component (software tool) developer can 

create a Conda recipe (a set of yaml and bash scripts which describe how to consistently 
install a software package on Linux) or a Docker build recipe (Dockerfile), which are all 

stored in GitHub. Each new contribution (or recipe) is accepted through a Pull Request 

(PR) mechanism [41]. Pull Requests provide the opportunity for an open revision and 

improvement step of newly contributed or updated recipes, so that they are up to standards. 

This revision is done by members of the bioinformatics community that are granted 

permissions, reducing the burden on a small group of maintainers, which makes the 

model sustainable. After the PR is merged and the recipe added to the repository with a 

well-defined version, a continuous-integration system triggers the creation of the Conda 

package (in the case of a Conda recipe) and of the corresponding Docker and Singularity 

containers tagged at that version. Historic versions of the same package are stored both as 

Conda packages and containers, guaranteeing future reproducibility of older pipelines that 

use earlier versions of a tool. BioContainers enables users to create multi-tools containers/

packages, where multiple previously packaged tools can be combined into a single container 

or package (https://github.com/BioContainers/multi-package-containers).

The created package and containers include all software dependencies needed to execute 

the tool in question. In general, one package will contain only one tool; larger 

packages containing many tools are in general discouraged. This allows the end user 

to execute the pipeline in different compute environments, without the complexity of 

installation, dependency management, etc. It also makes the pipeline portable from one 

environment to another (e.g. HPC, Cloud or local personal computer), because everything 

is executed in containers. At the time of writing, BioContainers provides more than 7,000 

bioinformatics containers that can be searched, tagged and accessed through a common web 

registry (https://biocontainers.pro/#/registry/). Importantly, the BioContainers and BioConda 

communities convert automatically Bioconductor packages automatically into containers.

4.4 Using workflow systems

High throughput bioinformatic genomics and transcriptomics analyses increasingly rely on 

pipeline frameworks to process sequence and metadata. Until recently, this was not the 

case for Proteomics and metabolomics, where most of the the analysis happened on single 

desktop machines. Modern workflows systems such as Galaxy [12] , Cromwell, CWL tool, 

Toil [42], Nextflow [13] or Snakemake [14] are playing an important role in porting the data 

analysis steps from the single desktop applications into distributed compute platforms [11]. 

Most of these workflow engines provide four major functionalities for data processing: I) 

execution in distributed architectures (HPC, Cloud); II) separation between the execution 

environment and workflow design; III) recovery/restart mechanisms for failed components 

and tasks; iv) support for automatic tool dependency resolution using Conda, Docker 

or Singularity technologies. The automatic tool dependency resolution (using packaging 

systems) allows developers and bioinformaticians to execute the workflows and pipelines 

without the need to install and configure each tool manually in the desired execution 

environment. Two different workflow systems receiving attention from the Bioinformatics 

community are NextFlow [13] and Galaxy [12].
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4.4.1 NextFlow—NextFlow (https://www.nextflow.io/), an expressive, versatile and 

particularly comprehensive framework for composing and executing workflows. NextFlow 

uses a domain-specific language (DSL) which also supports the full syntax and semantics of 

Groovy, a dynamic language that runs on the Java platform. One of the features that make 

NextFlow a powerful workflow engine is its dataflow functionality. Nextflow allows users 

within the workflow definition to filter data, run processes conditionally on data value or 

have splitting/merging pipeline steps expressed in a short, elegant syntax.

Nextflow separates the workflow definition from the execution environment, which allows 

users to execute the same workflow in different architectures (Cloud, HPC or a local 

machine). This abstraction level is guaranteed by using an execution layout that defines 

which type of containers will be used to execute the tools (components of the workflow) 

and which type of architecture will be used to execute those containers (e.g. HPC, Cloud). 

Currently, Nextflow supports the following technologies: Conda, Docker and Singularity; 

and the following execution environments: Local (the software run in single node, server), 

HPC clusters including (Sun Grid Engine, IBM LSF, PBS/Torque, HTCondor) and cloud 

providers, such as Amazon Web services (through AWS batch) or Google Cloud Platform 

(see full list here: https://www.nextflow.io/docs/latest/executor.html). This execution layout 

can be configured with workflow variables which enable to switch between architectures 

with no hassle.

Figure 4 shows two different examples of Nextflow workflows: I) a single step workflow 

to perform sequence alignment using Blast (container https://biocontainers.pro/#/tools/

blast) (Figure 4A-B) and II) a peptide and protein identification workflow (Figure 4C). 

Nextflow allows bioinformaticians to perform analysis in different architectures with the 

same workflow definition (https://www.nextflow.io/docs/latest/basic.html). Each step of the 

workflow (called process) describes which process will be performed and the input/output 

parameters. The container section inside the process (blastSearch) states which containers 

will be used; including container name (blast), version of the container (v2.2.31_cv2). 
Between triple quotes is the actual command which will be executed in the container (in 

this case blast). This is needed because one container can provide multiple tools. Finally, 

the Nextflow config file (https://www.nextflow.io/docs/latest/config.html) defines how the 

present workflow will be executed. In the example, we have defined two possible scenarios: 

local and lsf. If the user runs the workflow using the local configuration (command - 

nextflow workflow.nf -c config.nf -profile local) it will be using BioContainers Docker 

containers, if the user uses lsf (command - nextflow workflow.nf -c config.nf -profile 
lsf), then will be using Singularity BioContainers and the LSF cluster executor. Figure 

4C shows the directed acyclic graph of a more complex workflow (https://github.com/

bigbio/nf-workflows/tree/master/xt-msgf-nf) where two different database search engines 

(MSGF+ and Tide) are combined to identify more peptides and proteins. In red all the 

processes that can be execute in parallel for different input files (e.g. mgf files). Each of 

the identification process can be sent with an MS/MS spectra file to different compute 

node at the same time, reducing execution time of the analysis. Finally, in blue, the 

process that aggregate the results of multiple parallel process (e.g. protein inference step, 

mergeCompleteSearchResults using PIA tool [21,43] ).
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In addition, it provides configuration variables to customize the computer/hardware that 

is required to perform each task. For example, the user can customize the type of node 

(Memory, number of cores) that is needed for each specific task (component tool). Another 

important feature of NextFlow is the simplicity of the language syntax and the support of 

workflow versioning, which enables better reproducibility.

4.4.2 Galaxy Project—Galaxy (https://galaxyproject.org/) is a web application 

workflow environment written in Python, capable of distributing jobs among a plethora 

of batch schedulers (PBS, LSF, GoDocker, DRMAA based schedulers, etc), local machine 

(through containers or conda) and cloud providers (through Kubernetes [44] and others). 

In the HPC case, Galaxy provides the flexibility to use either containers (Docker or 

Singularity) or directly Conda packages. Galaxy tool wrappers are written to point to 

specific package versions, for reproducibility. Galaxy provides a complete separation of 

concerns between the workflow logic definition and the actual execution. Both tools and 

workflows are versioned in Galaxy (and multiple versions of a tool can be installed on the 

same instance).

Galaxy provides tool/workflow repositories, called Toolsheds (such as https://

toolshed.g2.bx.psu.edu/), where users can deposit their own tools and find existing ones. 

Currently, more than 6,000 tools wrapped for Galaxy are available there. From a Galaxy 

Toolshed, users can automatically install desired versions of available Galaxy wrappers to 

their own Galaxy instance. Tool’s dependencies are resolved automatically by Galaxy using 

either Conda packages, Docker or singularity containers, depending on setup. On the same 

workflow, different tools can be sent to different underlying executors and rely on different 

dependency resolution as well.

Besides a rich and responsive user interface (UI), Galaxy enables operations through a 

mature REST API, Python clients (e.g. bioblend, ephemeris) and command line interface 

(parsec), to programmatically control the execution of tools/workflows and data upload/

downloads.

Many organizations provide computing power to end users in the need of doing biological 

data analysis through public Galaxy instances -- in the region of 100 public instances 

exist today (https://galaxyproject.org/use/) -- which are normally flavoured for different 

research topics (examples in Table 1). Notable instances in terms of computational power 

are usegalaxy.org (http://usegalaxy.org) and usegalaxy.eu (http://usegalaxy.eu). Galaxy is 

organized in different initiatives that help to download and deploy complete solutions of 

galaxy tools for a specific field (e.g. Proteomics).

The Galaxy-P (Galaxy for Proteomics - http://galaxyp.org/) initiative provides workflows 

and tools in the fields of proteogenomics and metaproteomics (http://galaxyp.org/access-

galaxy-p/). PhenoMeNal [45] (https://public.phenomenal-h2020.eu/), Galaxy-M [46], and 

Workflow4Metabolomics [47] (https://workflow4metabolomics.org/) are the most complete 

compendium of tools and workflows available in Galaxy for metabolomics researchers. 

Figure 5 shows an example workflow from the PhenoMeNal project for the analysis of 

LC-MS/MS data. This workflow combines different open source tools (XCMS, CAMERA, 
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msnbase, MetFrag) in a component-based manner. All the PhenoMeNal workflows can be 

found directly in the PhenoMeNal link shown above. Table 1 shows a list of Metabolomics 

workflows from PhenoMeNal and Workflows4Metabolomics (to execute them, registration 

is needed).

5 Towards reproducible data analysis

Reproducibility is challenging in life sciences, especially in computationally intensive 

domains (e.g. proteomics and metabolomics) where results rely on a series of complex 

analytical and bioinformatics steps that are not well captured by traditional publication 

approaches. While there are now several guidelines and platforms to enable reproducibility 

in computational biology [41, 48, 49], the approach we describe here is flexible, robust and 

scalable enough to guarantee the features for reproducibility research: I) managing software 

dependencies, II) separation between the data flow design and the execution environments, 

and III) virtualizing entire analyses for complete portability and preservation against time 
[48].

The use of BioConda and BioContainers as independent components in data analysis 

resolves the problem of complex software dependencies. In addition, it provides a 

mechanism to easily replace independent components from different technologies and 

programming languages (e.g. python by R package). The use of workflows in combination 

with container technologies allows researchers to reproduce data analysis on their own 

compute architecture (e.g. local PC or cloud). BioConda and BioContainers provide 

consistently versioned tool packages and containers, allowing users to reproduce data 

analysis over time.

The route to reproducibility in Galaxy is through the deposition of Galaxy tool wrappers 

in the Galaxy Toolshed and sharing of workflows either through GitHub or the same 

Toolshed. Tools and workflows available there can be installed on any Galaxy instance, 

and their software dependencies will be resolved automatically by the instance to either 

conda packages or containers, facilitating re-runs of the same workflows in different 

infrastructures. The deposition of modules into the Toolshed can be done either directly 

to the Toolshed or through a Pull Request against the IUC Tools GitHub repository (https://

github.com/galaxyproject/tools-iuc/), where it will undergo a review process by one or more 

of the many Galaxy community members, to meet adequate standards. The latter route has 

the advantage, besides the review process, that the tool is left in a repository that is not 

owned by the original contributor, meaning that the tool can be updated in the future without 

necessarily needing the attention of that developer.

Finally, in order to complement the software efforts made by the BioConda and 

BioContainers communities, we urge software developers in the metabolomics and 

proteomics communities to embrace standard file formats for input and output of their 

software and component tools. Standard file formats not only enable better interoperability 

between software components, but also improve the reproducibility of the analysis [50].
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6 Conclusions

Proteomics and metabolomics mass spectrometry are moving from desktop application 

data analysis to distributed architectures (HPC and Cloud), due to larger datasets being 

generated (more sample, more replicates, higher coverage, more resolution, etc). However, 

the most popular software used in the field, such as Skyline, MaxQuant, ProteomeDiscover 

and XCMS Online, are mainly developed as monolithic tools, hampering the scale up of 

individual steps of the analysis into distributed architectures. First, the software development 

and algorithmic paradigms should be changed by decoupling monolithic applications into 

smaller components (tasks) that can be distributed on Cloud and HPC architectures. We 

recommend that each of these small components support standard file formats for inputs and 

outputs, towards facilitating the exchange of steps in data analysis pipelines.

We presented a future paradigm for proteomics and metabolomics large scale data analysis 

based on BioContainers, BioConda, Docker/Singularity containers and workflow engines 

such as Galaxy and Nextflow. The proposed model starts through the creation of a 

Conda or Dockerfile recipe in BioContainers, providing the mandatory metadata and 

dependencies to build the container. The new recipe is built using continuous integration, 

where theBioContainers architecture will check the metadata, tests and push the final 

containers intoBioContainers public registries and packages to BioConda. The Conda-based 

containers are deployed to Quay.io (https://quay.io/organization/biocontainers) and the 

Dockerfile-based are deployed to DockerHub (https://hub.docker.com/u/biocontainers). All 

containers are searchable, and discoverable through the BioContainers tool registry (http://

biocontainers.pro/#/registry/).

Finally, we recommend the proteomics and metabolomics community to embrace the 

development of bioinformatics workflows and gradually move bioinformatics pipelines and 

data analysis into workflow environments such as Nextflow and Galaxy. The combination 

of workflow environments and BioContainers will enable more reproducible and scalable 

metabolomics and proteomics data analysis.
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AWS Amazon web services

CWL Common workflow language

DDA Data-dependant acquisition

DIA Data-independent acquisition

DSL Domain-specific language

FDR False discovery rate
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HPC High-performance computer

HPCS High-performance computing systems

HUPO Human Proteome Organization

IO Input-output

MRM Multiple reaction monitoring

MS Mass spectrometry

MS/MS Tandem mass spectrometry

LC-MS Liquid chromatography–mass spectrometry

LSF IBM Platform LSF

PR Pull request

PRM Parallel reaction monitoring

PSI Proteomics Standards Initiative

REST API Representational State Transfer programming interface

SRM Selected reaction monitoring
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Figure 1. Mass spectrometry metabolomics and proteomics bioinformatics workflows.
The Proteomics lane (right) represent a Database search Label-free analysis workflow 

including Feature detection on MS1 spectra, protein database creation, database search, 

statistical analysis and final protein inference step. The metabolomics workflow represents a 

common spectral search workflow.
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Figure 2. 
The proposed roadmap to scale metabolomics and proteomics data analysis includes the 

packaging and containerization of the specific tool and software using BioConda and 

BioContainers. The design of bioinformatics workflows that use the specific containers and 

abstract the execution from the compute environment (e.g. Cloud or HPC). A very important 

step of this design is the use of standard file formats that enable to communicate different 

tools and steps of the workflow.
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Figure 3. 
BioContainers architecture from the container request by the user in GitHub to the final 

container deposited in DockerHub (https://hub.docker.com/u/biocontainers) and Quay.io 

(https://quay.io/organization/biocontainers). The BioContainers community in collaboration 

with the BioConda community defines a set of guidelines and protocols to create a Conda 

and Docker container including mandatory metadata, tests and trusted images [9]. The 

proposed architecture uses a continuous integration system (CI) to test and build the final 

containers and deposit them into public registries. All the Containers and tools can be 

searched from the BioContainers registry (http://biocontainers.pro/regitry).
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Figure 4. Nextflow allows bioinformaticians to perform analysis in different architectures with 
the same workflow definition.
(A) The workflow step (called process) describes which process will be performed and the 

input/output parameters. The container section inside the blastSearch process state which 

containers will be use; including container name (blast), and version of the container 
(v2.2.31_cv2). Between triple quotes is the actual command will be executed in the 

container (in this case blast). This is needed because one container can provide multiple 

tools. (B) The Nextflow config file (https://www.nextflow.io/docs/latest/config.html) defines 

how the present workflow (A) will be executed. In the example, we have defined two 

possible scenarios: local and lsf. If the user runs the workflow using the local configuration 

it will be using Docker containers, if the user uses lsf, then it will be using singularity and 

the LSF cluster executor. (C) Directed Acyclic Graph for a peptide and protein identification 

workflow in Nextflow (https://github.com/bigbio/nf-workflows/tree/master/xt-msgf-nf).
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Figure 5. A Galaxy workflow from PhenoMeNal H2020, used for processing LC-MS/MS data. 
It integrates XCMS, CAMERA, msnbase and MetFrag for matching detected fragments to 
potential small molecules.
Each box represents a relevant tool step and is backed by a container that can execute that 

process (all CAMERA steps rely of course on the same CAMERA container). Plumbing 

such a pipeline through a scripting language would require considerable work, including 

any additional logic to execute on a cluster. In the case shown here, this workflow was 

created by dragging and dropping tools in Galaxy, and there was no need for the analyst to 

be concerned about how the workflow environment is actually distributing this on a large 

computational infrastructure: handling the cluster and the workflow become independent 

and the analyst can focus on the flow of the software tools within the pipeline. The Galaxy 

workflow can be shared as a single file, to be imported into other Galaxy instances.
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Table 1
Collection of public Nextflow and Galaxy workflows for proteomics and metabolomics 
data analysis.

Workflow Description Main tools Link

Metabolomics processing, quantification, 
annotation, identification 
and statistics

XCMS, OpenMS, CAMERA, 
MetFrag, W4M Multivariate 
and Univariate Statistical 
Analysis tools

https://public.phenomenal-h2020.eu/u/
phenoadmin/w/metabolomics-lcmsms-processing-
quantification-annotation-identification-and-
statistics-1

mzQuality Quality Control for MS 
data.

ms-vetfc https://public.phenomenal-h2020.eu/u/
phenoadmin/w/mzquality

Eco-metabolomics MS Metabolomics for 
Ecology applications

Ecomet https://public.phenomenal-h2020.eu/u/
phenoadmin/w/eco-metabolomics-workflow

Fluxomics stationary 
13C-MS iso2flux

Steady state fluxomics 
based on tracer data.

Iso2flux, Escher metabolic 
pathway viewer.

https://public.phenomenal-h2020.eu/u/
phenoadmin/w/fluxomics-stationary-13c-ms-
iso2flux-with-visualization

LC-MS XCMS 3.0 MS Analysis with peak 
annotation

XCMS, CAMERA https://galaxy.workflow4metabolomics.org/u/
lecorguille/w/lcms-new-workflow-xcms-300

ProteoGenomics Proteogenomics analysis CustomProDB, PeptideShaker, 
SearchGUI, msconvert, 
MSGF+

http://galaxyp-proteogenomics.duckdns.org/

Metaproteomics Galaxy Metaproteomics metaQuantome, Unipept, 
MetaProteomeAnalyzer

http://z.umn.edu/metaproteomicsgateway

IPAW 
Proteogenomics

ProteoGenomics 
workflow in Nextflow

OpenMS https://github.com/lehtiolab/proteogenomics-
analysis-workflow

Peptide and 
protein quantification 
workflow

OpenMS LFQ workflow OpenMS https://github.com/nf-core/mhcquant

ProteoGenomics 
Database (pgdb)

Nextflow for Custom 
proteogenomics database 
creation

pypgatk https://github.com/bigbio/pgdb/
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