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Abstract

Malaria, a major cause of child mortality in Africa, is engendered by Plasmodium parasites that 

are transmitted by anopheline mosquitoes. Fitness of Plasmodium parasites is closely linked to the 

ecology and evolution of its anopheline vector. However, whether the genetic structure of vector 

populations impacts malaria transmission remains unknown. Here, we describe a partitioning 

of the African malaria vectors into generalists and specialists that evolve along ecological 

boundaries. We next identify the contribution of mosquito species to Plasmodium abundance 

using Granger causality tests for time-series data collected over two rainy seasons in Mali. We 

find that mosquito microevolution, defined by changes in the genetic structure of a population over 

short ecological time-scales, drives Plasmodium dynamics in nature, whereas vector abundance, 

infection prevalence, temperature and rain have low predictive values. Our study demonstrates the 

power of time-series approaches in vector biology and highlights the importance of focusing local 

vector control strategies on mosquito species that drive malaria dynamics.

The Anopheles gambiae sensu lato (s.l.) species complex inhabits ecosystems ranging from 

the dry Saharan edge and savanna woodlands, to humid rainforests and saline environments. 

Population genetics and genomics studies have uncovered signatures of adaptations 

along ecological boundaries, suggesting an ecotype structure of the morphologically 

indistinguishable species complex1–5. Accumulating evidence indicates the importance 

of spatiotemporal structuring of vector populations for malaria transmission6, but the 

contribution of vector microevolution remains unknown. This question is particularly 

important in the light of climate-induced restructuring of vector populations worldwide. 

Currently used linear correlational approaches to mapping species biogeography7,8 and 

differences in resistance to Plasmodium are mostly based on analyses of samples collected 

within a limited window of time or in experimental infections9,10. However, such approaches 

often generate contradictory results as they are not well-suited for studying dynamics of 

natural complexities8,11.

Data-driven approaches such as Granger-causality (G-causality) analysis harness 

information contained in natural variance and offer powerful tools to decipher complex 

interactions that cannot be examined in the laboratory. G-causality tests are implemented by 

time-lagged regression based on the predictive notion of causality whereby a cause precedes 

and predicts the effect12. In contrast to classical epidemiological models, this quantitative 

approach makes minimal assumptions about the underlying biological mechanisms. Instead, 

it gathers the unique information contained in the dynamics (time series) of the causal 

variable to test how well a generated interaction network explains observed responses. Here 

we exploited G-causality to test whether genetic structure of a mosquito population impacts 

Plasmodium abundance.

We first simplified the genetic characterization of mosquito ecotypes across sub-Saharan 

Africa. The Anopheles species complex is classified into species by inversions of 

chromosome 2 or microsatellite markers on chromosomes X and 3L13–15. The microsatellite 

marker on chromosome 3L encompasses a highly polymorphic key mosquito immune 
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factor, the thioester-containing protein 1 (TEP1)16. TEP1 is a complement-like protein 

that mediates mosquito resistance to diverse pathogens, including bacteria17, fungi18 and 

Plasmodium19. As TEP1 polymorphism has been implicated in the adaptive radiation of 

the species complex10, we harnessed its exceptional variability to increase the genotyping 

resolution beyond species classification (Supplementary Fig. 1). TEP1 variation can be 

resolved into four allelic forms (or haplotypes) named *S1, *S2, *R1 and *R210,20. Initially, 

*S1 and *R1 alleles have been shown to segregate in Plasmodium-susceptible and -resistant 

mosquito strains, respectively21. Structural comparison and biochemical studies in vitro of 

the most divergent R1 and S1 forms pointed to the substitutions within the highly variable 

thioester domain (TED) as major contributors to the phenotypic divergence between the 

alleles21,22 (Fig.1a). To compare the robustness of TED as a marker for TEP1 genotyping, 

we sequenced full-length TEP1 and TED from laboratory and field mosquitoes and 

compared their amino acid sequences. Congruent topologies of the cladograms confirmed 

that TED contains all the information necessary for identification of TEP1 alleles (Fig.1b 

and Supplementary Tables 1–3).

In a large-scale geographical census, we sampled and genotyped a total of 1,556 A. gambiae 
s.l. adults and larvae from west to east sub-Saharan Africa (Fig. 2a). The sampling sites 

spanned Sahelian and savanna ecosystems (Mali, Burkina Faso and Kenya), and rain-forest 

(Cameroon and Kenya) (Supplementary Table 4). At all sites, A. gambiae sensu stricto (s.s.) 

and Anopheles coluzzii were the main vector species, except for Kenya, where a temporary 

decline in A. gambiae s.s. tilted mosquito populations towards Anopheles arabiensis and 

Anopheles merus23. TEP1*S and TEP1*R alleles were identified in all species. To validate 

our genotyping results, we sequenced a representative set of alleles from each species 

and country. Marked differences were observed in the geographic and species-specific 

distribution of individual alleles (Fig. 2b). In addition to the known alleles, we found a 

previously unknown allele *R3 which was closely related to *R2 with four private small 

nucleotide polymorphisms in the post-β-hairpin loop (Supplementary Fig. 2). Our survey 

showed broad distribution of TEP1*S1 and TEP1*R2 across Africa, whereas other alleles 

were more geographically restricted. At the molecular level, the two most common alleles 

either lacked clear geographic structuring (*S1) or were highly conserved (*R2) (Fig. 

2b,c and Supplementary Fig. 1). By contrast, rare alleles were species- and/or population-

specific. Indeed, *R1 was only found in A. coluzzii in Mali and Burkina Faso; *S2 was 

enriched in A. coluzzii in Cameroon; and *R3 was restricted to the salt-water-breeding A. 
merus in coastal Kenya (Fig. 2c). The observed restricted allelic distribution may be caused 

by non-random mating resulting from local population structure or selection acting on the 

rare alleles. To detect signatures of non-random mating at a population level, we tested for 

deviations from Hardy–Weinberg equilibrium. Although significant non-random mating was 

detected locally for all alleles, no global pattern of inbreeding was found across species 

or sampling sites, providing further evidence for local selection acting at the TEP1 locus 

(Supplementary Fig. 3).

As expected from species-specific allele distribution, TEP1 genotypes were highly 

structured according to species. *S1/S1 and *R2/S1 were enriched in both A. gambiae s.s. 

and A. arabiensis; *R1/R1, *S1/S1, *S1/S2 and *R2/S2 were prominent in A. coluzzii,and 

*R2/S1, *R3/R3, *R3/S1 and *S1/S1 were found in A. merus (Fig.3a). Overall, the observed 
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patterns were reminiscent of niche partitioning between generalist and specialist species. In 

line with our observations, previous studies have demonstrated that A. gambiae s.s. and A. 
arabiensis occupy a wider variety of ecosystems than the more geographically restricted A. 
coluzzii and A. merus24, have higher larval competitiveness25, faster larval developmental 

rates26 and thrive mainly during the rainy season6. Unlike specialists, generalist species are 

believed to be selected for dispersion rather than local competitiveness27, which prevents 

selection for locally adapted phenotypes. We hypothesized that ecological differences within 

the species complex drive local selection patterns of specialist TEP1 genotypes. To test 

this hypothesis, we performed principal component analysis of TEP1 genotype frequencies 

and observed a clear structuring of A. coluzzii into bioclimate zones according to TEP1 
genotype (Fig.3b). *R1/R1 homozygotes were exclusively identified in dry biomes of 

the Sahel zone, whereas *R2/ S1 and *S1/S2 were mostly associated with savanna and 

rainforest. By contrast, no clear bioclimate structuring was observed in our samples for 

the generalists A. gambiae s.s. and A. arabiensis.The strongest ecotype partitioning in A. 
coluzzii was observed by bioclimate for *R1 and by geography for *S2 alleles, which have 

demonstrated roles in Plasmodium resistance20 and male fertility28, respectively. Whereas a 

potential trade-off between these important life-history traits was suggested for heteroallelic 

populations28, our results showed that these alleles occur in allopatric mosquito species. On 

the basis of these and previous results3,29, we propose that the observed biogeographic clines 

in TEP1 genotype may link TEP1 evolution to local adaptation (Fig.3c): however, other 

scenarios such as genetic drift or founder effects cannot be ruled out.

Most of the sites examined in this study featured two or more Anopheles species, 

with the exception of the site 2 in Burkina Faso, which was populated exclusively by 

Anopheles coluzzii (Fig. 2). How these sympatric vector species contribute to Plasmodium 
transmission, that is, whether they show similar vectorial capacity, remains unknown. 

Differences in vectorial capacity between A. gambiae s.s. and A. coluzzii have been 

examined in laboratory conditions in Mali, Burkina Faso and Cameroon with quite 

contradictory conclusions7,8,11. To address this question in natural settings, we revisited the 

exceptional Nankilabougou site in Mali, where Plasmodium-resistant A. coluzzii ecotypes 

(TEP1*R1) and susceptible A. gambiae (TEP1S1 and TEP1*R2) breed in sympatry (Fig. 

2c, site 1). Time-series collections of adults were replicated during two rainy seasons in 

2014 and 2015. Mosquito samples were genotyped for species and TEP1 as described 

above, whereas P. falciparum exposure was assayed in whole mosquitoes by PfCox1 
-based PCR (Supplementary Table 2). Whereas the number of infected mosquitoes varied 

significantly during both rainy seasons, the prevalence of Plasmodium in both species was 

around 10% (Supplementary Fig. 4 and Supplementary Table 7). These results suggested 

that the two species were equally attracted to humans and had similar exposure to 

Plasmodium. Species genotyping confirmed the expected TEP1 allelic distribution according 

to mosquito species (Supplementary Fig. 5). In line with our initial characterization, A. 
coluzzii was predominantly TEP1*R1 and A. gambiae s.s. was represented by TEP1*S1 and 

TEP1*R2. Species abundances followed similar dynamics during the two rainy seasons, with 

consistently higher numbers of A. coluzzii than A. gambiae s.s. (Fig. 4a). To test whether 

vector microevolution impacted Plasmodium abundance, we used G-causality, a statistical 

hypothesis test for determining whether one time series can forecast another. If past (or 
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lagged) values of a time series Y1 contain information that helps predict another signal 

Y2 (beyond the information contained in past values of Y2 alone), then Y1 is said to ‘G-

cause’ Y2. Here, we tested whether Plasmodium abundance was G-caused by the following 

mosquito predictors: total mosquito abundance, abundance of A. coluzzii, abundance of 

A. gambiae s.s. and species frequency. We also gauged whether the environmental factors 

temperature and rain G-cause Plasmodium or mosquito dynamics. Every time series was 

modelled by a q-order vector autoregression (VAR(q)) (Methods, equations (3) and (4)) 

for each season separately, and a Wald test was used to determine which model had a 

significant contribution (Methods and Supplementary Fig. 6). The best models of both 

seasons (Supplementary Table 5) were subsequently summarized into one co-integrated 

G-causality network by Fisher’s method (Fig. 4b). Strikingly, species frequency was the 

only predictor that showed a significant impact on Plasmodium abundance in both seasons 

(adjusted P = 0.01) (Fig. 4b). Reciprocal G-causality tests revealed no impact of the 

number of Plasmodium-infected mosquitoes on mosquito abundance or mosquito species 

frequencies, indicating that Plasmodium exerts low or no selective pressure on mosquito 

microevolution at this sampling site. Surprisingly, the temperature and rain time series 

failed to predict Plasmodium abundance and species frequencies (Supplementary Table 7), 

suggesting that linear mathematical approaches and the time-series data collected in our 

study did not have sufficient power to resolve the impact of these environmental factors on 

mosquito populations.

As G-causality tests do not define the sign of causal interactions (positive or negative), 

we explored how an increase in a causal variable affected a cumulative impulse response 

in the predicted variable. We simulated a theoretical increase of 10% in the frequency of 

A. coluzzii (the change often observed in species frequency during a rainy season) and 

examined in silico its effect on Plasmodium abundance. For both seasons, an increase in 

A. coluzzii frequency had a significant negative impact on P. falciparum abundance with 

a time lag of 21 d, indicating that a marked drop in the number of infected mosquitoes 

can be expected after one mosquito generation (Fig. 4d). Quantification of the impact of 

mosquito population structure on P. falciparum abundance in natural conditions has revealed 

significant interspecies differences in driving Plasmodium dynamics.

By exploiting the information contained in genetic fluctuations of natural populations, we 

demonstrated that mosquito microevolution drives Plasmodium dynamics. Although further 

studies of diverse ecosystems and larger datasets are needed for broader generalization 

of these results, our study contributes important evidence that the structure of vector 

populations is a crucial variable for prediction of malaria transmission. Nonlinear 

approaches and longer time series may identify other factors that impact Plasmodium 
abundance. Our genotyping results are consistent with the previously reported extensive 

genotypic complexity in Anopheles gambiae s.l.1–5, which is likely to be generated by 

differential evolutionary forces that promote alternative life-history strategies within the 

species complex. We found that generalist TEP1 genotypes occupy diverse environments 

across Africa, whereas specialized ecotypes inhabit mostly particular niches. Together with 

the previous reports on geo-distribution of A. coluzzii TEP1*R1 (refs. 3,29), our data suggest 

that this species thrives in areas with a single short-term annual rainy season and a long dry 

season, regulated by opposing effects of Harmattan and monsoon in West Africa. Therefore, 
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we propose that local selection by the environment is a more likely driver of evolution of this 

vector competence gene than Plasmodium exposure. Further studies are needed to formally 

examine the role of TEP1 polymorphism on Plasmodium dynamics.

In conclusion, this report offers an advanced conceptual framework for studying natural 

dynamic vector–parasite interactions with potential to predict the consequences of changing 

environment on vector distribution and to target vector species relevant for malaria 

transmission.

Methods

Sample collection

Genotype mapping—Anopheles gambiae s.l. samples (n = 1,538) were collected in a 

cross-sectional approach in Mali, Burkina Faso, Cameroon and Kenya (Supplementary Table 

4) in September and October 2009 and throughout 2012. Adult samples were collected 

indoors (Kenya, Mali), from mating swarms (Burkina Faso) or in the laboratory from 

field-collected larvae (Cameroon). Larvae were collected by spoon dipping.

Time-series collections—Collection was performed in 2014 (n = 1,091; 28 time points) 

and replicated in 2015 (n = 4,795; 130 time points) in Nankilabougou, Mali, where A. 
gambiae s.s. (TEP1*S1/S1, TEP1*R2/S1, TEP1*R2/R2) and A. coluzzii (TEP1*R1/R1) breed 

in sympatry. Note that bednet or ACT interventions were not performed at the site during 

this study. Adults were collected by CDC light traps twice a week (2014) or nightly (2015) 

throughout the rainy seasons. All samples were processed immediately after collection and 

stored in 70% ethanol before genotyping. Temperature data were collected using a data 

logger placed at one of the trapping sites. Rain data were obtained from the Bancumana 

meteorological station located 6 km from Nankilabougou.

Genotyping, sequencing and Plasmodium detection

PCR amplifications were performed on DNA extracted from whole larvae and adult legs 

(to prevent sperm contamination in mated females) using the DNeasy kit (QIAGEN). 

All samples were genotyped for species and TEP1 by previously described PCR-based 

methods (Supplementary Tables 1 and 2). Genotypes were identified by digestion with 

BamHI, HindIII and BseNI (Fermentas, according to manufacturer’s instructions) according 

to Supplementary Table 3. All TEP1*R1- like samples were sequenced to confirm *R1 
identification. For large-scale sequence comparisons of alleles, amplicons of the TEP1–TED 
region (n = 103) were cloned for sequencing and compared to published sequences from 

the G3, L3-5 and 4Arr laboratory strains. Full-length genomic TEP1 sequences (n = 25) 

were obtained by PCR of overlapping fragments generated from homozygous individuals 

and sequenced.

For the time-series collections, DNA was extracted separately from mosquito legs and 

carcasses using the Nucleomag VET Kit (Marchery Nagel). The DNA isolated from legs 

was used for genotyping as described above. The carcass DNA served as a template 

to identify infected mosquitoes by PCR amplification of the P. falciparum Cox1 gene 

(Supplementary Table 2).
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Data analysis

Sequence comparison—Sliding-window analysis of nucleotide diversity was performed 

by DnaSP30. Sequence comparisons were conducted with the MEGA6 Kimura (K80) 

model31, with invariable sites and gamma rate of evolution based on Jmodeltest32,33 for 

the optimal nucleotide substitution model.

Population genetics—Deviations from Hardy–Weinberg equilibrium (Supplementary 

Table 4) in TEP1 genotypes were examined by χ2-test in R using the HWE. chisq function 

from the genetics package34. This function evaluates how well the observed genotype 

frequencies agree with the expected genotype frequencies predicted by allele frequencies.

The fixation index FISik (ref. 35; Supplementary Fig. 3) for every subpopulation i, and every 

allele k, were calculated by allele frequencies p as follows:

FISik =
Pik − pik

2

pik 1 − pik
(1)

where the difference of observed homozygotes P and expected homozygotes p2, is divided 

by the expected proportion of the allele in heterozygotes. The significance of the result can 

then be tested by χ2-test:

χ2 = NFISik
2 (2)

where N is the sample size.

Time-series analysis

We formulated vector autoregression models (VAR) of two variables, where the predicted 

variable y1(t) represents Plasmodium abundance and y2(t) represents one of the four 

considered mosquito predictors: total mosquito abundance, abundance of A. coluzzii, 
abundance of A. gambiae s.s. or species frequency (that is, a total of four models were built). 

Additionally, we also tested whether such environmental predictors as temperature and rain 

impact Plasmodium and mosquito dynamics. In the VAR models, the time series of one 

variable is trained on time-lagged values t – q of both variables, that is, for every time-point 

t, the value yx(t) of one variable is predicted by a historical time-lagged autoregressive term 

yx(t – q), and historical values yy(t – q) of the other variable. The VAR models are given by:

y1(t) = c1 + ∑
j = 1

q
A1, 1

j y1(t − j) + ∑
j = 1

q
A1, 2

j y2(t − j) (3)

y2(t) = c2 + ∑
j = 1

q
A2, 1

j y1(t − j) + ∑
j = 1

q
A2, 2

j y2(t − j) (4)

where q is the maximum number of lagged observations included in the model (that is, 

the order), and the matrix A contains the time-invariant coefficients (representing the 

contribution of each time-lagged observation to the predicted value y1(t) and y2(t)). The 
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time-invariant coefficients A2, 1
j  for both variables and intercept constants c were found by 

linear regression. This time-series analysis was carried out in R36 using the vars package37.

Because the collection frequency of adult mosquitoes differed between 2014 and 2015 

(twice a week and daily, respectively), we performed an in silico downsampling of the 2015 

dataset. To this end, we summed the values of the time series over non-overlapping time 

windows of length k = 3–4 d. This approach effectively increased the sample sizes for every 

time point, thereby increasing measurement accuracy. For every time window k, we repeated 

this sampling procedure starting at different time points, generating k–1 different time series. 

Every of these generated datasets was modelled with VAR(q), and the accuracy in predicting 

both variables was then assessed by calculating the average goodness of fit over all q, that 

is, 1
q ∑

i = 1

q
Ri

2. The best VAR model was observed for k = 4 and for the datasets starting either 

at the earliest or at second time point (Supplementary Table 8). Given that the time series 

starting at the earliest time point was longer (thus containing more information), it was 

selected for further modelling of the 2015 season.

The model order q of VAR models have a strong impact on the conclusions that can be 

drawn from them. To select an appropriate time lag q, we next devised an out-of-sample 

validation approach, where the models that were trained on the data from one season 

were used to predict the measurements of another season. The model with the highest 

out-of-sample accuracy as determined by R2 was chosen for subsequent G-causality testing 

(Supplementary Table 9).

Granger-causality testing

To test whether mosquito dynamics and environmental factors Granger-cause Plasmodium 
abundance, the dynamics of P. falciparum abundance were modelled separately for each 

sampling season and for each mosquito and environmental variable (Supplementary Fig. 6). 

To infer Granger causality for both directions of prediction (for example, whether mosquito 

abundance causes Plasmodium abundance or Plasmodium causes mosquito abundance), the 

contribution of the slope coefficients y2(t) to equation (3) and y1(t) to equation (4), were 

confirmed by the Wald test:

H0, 1:A1, 2
1 = A1, 2

2 = … = A1, 2
q = 0, H1, 1:y2Granger − causesy1 (5)

H0, 2:A2, 1
1 = A2, 1

2 = … = A2, 1
q = 0, H1, 2:y1Granger − causesy2 (6)

Granger non-causality is rejected at low P values of the Wald test and the alternative 

hypothesis of a causal relationship is accepted. It is important to note that whereas a 

significant P value implies causality, the absence of significance does not prove the absence 

of causality.
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Granger causality tests require models that are serially uncorrelated and dynamically stable. 

Therefore, all models where tested for correlated residuals using a portmanteau test using 

the serial test function of the vars package. To test for stability, the eigenvalues of the 

model’s characteristic polynomial were confirmed to be below 1.

The asymptotic assumption of the Wald test is violated when non-stationary time series are 

modelled. One approach to make a time series stationary is to difference it. However, to 

avoid potential bias of the Granger test caused by data transformation, we applied a method 

developed by Toda and Yamamoto38 for Granger causality testing in non-stationary time 

series. The order of integration (m) that is required to make the time series stationary was 

identified by the ndiffs function of the forecast package which implements the Kwiatkowski-

Phillips–Schmidt–Shin, augmented Dickey–Fuller and Phillips–Perron tests. Of note, the 

VAR(q+m) model was only applied for hypothesis testing, and not for the described model 

analysis and selection.

To evaluate which interactions can be generalized beyond a single rainy season, a consensus 

causality network was postulated by P-value integration. To this end, P values of the Granger 

causality test for the same hypothesis (for example, species frequency causes Plasmodium 
abundance) but from different seasons were integrated by Fisher’s method. This method is 

commonly used in meta-analysis and yields a χ2-value, with which a cumulative P value can 

be derived. Because the additional replication is appreciated, the resulting P value can be 

lower than the input P values. As a result of the out-of-sample validation step, the hypothesis 

tests cannot be seen as entirely independent replicates of the hypothesis test; therefore, we 

introduced a false discovery rate correction (n = 2). Finally, a Bonferroni correction for 

multiple hypothesis testing (n = 6) with the same dataset was applied.

Impulse-response analysis

Having established that mosquito species frequency G-caused Plasmodium abundance, we 

tested for the sign of this interaction using a cumulative impulse response. Generally, an 

impulse response is the reaction of the dynamic system to an external change, which 

describes the reaction of the system as a function of time. To estimate the response 

of Plasmodium abundance to a theoretical increase in A. coluzzii frequency, cumulative 

impulse-response functions were generated with the irf function of the vars package with 

1,000 bootstrap replicates at a 95% confidence interval. For non-zero impulse-response 

functions, the sign of the tested interaction is the direction of the impulse response. For 

example, in a negative interaction, an increase in the predictor will cause a decline in the 

predicted variable.

Reporting Summary

Further information on research design is available in the Nature Research Reporting 

Summary linked to this article.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. TEP1 diversity and classification.
a, Nucleotide diversity over the TEP1 coding sequence plotted above a schematic 

representation of the protein domain organization. The dashed box indicates the region 

chosen for genotyping. b, Congruency of TEP1 allelic segregation based on neighbour-

joining comparison of full-length (left) versus TED only (right) amino acid sequences, 

illustrated by bootstrapped (1,000 iterations) phylogenetic trees (50% cut-off). MG, 

macroglobulin domain; LNK, linker region; CUB, complement C1r/C1s; ANK, 2-disulfide 

anchor motif.
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Fig. 2. TEP1 population genetics.
a, Location of sampling sites across African bioclimate zones (Supplementary Table 4) 

indicated by colour. Collected Anopheles species and sample sizes for each site are shown 

in brackets. Mali (ML): (1) (A. coluzzii, n = 116; A. gambiae s.s., n = 150); Burkina Faso 

(BF): (2) (A. coluzzii, n = 100) and (3) (A. coluzzii, n = 12; A. gambiae s.s., n = 47); 

Cameroon (CM): (4) (A. coluzzii, n = 210; A. gambiae s.s., n = 643) Kenya (KE): (5) (A. 
gambiae s.s., n = 17; A. merus, n = 49; A. arabiensis, n = 17) and (6) (A. gambiae s.s., n = 

122, A. arabiensis, n = 67). b, Neighbour-joining comparison of TED amino acid sequences 

(n = 103) identified in the sampling sites by country (as in a) and by species (colour as in c), 
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and compared to the laboratory strains G3, 4Arr and L3-5. Corresponding TED sequences 

of the closely related TEP5 and TEP6 (A. gambiae pest strain) were used as an outgroup for 

TEP1. Bootstrap values (1,000 iterations) are shown at the nodes of the plotted phylogenetic 

tree. Numbers of samples with identical sequences are shown in brackets. c, Distribution 

of TEP1 allelic frequencies per species across sampling sites 1–6. Significant deviations 

from Hardy–Weinberg equilibrium (calculated by χ2-test and indicated by the red asterisks) 

were observed in A. gambiae s.s. from sites 4, 5 and 6 (P=3.0×10–4, P=5.0×10–4, P=1.1 

×10–5, respectively); A. arabiensis from site 6 (P=1.5 ×10–5); and A. merus from site 5 

(P=9.110–12). For details see Supplementary Table 4.
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Fig. 3. Genetic and ecotype structures of Anopheles gambiae s.l.
a, TEP1 genotype composition of the species (sample sizes are indicated by the length of 

the species segment). A. gambiae s.s. (magenta) are predominantly represented by *S1/S1 
and *R2/S1; A. coluzzii feature *R1/R1, *S1/S1 and *S1/S2. b, Principal component 

analysis of genotype frequencies in species and sampling locations (n = 15). Species are 

coded by shapes (A. gambiae s.s.; triangle; A. coluzzii, circle; A. arabiensis, square; A. 
merus, diamond), colours represent bioclimate zones39(as in colour legend, Supplementary 

Table 4). Arrows indicate the Mali sampling site where A. gambiae s.s. and A. coluzzii 
TEP*R1 breed in sympatry. c, Hypothesized map of the distribution of A. coluzzii ecotypes 

(delineated by grey lines) according to TEP1 genotypes over bioclimate zones39 (as in b). A. 
coluzzii ecotype distribution was deduced from this and previous studies3,29.
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Fig. 4. Granger causality analysis.
a, Time-series collections for rainy seasons in 2014 and 2015. A. coluzzii frequency, 

abundance of total mosquitoes, A. gambiae and A. coluzzii, and Plasmodium abundance (c, 

solid lines) were used to generate VAR models for each season separately. The 2014 season 

was sampled every 3-4 d (n = 1,091 mosquitoes; 28 time points), whereas the 2015 season 

was modelled as a cumulative summary of 4 d (n = 4,795 mosquitoes; 33 time points). b, 

Schematic representation of G-causality predictions for both seasons, arrows indicating the 

direction of prediction (non-significant G-causality in grey, significant in black). P values 

were computed using Wald-test statistics for every season, and subsequently integrated by 

Fisher’s method and Bonferroni correction, generating a cumulative P value for both seasons 
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(black). c, Comparison of the observed (solid line) Plasmodium abundance in the time-series 

data and the predicted (dashed line) Plasmodium abundance by VAR model based on 

species frequency for two seasons. d, Theoretical cumulative impulse-response test. The 

sign of significant Granger causal interactions was determined for each season separately 

by estimating in silico the response to an impulse in one of the variables. A simulated 

10% increase in A. coluzzii frequency in the mosquito population caused a significant 

drop in Plasmodium abundance in both models with a time lag of 21 d. The solid black 

line depicts the mean out of 1,000 bootstrap replicates, and the red dashed lines show the 

95% confidence bands. Significant G-causality for every season (computed using Wald-test 

statistics) is given by the individual P values. For a detailed summary of the analysis, see 

Supplementary Table 4.

Gildenhard et al. Page 18

Nat Microbiol. Author manuscript; available in PMC 2022 September 07.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts


	Abstract
	Methods
	Sample collection
	Genotype mapping
	Time-series collections

	Genotyping, sequencing and Plasmodium detection
	Data analysis
	Sequence comparison
	Population genetics

	Time-series analysis
	Granger-causality testing
	Impulse-response analysis
	Reporting Summary

	References
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4

