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The progression of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic in Africa has so far been heterogeneous, and the full impact is not
yet well understood. In this study, we describe the genomic epidemiology using a dataset of 8746 genomes from 33 African countries and two overseas territories.
We show that the epidemics in most countries were initiated by importations predominantly from Europe, which diminished after the early introduction of
international travel restrictions. As the pandemic progressed, ongoing transmission in many countries and increasing mobility led to the emergence and spread within
the continent of many variants of concern and interest, such as B.1.351, B.1.525, A.23.1, and C.1.1. Although distorted by low sampling numbers and blind spots,
the findings highlight that Africa must not be left behind in the global pandemic response, otherwise it could become a source for new variants.

S
evere acute respiratory syndrome coro-
navirus 2 (SARS-CoV-2) emerged in late
2019 in Wuhan, China (1, 2). Since then,
the virus has spread to all corners of the
world, causing almost 150 million cases

of COVID-19 and more than 3 million deaths

by the end of April 2021. Throughout the pan-
demic, it has been noted that Africa accounts
for a relatively low proportion of reported cases
and deaths—by the end of April 2021, there had
been ~4.5 million cases and ~120,000 deaths
on the continent, corresponding to less than

4% of the global burden. However, emerging
data from seroprevalence surveys and autopsy
studies in some African countries suggest that
the true number of infections and deaths may
be severalfold higher than reported (3, 4). In
addition, a recent analysis has shown that in
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many African countries, the secondwave of the
pandemicwasmore severe than the firstwave (5).
The first cases of COVID-19 on the African

continentwere reported inNigeria, Egypt, and
South Africa between mid-February and early
March 2020, and most countries had reported
cases by the end of March 2020 (6–8). These
early cases were concentrated among airline
travelers returning from regions of the world
with high levels of community transmission.
Many African countries introduced early public
health and social measures, including inter-
national travel controls, quarantine for return-
ing travelers, and internal lockdown measures,
to limit the spread of the virus and give health
services time to prepare (5, 9). The initial phase
of the epidemic was then heterogeneous, with
relatively high case numbers reported in North
Africa and southern Africa, and fewer cases
reported in other regions.
From the onset of the pandemic, genomic

surveillance has been at the forefront of the
COVID-19 response in Africa (10). Rapid im-
plementation of SARS-CoV-2 sequencing by
various laboratories in Africa enabled genomic
data to be generated and shared from the early
imported cases. In Nigeria, the first genome
sequence was released just 3 days after the
announcement of the first case (6). Similarly,
in Uganda, a sequencing program was set up
rapidly to facilitate virus tracing, and the col-
lection of samples for sequencing began im-
mediately upon confirmation of the first case
(11). In South Africa, the Network for Genomic
Surveillance in South Africa (NGS-SA) was es-
tablished in March 2020, and within weeks,
genomic analysis was helping to characterize
outbreaks and community transmission (12).
Genomic surveillance has also been criti-

cal formonitoring ongoing SARS-CoV-2 evolu-
tion and detection of new SARS-CoV-2 variants
in Africa. Intensified sampling by NGS-SA in
the Eastern Cape Province of South Africa in
November 2020, in response to a rapid resur-
gence of cases, led to the detection of B.1.351
(501Y.V2) (13). This variant was subsequently
designated a variant of concern (VOC) by the
World Health Organization (WHO), owing to
evidence of increased transmissibility (14) and
resistance to neutralizing antibodies elicited
by natural infection and vaccines (15–17).
In this study, we performed phylogenetic

and phylogeographic analyses of SARS-CoV-2
genomic data from 33 African countries and
two overseas territories to help characterize
the dynamics of the pandemic in Africa. We
show that the early introductions were pre-
dominantly from Europe, but that as the pan-
demic progressed, there was increasing spread
between African countries. We also describe

the emergence and spread of a number of key
SARS-CoV-2 variants in Africa and highlight
how the spread of B.1.351 (501Y.V2) and other
variants contributed to the more severe sec-
ond wave of the pandemic in many countries.

SARS-CoV-2 genomic data

By 5 May 2021, 14,504 SARS-CoV-2 genomes
had been submitted to the GISAID database
(18) from 38 African countries and two over-
seas territories (Mayotte andRéunion) (Fig. 1A).
Overall, this corresponds to approximately
one sequence per ~300 reported cases. Almost
half of the sequences were from South Africa
(n= 5362), consistentwith it being responsible
for almost half of the reported cases in Africa.
Overall, the number of sequences correlates
closely with the number of reported cases per
country (Fig. 1B). The countries and territories
with the highest coverage of sequencing (de-
fined as genomes per reported case) are Kenya
(n = 856, one sequence per ~203 cases), Mayotte
(n = 721, one sequence per ~21 cases), and
Nigeria (n = 660, one sequence per ~250 cases).
Although genomic surveillance started early
in many countries, few have evidence of con-
sistent sampling across the whole year. Half
of all African genomes were deposited in the
first 10 weeks of 2021, suggesting intensified
surveillance in the second wave after the de-
tection of B.1.351 (501Y.V2) and other var-
iants (Fig. 1, C and D).

Genetic diversity and lineage dynamics
in Africa

Of the 10,326 genomes retrieved from GISAID
by the end ofMarch 2021, 8746 genomes passed
quality control andmet theminimummetadata
requirements. These genomes fromAfrica were
compared in a phylogenetic framework with
11,891 representative genomes from around
the world. Ancestral location state reconstruc-
tion of the dated phylogeny (hereafter referred
to as discrete phylogeographic reconstruction)
allowed us to infer the number of viral imports
and exports between Africa and the rest of the
world, and between individual African coun-
tries. African genomes in this study spanned
the whole global genetic diversity of SARS-
CoV-2, a pattern that largely reflects multiple
introductions over time from the rest of the
world (Fig. 2A).
In total, we detected at least 757 [95% con-

fidence interval (CI): 728 to 786] viral intro-
ductions into African countries between the
start of 2020 and February 2021, more than
half of which occurred before the end of May
2020. Although the early phase of the pan-
demic was dominated by importations from
outside Africa, predominantly from Europe,
there was then a shift in the dynamics, with an
increasing number of importations from other
African countries as the pandemic progressed
(Fig. 2, B and C). A rarefaction analysis in

which we systematically subsampled genomes
shows that vastly more introductions would
have likely been identified with increased sam-
pling in Africa or globally, suggesting that the
introductions we identified are really just the
“ears of the hippo,” or a small part of a larger
problem (fig. S1).
South Africa, Kenya, and Nigeria appear

as major sources of importations into other
African countries (Fig. 2D), although this is
likely to be influenced by these three countries
having the greatest number of deposited se-
quences. Particularly notable is the southern
African region,where SouthAfrica is the source
for a large proportion (~80%) of the impor-
tations to other countries in the region. The
North African region demonstrates a differ-
ent pattern to the rest of the continent, with
more viral introductions from Europe and Asia
(particularly the Middle East) than from other
African countries (fig. S2).
Africa has also contributed to the interna-

tional spread of the virus, with at least 324
(95% CI: 295 to 353) exportation events from
Africa to the rest of the world detected in this
dataset. Consistent with the source of impor-
tations, most exports were to Europe (41%),
Asia (26%), and North America (14%). As with
the number of importations, exports were
relatively evenly distributed over the 1-year
period (fig. S3). However, an increase in the
number of exportation events occurred be-
tween December 2020 andMarch 2021, which
coincided with the second wave of infections
in Africa and with some relaxations of travel
restrictions around the world.
The early phase of the pandemic was char-

acterized by the predominance of lineage B.1.
This was introduced multiple times to African
countries and has been detected in all but one
of the countries included in this analysis. After
its emergence in SouthAfrica, B.1.351 became the
most frequently detected SARS-CoV-2 lineage
found in Africa (n = 1769, ~20%) (Fig. 1C). It
was first sampled on 8 October 2020 in South
Africa (13) and has since spread to 20 other
African countries.
As air travel came to an almost complete halt

in March and April 2020, the number(s) of de-
tectable viral imports into Africa decreased
and the pandemic entered a phase that was
characterized in sub-Saharan Africa by sus-
tained low levels of within-country movements
and occasional international viral movements
between neighboring countries, presumably
via road and rail links between these. Though
some border posts between countries were
closed during the initial lockdownperiod (table
S1), others remained open to allow trade to
continue. Regional trade in southern Africa
was only slightly affected by lockdown restric-
tions and quickly rebounded to prepandemic
levels (fig. S4) after the relaxation of restric-
tions between June 2020 and December 2020.
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Although lineage A viruses were imported
into several African countries, they only ac-
count for 1.3% of genomes sampled in Africa.
Despite lineageAviruses initially causingmany
localized clustered outbreaks, each the result
of independent introductions to several coun-
tries (e.g., Burkina Faso, Côte d’Ivoire, and
Nigeria), they were later largely replaced by
lineage B viruses as the pandemic evolved.
This is possibly due to the increased transmis-
sibility of lineage B viruses by virtue of the
D614G (Asp614→Gly) mutation in the spike
protein (19, 20). However, there is evidence of
an increasing prevalence of lineage A viruses in
someAfrican countries (11). In particular, A.23.1
emerged inEast Africa and appears to be rapidly
increasing inprevalence inUganda andRwanda
(11). Furthermore, a highly divergent variant
from lineage Awas recently identified in Angola
from individuals arriving from Tanzania (21).

Emergence and spread of new
SARS-CoV-2 variants

To determine how some of the key SARS-CoV-2
variants are spreading within Africa, we per-
formed phylogeographic analyses on the VOC
B.1.351, the variant of interest (VOI) B.1.525,
and two additional variants that emerged and
that we designated as VOIs for this analysis
(A.23.1 and C.1.1). These African VOCs and VOIs
have multiple mutations on the spike glyco-
protein, and amolecular clock analysis of these
four datasets provided strong evidence that
these four lineages are evolving in a clock-like
manner (Fig. 3, A and B).
B.1.351 was first sampled in South Africa in

October 2020, but phylogeographic analysis
suggests that it emerged earlier, around August
2020. It is defined by 10 mutations in the spike
protein, including K417N (Lys417→Asn), E484K
(Glu484→Lys), and N501Y (Asn501→Tyr) in the
receptor binding domain (Fig. 3B). After its
emergence in the Eastern Cape, it spread ex-
tensively within South Africa (Fig. 4A). By
November 2020, the variant had spread into
neighboring Botswana and Mozambique, and
byDecember 2020, it had reached Zambia and
Mayotte. Within the first 3 months of 2021,
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Fig. 1. SARS-CoV-2 sequences in Africa. (A) Map of
the African continent with the number of SARS-CoV-2
sequences reflected in GISAID as of 5 May 2021.
(B) Regression plot of the number of viral sequences
versus the number of reported COVID-19 cases in
various African countries as of 5 May 2021. Countries
with >500 sequences are labeled. The shaded region
indicates the 95% confidence interval. (C) Progressive
distribution of the top 20 PANGO lineages on the
African continent. (D) Temporal sampling of
SARS-CoV-2 sequences in African countries
(ordered by total number of sequences) through
time, with VOCs of note highlighted and annotated
according to their PANGO lineage assignment.
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further exports fromSouthAfrica intoBotswana,
Zimbabwe,Mozambique, andZambia occurred.
By March 2021, B.1.351 had become the dom-
inant lineage within most southern African
countries as well as the overseas territories of
Mayotte and Réunion (fig. S5). Our phylogeo-
graphic reconstruction also demonstrates
movement of B.1.351 into East and Central
Africa directly from southern Africa. Our dis-
crete phylogeographic analysis of a wider sam-
ple of B.1.351 isolates demonstrates the spread
of the lineage into West Africa. This patient
from West Africa had a known travel history
to Europe, so it is possible that the patient ac-
quired the infection while in Europe or in tran-
sit and not from other African sources (fig. S6).

B.1.525 is a VOI defined by six substitu-
tions in the spike protein [Q52R (Gln52→Arg),
A67V (Ala67→Val), E484K, D614G, Q677H
(Gln677→His), and F888L (Phe888→Leu)] and
two deletions in the N-terminal domain [HV69-
70D (deletion of His and Val at positions 69
and 70) and Y144D (deletion of Tyr at posi-
tion 144)]. This was first sampled in the
United Kingdom in mid-December 2020, but
our phylogeographic reconstruction suggests
that the variant originated in Nigeria in
November 2020 [95% highest posterior den-
sity (HPD) 2020-11-01 to 2020-12-03] (Fig. 4B).
Since then, it has spread throughout much of
Nigeria and neighboring Ghana. Given sparse
sampling from other neighboring countries

withinWest andCentral Africa (Fig. 1, A andC),
the extent of the spread of this VOI in the re-
gion is not clear. Beyond Africa, this VOI has
spread to Europe and the United States (fig. S6).
We designatedA.23.1 andC.1.1 as VOIs for the

purposes of this analysis because they present
good examples of the continued evolution of
the virus within Africa (11, 13). Lineage A.23,
characterized by three spike mutations [F157L
(Phe157→Leu), V367F (Val367→Phe), and Q613H
(Gln613→His)], was first detected in a Ugandan
prison in Amuru in July 2020 (95% HPD: 2020-
07-15 to 2020-08-02). From there, the lineage
was transmitted to Kitgum prison, possibly
facilitated by the transfer of prisoners. Sub-
sequently, the A.23 lineage spilled into the
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Fig. 2. Phylogenetic reconstruction of the SARS-CoV-2 pandemic on the con-
tinent of Africa. (A) Time-resolved maximum likelihood tree containing 8746 high-
quality African SARS-CoV-2 near-full-genome sequences analyzed against a
backdrop of global reference sequences. VOIs and VOCs are highlighted on the
phylogeny. (B) Sources of viral introductions into African countries characterized as

external introductions from the rest of the world versus internal introductions from
other African countries. (C) Total external viral introductions over time into Africa.
(D) The number of viral imports and exports into and out of various African
countries depicted as internal (between African countries, in pink) or external
(between African and non-African countries, in blue and gray).
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general population and spread to Kampala,
adding other spike mutations [R102I (Arg102→-
Ile), L141F (Leu141→Phe), E484K, and P681R
(Pro681→Arg)] along with additionalmutations
in nsp3, nsp6, ORF8, and ORF9, prompting a

new lineage classification, A.23.1 (Fig. 3, A and
B). Since the emergence of A.23.1 in September
2020 (95% HPD: 2020-09-02 to 2020-09-28), it
has spread regionally into neighboring Rwanda
and Kenya and has now also reached South

Africa and Botswana in the south and Ghana in
the west (Fig. 4C). However, our phylogeo-
graphic reconstruction of A.23.1 suggests that
the introduction into Ghanamay have occurred
via Europe (fig. S6), whereas the introductions
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into southern Africa likely occurred directly
from East Africa. This is consistent with epide-
miological data suggesting that the case detected
in South Africa was a contact of an individual
who had recently traveled to Kenya.
Lineage C.1 emerged in SouthAfrica inMarch

2020 (95% HPD: 2020-03-13 to 2020-04-17)
during a cluster outbreak before the first
wave of the epidemic (13). C.1.1 is defined by
the spikemutations S477N (Ser477→Asn), A688S
(Ala688→Ser), and M1237I (Met1237→Ile) and
also contains the Q52R and A67V mutations
similar to B.1.525 (Fig. 3B). A continuous trait
phylogeographic reconstruction of the move-
ment dynamics of these lineages suggests that
C.1 emerged in the city of Johannesburg and

spreadwithin SouthAfrica during the first wave
(Fig. 4D). Independent exports of C.1 from
South Africa led to regional spread to Zambia
(June to July 2020) and Mozambique (July to
August 2020), and the evolution to C.1.1 seems
to have occurred in Mozambique around mid-
September 2020 (95% HPD: 2020-09-07 to
2020-10-05). An in-depth analysis of SARS-
CoV-2 genotypes fromMozambique suggests
that the C.1.1 lineagewas themost prevalent in
the country until the introduction of B.1.351,
whichhas dominated the epidemic since (fig. S5).
The VOC B.1.1.7, which was first sampled in

Kent, England, in September 2020 (22), has
also increased in prevalence in several African
countries (fig. S5). To date, this VOC has been

detected in 11 African countries, as well as the
Indian Ocean islands of Mauritius and Mayotte
(fig. S7). The time-resolved phylogeny suggests
that this lineage was introduced into Africa on
at least 16 occasions between November 2020
and February 2021, with evidence of local trans-
mission in Nigeria and Ghana.

Conclusions

Our phylogeographic reconstruction of past
viral dissemination patterns suggests a strong
epidemiological linkage between Europe and
Africa, with 64% of detectable viral imports into
Africa originating in Europe and 41% of detect-
able viral exports from Africa landing in Europe
(Fig. 1C). This phylogeographic analysis also
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suggests a changing pattern of viral diffusion
into and within Africa over the course of 2020.
In almost all instances, the earliest introduc-
tions of SARS-CoV-2 into individual African
countries were from countries outside Africa.
High rates of COVID-19 testing and con-

sistent genomic surveillance in the south of
the continent have led to the early identifi-
cation of VOCs such as B.1.351 and VOIs such
as C.1.1 (13). Since the discovery of these south-
ern African variants, several other SARS-CoV-2
VOIs have emerged in different parts of the
world, including elsewhere on the African
continent, such as B.1.525 in West Africa and
A.23.1 in East Africa. There is strong evidence
that both of these VOIs are rising in frequency
in the regions where they have been detected,
which suggests that they may possess higher
fitness than other variants in these regions.
Although more-focused research on the bio-
logical properties of these VOIs is needed to
confirm whether they should be considered
VOCs, it would be prudent to assume the worst
and focus on limiting their spread. It will be
important to investigate how these different
variants compete against one another if they
occupy the same region.
Our focused phylogenetic analysis of the

B.1.351 lineage revealed that in the finalmonths
of 2020, this variant spread from South Africa
into neighboring countries, reaching as far
north as the Democratic Republic of the Congo
(DRC) by February 2021. This spread may have
been facilitated through rail and road net-
works that formmajor transport arteries link-
ing South Africa’s ocean ports to commercial
and industrial centres in Botswana, Zimbabwe,
Zambia, and the southern parts of the DRC. The
rapid, apparently unimpeded spread of B.1.351
into these countries suggests that current land-
border controls that are intended to curb the
international spread of the virus are ineffec-
tive. Perhaps targeted testing of cross-border
travelers, genotyping of positive cases, and the
focused tracking of frequent cross-border trav-
elers, such as long distance truckers, would more
effectively contain the spread of future VOCs
and VOIs that emerge within this region.
The dominance of VOIs and VOCs in Africa

has important implications for vaccine roll-
outs on the continent. For one, slow rollout of
vaccines in most African countries creates an
environment in which the virus can replicate
and evolve: This will almost certainly produce
additional VOCs, any of which could derail
the global fight against COVID-19. Conversely,
with the already widespread presence of known
variants, difficult decisions about balancing
reduced efficacy and availability of vaccines
have to be made. This also highlights how
crucial it is that trials are done. From a public
health perspective, genomic surveillance is only
one item in the toolkit of pandemic prepared-
ness. It is important that such work is closely

followed by genotype-to-phenotype research to
determine the actual relevance of continued
evolution of SARS-CoV-2 and other emerging
pathogens.
The rollout of vaccines across Africa has

been painfully slow (figs. S8 and S9). There
have, however, been notable successes that
suggest that the situation is not hopeless. The
small island nation of the Seychelles had vac-
cinated 70% of its population by May 2021.
Morocco has kept pace withmany developed
nations and, by mid-March, had vaccinated
~16% of its population. Rwanda, one of Africa’s
most resource-constrained countries, had, within
3 weeks of obtaining its first vaccine doses in
early March, managed to provide first doses to
~2.5% of its population. For all other African
countries, at the time ofwriting, vaccine coverage
(first dose) was <1.0% of the general population.
The effectiveness of molecular surveillance

as a tool for monitoring pandemics is largely
dependent on continuous and consistent sam-
pling through time, rapid virus genome se-
quencing, and rapid reporting. When this is
achieved, molecular surveillance can ensure
the early detection of changing pandemic char-
acteristics. Further, when such changes are dis-
covered, molecular surveillance data can also
guide public health responses. In this regard,
themolecular surveillance data that are being
gathered by most African countries are less
useful than they could be. For example, the
time lag betweenwhen virus samples are taken
and when sequences for these samples are
deposited in sequence repositories is so great
in some cases that the primary utility of ge-
nomic surveillance data is lost (fig. S10). This
lag is driven by several factors, depending on
the laboratory or country in question: (i) lack
of reagents owing to disruptions in global sup-
ply chains, (ii) lack of equipment and infrastruc-
ture within the originating country, (iii) scarcity
of technical skills in laboratory methods or bio-
informatic support, and (iv) hesitancy by some
health officials to release data. More-recent
sampling and prompt reporting is crucial to
reveal the genetic characteristics of currently
circulating viruses in these countries.
The patchiness of African genomic surveil-

lance data is therefore the main weakness of
our study. However, there is evidence that the
situation is improving, with ~50% of African
SARS-CoV-2 genome sequences having been
submitted to the GISAID database within the
first 10 weeks of 2021. Although the precise
factors underlying this surge in sequencing
efforts are unclear, an important driver is al-
most certainly increased global interest in
genomic surveillance after the discovery of
multiple VOCs and VOIs since December 2020.
We cannot reject that the observed increase
in exports from Africa may be due to inten-
sified sequencing activity after the detection
of variants around the world. It is important

to note here that phylogeographic reconstruc-
tion of viral spread is highly dependent on
sampling where there is the caveat that the
exact routes of viral movements between coun-
tries cannot be inferred if there is no sam-
pling in connecting countries. Furthermore,
our efforts to reconstruct the movement dy-
namics of SARS-CoV-2 across the continent are
almost certainly biased by uneven sampling
between different African countries. It is not
a coincidence that we identified South Africa,
Kenya, and Nigeria, which have sampled and
sequenced the most SARS-CoV-2 genomes,
as major sources of viral transmissions between
sub-Saharan African countries. However, these
countries also had the highest number of infec-
tions, which may decrease the sampling biases
(Fig. 1A).
The reliability of genomic surveillance as a

tool to prevent the emergence and spread of
dangerous variants is dependent on the in-
tensity with which it is embraced by national
public health programs. As with most other
parts of the world, the success of genomic sur-
veillance in Africa requires that more samples
are tested for COVID-19, higher proportions of
positive samples are sequenced within days
of sampling, and persistent analyses of these
sequences are performed for concerning sig-
nals such as (i) the presence of novel nonsynon-
ymous mutations at genomic sites associated
with pathogenicity and immunogenicity, (ii)
evidence of positive selection at codon sites
where nonsynonymous mutations are observed,
and (iii) evidence of lineage expansions. Des-
pite limited sampling, Africa has identified
many of the VOCs and VOIs that are being
transmitted across the world. Detailed char-
acterization of the variants and their impact
on vaccine-induced immunity is of extreme
importance. If the pandemic is not controlled
in Africa, we may see the production of vaccine
escape variants that may profoundly affect
the population in Africa and across the world.
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